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Abstract

This white paper summarizes recent progress in the cosmological bootstrap, an approach to the study

of the statistics of primordial fluctuations from consistency with unitarity, locality and symmetry as-

sumptions. We review the key ideas of the bootstrap method, with an eye towards future directions

and ambitions of the program. Focusing on recent progress involving de Sitter and quasi-de Sitter back-

grounds, we highlight the role of singularities and unitarity in constraining the form of the correlators.

We also discuss nonperturbative formulations of the bootstrap, connections to anti-de Sitter space, and

potential implications for holography.
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1 Introduction

The statistics of the primordial density fluctuations offer a unique opportunity to probe the

earliest moments of the universe [1–3]. The seeds of all structure are believed to have been

created in a phase of cosmic inflation [4–6], an era where both quantum mechanics and gravity

play an essential role.1 During the inflationary period, small quantum fluctuations were stretched

to cosmological distances, rippling the fabric of spacetime in an apparently random, but correlated

fashion [8–12]. These correlations retain a memory of their genesis, providing us a rare glimpse

of the universe in its infancy.

An intriguing feature of inflation is that our view of this epoch is frozen in time. We can only

make inferences about the inflationary era from spatial correlations in the initial conditions for

the post-inflationary universe. These primordial correlations live on the future boundary of the

inflationary spacetime or, equivalently, the past boundary of the hot Big Bang universe. The

detailed structure of these boundary correlations encodes information both about the dynamics

and particle content of inflation. Time does not appear explicitly in the observed correlations,

but is instead encoded in their scale dependence, because modes of different wavelength freeze

out at different times during inflation. By measuring this shape dependence of the late-time

cosmological correlations, we hope to infer the physics of the inflationary era.

The standard approach to make predictions for the inflationary correlations is to follow the

evolution of these correlations through the entirety of the spacetime—from their origin as quan-

tum fluctuations until they imprint themselves at reheating [13–17]. This approach has the

desirable feature that it makes certain aspects of the physics—such as locality, causality and

unitarity—completely manifest. However, this comes at a price: ensuring these properties at

every moment in time requires us to perform difficult time integrals over all of the inflationary

evolution. Despite these challenges, many heroic computations have been carried out [16–30],

and by now a rich spectrum of inflationary phenomenology is known [31–52].

The cosmological bootstrap is a complementary strategy that is motivated by two important

features of inflationary cosmology: First, as described above, we can’t observe the time evolu-

tion during inflation directly, but instead have to infer it from the static boundary correlations.

Second, inflation is likely to have occurred at energies far exceeding those probed by particle

experiments, where our knowledge of the correct theory of particle physics is highly uncertain.

A conservative approach to both of these challenges is to directly reconstruct (bootstrap) the cos-

mological correlations on the late-time reheating surface, using cherished physical principles like

locality, unitarity, and symmetries as consistency requirements [53–80]. The bootstrap method

then asks what space of correlations is consistent with these basic physical conditions. In many

cases, these combined requirements are so constraining as to uniquely define the answer, re-

producing the results of detailed bulk calculations and enabling even more complex ones. This

strategy of focusing directly on observables and their consistency has yielded numerous insights

into the structure of anti-de Sitter space (conformal field theories) [81, 82] and flat space (scatter-

ing amplitudes) [83, 84], which provided inspirational success stories. Here, we will review recent

progress in applying these ideas to cosmology.

1See the Snowmass white paper [7] for a summary of the current theoretical and observational status of inflation.
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Ideally, one would like to classify all possible patterns of primordial fluctuations based on

general principles. However, as a practical starting point, it is useful to assume that the near scale

invariance [85] and Gaussianity [86] of the observed fluctuations are tied to more fundamental

principles.2 This means that we take the observed scale invariance to imply an approximate

symmetry of the dynamics and focus on low-order correlation functions beyond the Gaussian

approximation. For simple processes involving three- and four-point functions of the light particles

sourced during inflation—adiabatic density fluctuations and primordial gravitational waves—

these correlation functions can be calculated using standard perturbative methods adapted to the

cosmological setting. However, for even slightly more complicated physical processes, standard

calculations are often intractable, motivating the search for new calculational approaches.

