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Abstract

Prospects for searches of anomalous quartic gauge couplings at a future high-energy muon collider

using the production of WW boson pairs are reported. Muon-muon collision events are simulated

at
√
s = 6 TeV corresponding to an integrated luminosity of 4 ab−1. The simulated events are used

to study the WWνν and WWµµ final states with the W bosons decaying hadronically. The events

are analyzed to report expected constraints on the structure of quartic vector boson interactions

in the framework of dimension-8 effective field theory operators.
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I. INTRODUCTION

Vector boson scattering (VBS) processes probe the structure of the triple and quartic

electroweak (EW) gauge boson self-interactions [1, 2]. Deviations of measurements with

respect to the Standard Model (SM) predictions could indicate the presence of anomalous

quartic gauge couplings (aQGCs) [3, 4]. Measurements of the VBS processes at the CERN

LHC by the ATLAS and CMS Collaborations have reported constraints on aQGCs in the

framework of dimension-8 effective field theory (EFT) operators [5–21]. The LHC results

so far have been restricted to operators that introduce aQGCs without modifying the triple

gauge couplings. In addition, the EFT is not a complete model and the presence of nonzero

aQGCs will violate tree-level unitarity at sufficiently high energy [4]. A few of these LHC

results address the unitarity issues in some form but not all of them. Prospects of aQGC

searches using the scattering of W and Z bosons at high-energy electron-positron (e+e−)

colliders were reported in Ref. [22].

The goal of this paper is to study the prospects of aQGC searches at a future multi-TeV

muon collider via W±W∓ production. A comprehensive physics case for a future high energy

muon collider, with center of mass energies from 1 to 100 TeV, is reported in Ref. [23]. A

muon collider has considerable advantages compared to proposed linear and circular electron-

positron (e+e−) [24–27] and circular proton-proton machines [28, 29] in terms of having

a high energy and high luminosity reach with a relatively clean environment. However,

compared to e+e− colliders, the effects of backgrounds induced by the muon beam decays,

referred as the beam induced background, are important and need to be studied in detail [30].

A multi-TeV muon collider is a “high-luminosity weak boson collider” [31] and provides

a great opportunity to study VBS processes. Prospects of measuring the scattering of lon-

gitudinally polarized Z boson pairs at a muon collider were reported in Ref. [32]. This work

focuses on the prospects of aQGC searches using events with oppositely-charged W±W∓

boson pairs. The studies are performed in WWνν and WWµµ channels, where the WW

boson pairs are produced in association with two neutrinos and two muons, respectively.

Figure 1 shows representative Feynman diagrams involving quartic vertices for the WWνν

(left) and WWµµ (right) channels.

A muon-muon (µ+µ−) collider at
√
s = 6 TeV with a data sample corresponding to an

integrated luminosity of 4 ab−1 is considered for this study. Events are selected targeting
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FIG. 1. Representative Feynman diagrams of the WWνν (left) and WWµµ (right) processes. New

physics (represented by a hatched circle) in the EW sector can modify the quartic gauge couplings.

hadronically decaying W bosons to target the final states with the highest branching ratios.

Ten independent charge conjugate and parity conserving dimension-8 effective operators are

considered [3]. The S0 and S1 operators are constructed from the covariant derivative of

the Higgs doublet. The T0, T1, T2, T6, and T7 operators are constructed from the SUL(2)

gauge fields. The mixed operators M0, M1,and M7 involve the SUL(2) gauge fields and the

Higgs doublet. The WWνν and WWµµ channels are analyzed separately.

II. EVENT SIMULATION

MadGraph5 aMC@NLO 3.1.1 [33, 34] and Whizard 3 [35, 36] Monte Carlo (MC)

event generators are used to simulate the signal and background contributions. The aQGC

processes are simulated using MadGraph5 aMC@NLO at leading order (LO). The con-

tributions of the interference terms between the EFT operators and the SM amplitude are

simulated separately from the contributions of the square of the amplitudes involving the

EFT operators. The SM WWνν and WWµµ background processes are simulated with

MadGraph5 aMC@NLO. These SM processes are also simulated with Whizard at LO

and good agreement is seen with MadGraph5 aMC@NLO predictions.

Other background processes contributing to the WWνν are simulated following the cor-

responding studies for the e+e− collider in Ref. [22]. The WZµν, ZZµµ, WWµµ, and WWZ,
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with the Z boson decaying to neutrinos, processes are simulated using Whizard. The beam

initial state radiation implemented in Whizard is included in the simulation.

The parton showering and hadronization are simulated using Pythia 8.306 [37]. Detector

effects are simulated using Delphes 3.5 [38] with a generic muon collider detector descrip-

tion. The beam induced background effects are not considered in this description. The

reconstructed muons and electrons have an absolute pseudorapidity of less than 2.5. Jets

are clustered from the reconstructed objects using FastJet [39] with the Valencia algo-

rithm [40]. Exclusive clustering is performed to reconstruct exactly two jets in the final state

with distance parameters of 1.2 and 1.5 in the WWνν and WWµµ channels, respectively.

The reconstructed muons and electrons are not included as inputs to the clustering.

III. EVENT SELECTION

Events are selected targeting hadronically decaying WW boson pairs with a large invariant

mass. Candidate WW boson pairs are selected by requiring two jets with 50 < mW < 100

GeV, where mW is the mass of the jet. The two jets in the WWνν channel are also required

to have transverse momenta (pT) greater than 100 GeV and | cos θ| < 0.8, where θ is the

angle of the jet with respect to the beam axis.