The cosmological bootstrap program aims to further illuminate both conceptual and obser-

vational questions about the very early universe. We only observe one universe and therefore

we depend on theory to connect individual signatures to deeper characteristics of the inflation-

ary era. The cosmological bootstrap provides a precise map between the spectrum of particles,

their interactions, and their (quantum) state, to the analytic structure of the correlators. These

very properties of the correlators can also be crucial in the search of primordial non-Gaussianity

observationally [19, 89, 90]. In addition, the self-consistency of the correlators with unitarity

and locality can also limit the range of parameter space beyond what is naively allowed within

effective field theory [91] (e.g. through positivity bounds on EFT coefficients [92, 93]). A natural

hope of the bootstrap program is that it will continue to unearth new and unexpected connections

between fundamental principles and correlators, theory and data.

Understanding the perturbative structure of correlators from first principles is also an impor-

tant step toward answering a number of conceptual questions about inflation and/or de Sitter

space. Infrared divergences have long plagued loop calculations in cosmology and cast doubt

on our understanding of the inflationary epoch [94–121]. Recent progress has been made in un-

derstanding aspects and, in some cases, resolve these divergences [122–128]. These results must

ultimately connect to the bootstrap, and offer both a test of these direct calculations, while

inspiring new insights into the structure of these correlators.

In this white paper, we review recent developments in the cosmological bootstrap in a num-

ber of directions. In Section 2, we summarize the basic properties of cosmological correlators in

perturbation theory, including their definition, singularity structure, and symmetries. We then

review how these properties can be used to bootstrap inflationary observables both when inter-

actions preserve and violate de Sitter boost symmetry. In Section 3, we describe the constraints

imposed by unitarity on cosmological correlations, both perturbatively, where it manifests itself

in the form of cutting rules, and nonperturbatively as in the positivity of spectral densities. In

Section 4, we summarize how insights from the physics of anti-de Sitter space can be imported into

the de Sitter context and comment on the obstacles to formulate de Sitter holography. Finally,

in Section 5, we list some important challenges and opportunities for the future.

2See e.g. [87, 88] for discussions of models of inflation that violate these assumptions.
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2 Symmetries and Singularities

To construct a cosmological bootstrap, we need to understand how the physical inputs of lo-

cality, unitarity, and symmetry constrain the observable outputs of inflation. We first review

the definition of the boundary objects of interest—the cosmological wavefunction and boundary

correlators. We then describe how symmetries and locality constrain these objects, and describe

their structure of singularities. (We discuss constraints from unitarity in Section 3.) We then

summarize some examples of how one can use these inputs to bootstrap inflationary correla-

tors both in situations where de Sitter symmetries control the dynamics, and in cases where

interactions are sensitive to the departure from exact de Sitter space.

2.1 Correlators in an Inflationary Universe

Under relatively mild assumptions the fluctuations in the matter density of the late universe

can be traced back in time to the beginning of the hot Big Bang. Moreover, if inflation is

correct, then the initial surface of the hot Big Bang is identified with the final surface of an

approximate de Sitter spacetime and correlations on this surface are the fundamental cosmological

observables. As typically only the light fields survive until the end of inflation, our main interest

is the correlations of these degrees of freedom (possibly sourced by the interactions with massive

degrees of freedom in the bulk spacetime).3 Every inflationary model has two compulsory massless

degrees of freedom: the Goldstone boson of broken time translations [35, 36] and the graviton.

The former sources density fluctuations in the late universe and is also called the adiabatic mode.

In the following, we will define the inflationary boundary correlators more precisely and then

show how they can be bootstrap using knowledge of their symmetries and singularities.

2.1.1 Back to the Future

The natural observables in cosmology are different from those in flat space (or even in anti-de

Sitter space). In flat space, we are interested in the (squares of) transition amplitudes between

asymptotic states: the S-matrix. In the cosmological context, we don’t have the luxury of spec-

ifying the states of interest in both the far past and future. Instead, we can only specify the

initial conditions, which are then evolved forward in time. As a consequence, the observables in

cosmology are correlation functions evaluated in this initial state [16, 17]

〈O1(η1,x1) · · · On(ηn,xn)〉 = 〈in|O1(η1,x1) · · · On(ηn,xn)|in〉 , (2.1)

which are called in-in correlators. It is the late-time value of these correlation functions, evaluated

on the future boundary η → 0, that is of interest for the subsequent cosmological evolution of

the universe. The homogeneity of spatial slices in cosmology makes it convenient to consider

correlation functions in Fourier space, which we will do in the following.

The cosmological wavefunction

The fact that we are not able to specify both |in〉 and |out〉 states in cosmology motivates us to

3From a more abstract viewpoint, understanding the properties of general correlation functions in cosmological

spacetimes is important, as it provides valuable insights into the structure of QFT in curved spacetimes, which

still holds many deep mysteries.
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Figure 1: The pattern of correlations measured after inflation traces the dynamics and retains a memory

of the physics during inflation. Because fluctuations of different wavelength freeze out at different times,

the scale/shape dependence of late-time correlations encodes the time-dependant inflationary physics in

a purely static object. An aspect of this remarkable connection is that we can learn about the particle

content present during inflation by measuring subtle correlations imprinted in correlations on the reheating

surface.

try to describe the |in〉 state more explicitly, as it, in principle, contains the same information as

all possible correlation functions evaluated in this state (though rearranged in a nontrivial way).

The wavefunctional is not directly observable, but its somewhat more primitive nature makes it

a simpler object than correlation functions.4

The state of interest is the (interacting) vacuum state processed by cosmological evolution.

It can be represented in the basis of (Heisenberg picture) eigenstates of fields in the theory, |ϕ〉,
as Ψ[ϕ, η] = 〈ϕ|in〉, where the field eigenstates satisfy φ(η,x)|ϕ〉 = ϕ(x)|ϕ〉. The wavefunctional

provides a probability distribution for spatial field configurations at time η.

In perturbation theory, it is convenient to parameterize the wavefunctional as

log Ψ[ϕ, η] =
∑
n=2

1

n!

∫
ddk1 · · · ddkn

(2π)3n
ϕk1 · · · ϕkn (2π)3δ(k1 + · · ·+ kn)ψn(kN ) , (2.2)

where ψn(kN ) are the wavefunction coefficients expressed in Fourier space, with kN ≡ {k1, . . . ,kn}.
The late-time wavefunctional has a path integral representation

Ψ[ϕ, η] =

∫
φ(η) =ϕ

φ(−∞) = 0

Dφ eiS[φ] , (2.3)

where the early time boundary condition is implicitly defined with an iε prescription and the

path integral is done over all field configurations that connect to ϕ(x) at time η. This path

integral representation is useful because it helps organize the perturbative computation of the

4In this respect, it is somewhat like the S-matrix, which itself is not directly observable, but from which physical

observables are relatively easy to extract.
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wavefunction coefficients. The calculation of wavefunction coefficients is quite similar to that of

scattering amplitudes (for details see e.g. [73, 118, 129, 130]). The primary difference is that there

are now two kinds of propagators: a bulk-to-boundary propagator K(k, η) that connects vertices

to the late-time boundary, and a bulk-to-bulk propagator Gk(η1, η2) that connects bulk vertices

and which vanishes when one of the times is taken to the boundary. The other main differences

is that we only Fourier transform in the spatial directions and integrate over all possible insertion

times for interaction vertices. It is these time integrals that are actually the main source of

computational difficulty in perturbative bulk calculations.

Boundary correlators

Given the wavefunction (2.2), we obtain equal-time correlators via the usual quantum mechanics

procedure of squaring and integrating

〈ϕ(x1) · · ·ϕ(xn)〉 =

∫
Dϕϕ(x1) · · ·ϕ(xn) |Ψ[ϕ]|2∫

Dϕ |Ψ[ϕ]|2
. (2.4)

If one’s interest is directly in these in-in correlation functions, the detour we have taken through

the wavefunction is not necessary. Instead one can apply the so-called in-in formalism to directly

construct these correlators (see, e.g. [17, 103, 131, 132]). This formalism introduces several

complications compared to conventional in-out quantum field theory. Operators are ordered

along a multi-branch contour that time-evolves the in vacuum forward in time to the moment

of interest for computing the correlation function (the + branch) and then reverse time-evolves

back into the infinite past (the − branch). There are then four different propagators G±±̂ (η, η)

used to connect operators inserted on the different branches, where ± and ±̂ refer, respectively,

to the branch of η and η.5 Given these propagators, one can define Feynman rules as usual to

compute in-in correlation functions directly.

2.1.2 Symmetries

A recurring theme in modern physics is that some of the deepest and most structural insights that

we can gain into systems are consequences of symmetry. It is therefore natural to examine the

symmetries of the early universe. The correlations generated by inflationary dynamics must reflect

these underlying symmetries and so they can be used to construct and constrain inflationary

observables.