The WWνν channel is targeted by vetoing events with a reconstructed electron or muon

with a momentum greater than 3 GeV. This requirement significantly reduces the WWµµ

background contribution in this channel. The photon induced WWµµ background contri-

bution can be reduced even further with a detector with higher forward rapidity coverage.

The events are also required to have a missing mass (mmiss) greater than 200 GeV as the

WWνν channel contains two neutrinos in the final state. The mmiss is defined as

mmiss =

√
(
√
s− EWW)2 − |~pWW|2, (1)

where EWW and ~pWW are the energy and momentum of the WW boson pairs, respectively.

This requirement removes events where neutrinos are produced from Z boson decays and

reduces the contributions of the s-channel WW and quantum chromodynamics two jet pro-

cesses.

The WWµµ channel is targeted by requiring two oppositely charged muons with momenta

greater than 3 GeV. The dominant background contribution is the SM production of WWµµ
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where the photon induced final state muons tend to be very forward. The mass of the dimuon

pair is required to be greater than 106 GeV to reduce the contribution of events where the

muons are produced from the Z boson decays.

IV. RESULTS

The selected events are used to constrain aQGCs in the EFT framework. The expected

yields for the different SM processes and for an illustrative aQGC parameter in the WWνν

channel are given in Table I. The expected yield of the SM WWµµ contribution in the WWµµ

channel is 10,703 while the expected yield of an illustrative aQGC parameter fT,1/Λ
4 =

1 TeV−4 is 265,307.

TABLE I. The expected yields for various SM background processes in the WWνν channel. The

uncertainties due to the limited number of MC simulated events are negligible.

Process Yields in WWνν channel

WWνν 1,082,800

WWµµ 11,181,200

WZµν 1,132,800

ZZµµ 3,319

WWZ (Z→ νν) 14,396

Total background 12,331,715

fT,1/Λ
4 = 1 TeV−4 20,337,080

Statistical analysis of the event yields is performed separately in the WWνν and WWµµ

channels with a fit to the invariant mass distribution of the WW pair (mWW). The dis-

tributions of mWW after the event selection are shown in Fig. 2 for the WWνν (left) and

WWµµ (right) channels, respectively. The expected 95% confidence level (CL) lower and

upper limits on the aQGC parameters f/Λ4, where f is the Wilson coefficient of the given

operator and Λ is the energy scale of new physics, are derived from Wilk’s theorem [41] as-

suming that the profile likelihood test statistic is χ2 distributed [42]. No nuisance parameters

corresponding to systematic uncertainties are included in the fits.
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FIG. 2. Distributions of mWW in the WWνν (left) and WWµµ (right) channels, respectively,

after the event selection. The dashed lines show the signal predictions for one illustrative aQGC

parameter. The overflow is included in the last bin.

Table II shows the individual lower and upper limits obtained by setting all other aQGCs

parameters to zero in the WWνν channel for the S0, S1, M0, M1, M7, T0, T1, and T2

operators. The WWµµ contribution in the WWνν channel is treated as a background

process and is taken from the SM in the statistical analysis.

Table III shows the individual lower and upper limits obtained by setting all other aQGCs

parameters to zero in the WWµµ channel for the T0, T1, T2, T6, and T7 operators. The

operators T6 and T7 are especially interesting for the WWµµ channel as the presence of

these operators does not modify the SM quartic WWWW vertex.

These new results give stringent constraints on the aQGC parameters for the S0, S1, M0,

M1, M6, M7, T0, T1, T2, T5, and T6 operators. It has to be noted that the given limits

do not include procedures to avoid tree-level unitarity violation. The effects of the beam

induced backgrounds are also not included. These considerations are deferred to future

work.
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TABLE II. Expected lower and upper 95% CL limits on the parameters of the quartic operators

S0, S1, M0, M1, M7, T0, T1, and T2 in the WWνν channel.

WWνν Limits (TeV−4)

fM,0/Λ
4 [−0.032, 0.035]

fM,1/Λ
4 [−0.088, 0.065]

fM,7/Λ
4 [−0.12, 0.17]

fS,0/Λ
4 [−0.22, 0.20]

fS,1/Λ
4 [−0.14, 0.14]

fT,0/Λ
4 [−0.0062, 0.0030]

fT,1/Λ
4 [−0.0082, 0.0031]

fT,2/Λ
4 [−0.0096, 0.0046]

TABLE III. Expected lower and upper 95% CL limits on the parameters of the quartic operators

T0, T1, T2, T6, and T7 in the WWµµ channel.

WWµµ Limits (TeV−4)

fT,0/Λ
4 [−0.04, 0.028]

fT,1/Λ
4 [−0.025, 0.0095]

fT,2/Λ
4 [−0.12, 0.068]

fT,6/Λ
4 [−0.034, 0.033]

fT,7/Λ
4 [−0.043, 0.038]

V. SUMMARY

Prospects for searches of anomalous quartic gauge couplings at a future high-energy muon

collider using the production of WW boson pairs are studied. Muon-muon collision events

are simulated at
√
s = 6 TeV corresponding to an integrated luminosity of 4 ab−1. The

simulated events are used to study WWνν and WWµµ final states with the W bosons

decaying hadronically. Contributions of the SM background processes are considered in the

analysis. Constraints on the quartic vector boson interactions in the framework of dimension-

8 effective field theory operators are obtained with stringent limits set on the effective field

7



theory operators S0, S1, M0, M1, M7, T0, T1, T2, T6, and T7.
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