Observations suggest that the background spacetime during the inflationary epoch was very

close to being de Sitter space:

ds2 =
1

H2η2

(
−dη2 + dx2

)
, (2.5)

which is a maximally symmetric space with the following Killing vectors:

Pi = ∂i , D = −η∂η − xi∂i ,
Jij = xi∂j − xj∂i , Ki = 2xiη∂η +

(
2xjxi + (η2 − x2)δji

)
∂j .

(2.6)

5This formalism can be implemented via a path integral with doubled field content [133].
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The symmetries generated by Pi and Jij are the familiar translational and rotational symmetries

of the Rd spatial slices. In addition, de Sitter space possesses a dilation symmetry, generated by

D and d boost-like symmetries generated by Ki, which act like special conformal transformations

on the boundary. All together, the algebra of isometries for (d + 1)-dimensional de Sitter space

dSd+1 is so(d + 1, 1), which coincides with the conformal algebra of d-dimensional Euclidean

space Rd.

Fields in de Sitter space behave especially simply at late times. For example, a scalar field, φ,

of mass m scales as

φ(x, η → 0) = O+(x)η∆+ +O−(x)η∆− , (2.7)

where its two fall-offs are fixed in terms of its mass as

∆± =
d

2
± iµ where iµ =

√
d2

4
− m2

H2
, (2.8)

which is the analytic continuation of the familiar AdS/CFT relation. From (2.7), we infer that the

coefficients O± transform kinematically like primary operators of weight ∆± under the action

of the conformal group.6 This leads to substantial constraints on the structure of correlation

functions of the field φ in exact de Sitter space. In order to diagonalize the action of translations,

it is natural to Fourier transform and treat correlators in momentum space, which if is often done

in cosmology. In de Sitter, it is further natural to also diagonalize dilations by going to Mellin

space [69]. This simplifies many aspects of perturbative bulk calculations, and can be thought of

as an analogue of a Fourier transform in the temporal direction, putting the bulk and boundary

on somewhat of an equal footing by passing to harmonic space.7

Since de Sitter space is maximally symmetric it does not describe an evolving universe. The

energy density is constant and all spatial slices are equivalent. An important aspect of any infla-

tionary model is therefore the breaking of the de Sitter symmetries, which lead to the Goldstone

mode, π(η,x), and the associated curvature perturbation, ζ = −Hπ [35, 36]. All current observa-

tions are reproduced by a nearly scale-invariant two-point function for ζ, and various upper bonds

exist on higher-point functions. This suggests that the correlations of ζ is invariant under spatial

rotations and translations, and approximately invariant under scale transformations—which can

be realized as a diagonal combination of an internal shift symmetry and the (nonlinearly realized)

dilation transformation generated by D.8

On the other hand, we have no evidence whether or not de Sitter boosts (generated by Ki) are

good approximate symmetries of cosmological correlators because the other symmetries already

completely fix the only observable we have so far, namely the two-point function. In the language

6This fact lies at the heart of the proposed dS/CFT correspondence [16, 134–143]. Our discussion does not rely

on any detailed microscopic correspondence per se, rather the constraints we discuss are kinematic in nature.
7In the same way that spatial integrals of plane waves generate delta functions, Mellin space simplifies integrals

over conformal time, which is often the most challenging aspect of bulk perturbation theory. Depending on the

physics of interest, many properties of the final correlator can be read off directly in Mellin space, without having

to perform the inverse Mellin transform [69, 70].
8Strictly speaking, none of these assumptions is compulsory given current observations. See [47, 87, 144, 145]

for examples where rotations, translations and/or dilations are broken. Typically these models have internal

symmetries that compensate the breaking by some diagonal transformation.
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of cosmological model building, we can say that while the breaking of scale-invariance must be

slow-roll suppressed, in principle de Sitter boosts can be arbitrarily badly broken. Depending on

the physics of interest, we can therefore proceed via two paths. We can either assume that de

Sitter boosts are also only weakly broken and leverage the full power of de Sitter symmetries, or we

can can consider the case where de Sitter boosts are not even approximate linear symmetries (and

instead are nonlinearly realized [146–149]), which is the regime where phenomenological signals

are larger. Both situations are of interest and have complementary strengths. It is worthwhile

to summarize in a bit more detail these synergies:

• De Sitter bootstrap: In situations where both the background and the dynamics are

approximately invariant under the full de Sitter group (including slow-roll inflation), we

can leverage these symmetries in several ways. Firstly, we can organize observables into

representations of the de Sitter group, which highly constrains their form and properties.

In addition, we can utilize the isomorphism between the de Sitter group and the Euclidean

conformal group to import insights from the study of conformal field theory and of pertur-

bation theory in Anti-de Sitter space into the cosmological setting [70, 74, 78–80, 150–155]

(see Section 4). It is worth noting that there are several cases of phenomenological interest

where full de Sitter symmetries are approximate symmetries of the dynamics. In addition to

correlators of the inflaton in slow-roll inflation (where, for example, three point functions can

be obtained from a deformation of a de Sitter-invariant four-point function [62, 64, 67, 68]),

correlation functions of spectator fields (including the graviton) are invariant under de Sit-

ter symmetries at leading order in slow-roll [53, 156–158]. Beyond these phenomenological

motivations, this highly symmetric situation enables computations that otherwise would be

intractable. From these computations, we can abstract lessons that can be applied to more

phenomenologically relevant setups.9

• Boostless bootstrap: In order to generate large enough interactions to be phenomeno-

logically interesting (at least in the single-field context) it is typically necessary for de

Sitter boosts to be strongly violated by interactions of the scalar fluctuations. This is

both interesting—because these interactions are less constrained and so more signals are

possible—and a challenge, because the symmetries of the problem are reduced. However,

there are still many general constraints on the structure of cosmological correlation functions

that can be leveraged to bootstrap observables in this setting. (In many cases first seen in

more symmetric situations and then abstracted.) For example, features of the singularity

structure, or consequences of unitarity continue to hold in these less symmetric settings

and can be applied to construct correlators of the inflaton in these models [72, 77, 173–

175]. One advantage of this approach is that the motivations are primarily phenomeno-

logical, so one can exploit additional constraints satisfied by the massless particles of in-

terest [76, 173, 176, 177]. Utilizing these insights, it is possible to compute predictions

that capture most realistic models, including single-field models with sizable interactions

(non-Gaussianities) in the scalar and tensor sector.

9Beyond cosmological motivations, there are natural connections to the study of CFTs in momentum space, a

subject where there has been much recent activity [60, 61, 159–172].
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2.1.3 Singularities

An inspirational insight from the study of flat-space scattering amplitudes is that the S-matrix

is often either completely or mostly fixed by its singularities [178]. For example, the tree level

S-matrix can only have pole-like singularities when intermediate particles go on-shell, and the

residues of these singularities are products of lower-point amplitudes with positive coefficients

(as mandated by unitarity). In many cases this is enough information to completely reconstruct

the entire amplitude and can be systematized through powerful recursion relations [179–181].

Another inspirational success story is provided by generalized unitarity [182], where at one-loop

the discontinuities of amplitudes are expressible in terms of tree-level information and in many

cases serves to uniquely specify the full answer.

Our understanding of the properties of the wavefunction and correlators is comparatively more

primitive, but much recent progress has been made in the study of their singularities [66, 67, 73,

76, 183, 184]. Much as in the case of scattering amplitudes, this information is in many cases

sufficient to uniquely reconstruct the entire correlator [73, 76, 184]. In other cases additional

information must be supplied. This can be done systematically, and so singularities serve as

useful anchors where the properties of correlators are known.

We now describe the (tree-level) singularities of the cosmological wavefunction. The wavefunc-

tion is somewhat simpler than correlation functions, so its singularities are easier to characterize.

There is no loss of generality because the singularities of correlators can be inferred from this

information, at least in perturbation theory (see e.g. [130]). The singularities of the tree-level

wavefunction naturally occur at certain locations in energy space, where by energies we mean the

magnitudes |k| of the three-momenta that wavefunction coefficients depend on.10

A ubiquitous singularity occurs when the total energy involved in the process vanishes, E ≡∑
kn → 0. The physical origin of this singularity is the unbounded region of time integration

that gives the wavefunction coefficient. Normally, this infinite domain is regulated by oscillatory

factors, which vanish exactly when these sums of energies vanish, so the wavefunction diverges.

The coefficient of this total energy singularity is the corresponding flat-space scattering ampli-

tude [53, 54]

lim
E→0

ψn =
iAn
Eα

. (2.9)

This fact—that cosmological correlation functions (or the wavefunction) have within them a

singularity whose residue is a scattering amplitude—provides a beautiful connection between the

study of cosmological correlators and that of the S-matrix. The precise order of the singularity,

α, and even its nature depends on the details of fields and interactions, but the existence of some

singularity is robust.11

More generally, wavefunction coefficients have singularities whenever the energies Eγ flowing

into a connected subdiagram γ vanish. These partial energy singularities are a characteristic fea-

ture of particle exchange. The residues of these singularities are related to lower-point scattering

10This is a slight abuse of terminology, as energy is not strictly well-defined in cosmology. Nevertheless, the

momentum magnitudes play a similar role in mode functions that energies do in flat space.
11In flat space, all singularities are simple poles, but in cosmological backgrounds both higher-order poles and

branch point singularities can occur, depending on the situation.
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Analytic continuation Physical region

Figure 2: Schematic of the singularities of the cosmological wavefunction. The wavefunction has singular-

ities when (partial) energies are conserved. The coefficients of these singularities can be written in terms

of scattering amplitudes and lower-point wavefunctions. Even though these singularities lie at analytically

continued momentum configurations, they nevertheless partially control the behavior of the wavefunction

for physical kinematics. Extending away from these singularities to general momentum configurations is

a boundary version of the challenge of time evolution in the bulk.

amplitudes and wavefunction coefficients. For example, for an n-point wavefunction coefficient,

the singularity where the partial energy Eγ vanishes (splitting the graph into two sub-graphs γ

and γ′) is of the following schematic form:

lim
Eγ→0

ψn =
iAγ × ψ̃γ′

Eβγ
. (2.10)

Here ψ̃γ′ is a shifted version of the (m-point) wavefunction associated to the subgraph γ′:

ψ̃γ′(k1, · · · , km, kI) ≡ P (kI)
(
ψγ′(k1, · · · , km,−kI)− ψγ′(k1, · · · , km, kI)

)
, (2.11)

where the factor P (kI) is the power spectrum of the exchange field connecting the two graphs, a

structure whose origin will become clear in Section 3.1. In flat space, the singularities are always

simple poles, 1/Eγ . Conversely, in general FLRW spacetime and in dS higher-order poles arise.

The order β of the pole in (2.10) can be fixed using dimensional analysis and scale invariance.

For example, for the case of massless scalars and gravitons, it is given by [72, 177]

β ≤ 1 +
∑
V ∈γ

[
dimV − (d+ 1)

]
, (2.12)

where the sum runs over all vertices V in the (sub)diagram and dimV denotes the mass dimension

of the vertex V . The inequality allows for the possibility that the residues of the highest-order

pole vanishes, which can happen in various interesting cases because of symmetry [72, 185].

Finally, when β vanishes there can be branch point singularities whose coefficients are fixed by

the cosmological optical theorem (see Section 3).

Importantly, none of these singularities are physical, in the sense that they cannot be probed

by any physical process with real momenta. Nevertheless, they can be accessed by extending

11



momenta into the complex plane, and remarkably, they control the form of correlation functions

even in the physical region (see Fig. 2). Indeed, one way to phrase the challenge of constructing

the boundary wavefunction is: given knowledge of its form in the vicinity of its singularities, how

do we extend away from these special loci to general kinematics (in particular into the physical

region). We now review several approaches to meet this challenge.

2.1.4 Manifest Locality

Locality already played a role in the previous discussion by ensuring that the only poles that

appear are at vanishing partial energies. However, in the special case of massless scalars and

spin-2 fields (gravitons), there is another manifestation of locality, which provides a powerful

bootstrap tool. The key observation is that the massless de Sitter mode function, K(η, k),

corresponding to the conformal dimension ∆ = d, and all of its time derivatives, satisfy

∂

∂k

(
dN

dηN
K(η, k)

) ∣∣∣∣
k=0

= 0 . (2.13)

If interactions are manifestly local, meaning that they are products of fields and their deriva-

tives at the same spacetime point, this property is inherited by the wavefunction coefficients in

perturbation theory and goes under the name of Manifestly Local Test (MLT) [173]

∂

∂kc
ψn(k1, · · · , kn; {p}; {k})

∣∣∣
kc=0

= 0 , (2.14)

where the notation indicates that the derivative with respect of an external energy kc should be

taken while keeping fix all energies {p} running along internal lines and all vector contractions

ka · kb, if present. The result in (2.14) can be equivalently derived demanding the absence of

non-partial energy singularities. As we review in Section 2.2.2, with this simple condition one

can derive all boost-breaking tree-level three- and four-point functions [173, 174], which are the

main target of cosmological observations. Furthermore, the MLT can also be used in combination

with partial-energy recursion relations (see Section 3.2) to fix terms that are not constrained by

unitarity.

2.2 Bootstrapping Inflationary Correlators

In many cases the structure of tree-level wavefunctions and correlators is sufficiently rigid that

they can be completely reconstructed from information about their singularities and symme-

tries [66–68, 72, 73, 76, 173, 174, 176, 184, 186, 187]. In this section, we outline the logic and

present some success stories of this reasoning. We first describe how the symmetries of de Sitter

space can be used to control the structure of perturbative cosmological correlation functions,

which captures the physics of slow-roll inflation. We then review how boost-breaking interactions

can also be computed from their singularities, locality and unitarity.

2.2.1 De Sitter Four-Point Functions

When the de Sitter symmetry is only softly broken by interactions, the correlation functions

of both spectator fields and the inflaton must be compatible with the symmetries (2.6). This

places strong constraints on their form (which are essentially the same kinematic requirements
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that constrain correlation functions in a conformal field theory). Translation and rotation in-

variance are easy to satisfy in momentum space: correlation functions that transform covariantly

under rotations and which satisfy momentum conservation are compatible with these constraints.

The nontrivial consequence of de Sitter symmetry are therefore the kinematic conformal Ward

identities associated to dilations and de Sitter boosts:[
−d+

n∑
a=1

Da

]
〈O1 · · · Oa · · · On〉 = 0 ,

n∑
a=1

Ki
a 〈O1 · · · Oa · · · On〉 = 0 ,

(2.15)

where we have introduced the shorthand notation Oa ≡ Oka . The operators Da and Ki
a in (2.15)

are the Fourier space representation of the dilation and de Sitter boost generators (2.6), so that

the correlators obey differential equations in the momentum variables [53, 60, 67, 73, 146, 149].

(The equations satisfied by the wavefunction coefficients are essentially identical.) Note that

these differential equations are the same as those satisfied by correlation functions in a CFTd as

a consequence of kinematic conformal invariance. This connection allows for an fruitful exchange

of ideas between the two subjects.

Correlators or wavefunction coefficients involving massless particles with spin are further con-

strained beyond these kinematic requirements. This is essentially because massless particles

correspond to conserved currents from the boundary point of view, and their correlations must

be compatible with this conservation. These additional constraints are a boundary manifestation

of bulk gauge invariance and require that spinning correlators additionally satisfy current con-

servation Ward–Takahashi (WT) identities. For example, for a massless spin-1 field these take

the form [53, 60, 73]

ki1〈J ik1
Ok2 · · · Okn〉 = −

n∑
a=2

ea〈Ok2 · · · Oka+k1 · · · Okn〉 , (2.16)

where ea are the charges of the various operators appearing in the correlator. Notice that this

fixes the longitudinal part of the correlator in terms of a lower-point function, demonstrating

that it is constrained in terms of other data.12

To bootstrap the boundary correlators directly, we must therefore solve the differential equa-

tions implied by the conformal Ward identities (2.15) (along with the WT identities in situations

with spin). In order for this task to be tractable, we need some principles to select the physi-

cal solutions of interest from the infinite number of solutions to these equations. In this regard

singularities play an important role. First, we can restrict the space of possible solutions by

restricting to functions that only have the singularities associated to tree-level exchange (for

12The fact that conserved operators have additional requirements beyond kinematic de Sitter invariance in order

for their longitudinal modes to decouple reflects that they are not phrased in terms of completely unconstrained

kinematic variables. This suggest that a more elegant treatment of spinning correlation functions in de Sitter space

exists, and finding it is an interesting challenge for the future.
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example). Further, to select the physical solution within this class, we forbid the presence of un-

physical singularities, and further require that the physical singularities are normalized correctly.

In the following, we will give a concrete example of this logic.

A simple seed: conformal scalars

Three-point functions in de Sitter space are highly constrained by the boundary conformal sym-

metry, being essentially unique up to a finite number of constants depending on the field con-

tent [53, 60, 157, 188–190]. Consequently, the first nontrivial dynamical information about a

theory arises at four points. As a simple example of the bootstrap procedure, we derive the

four-point correlation function of conformally coupled scalars in exact de Sitter space [64, 67, 68].

Despite its simplicity, this solution is important, as it can be transformed into correlation func-

tions of more physical interest. For conformal scalars, ϕ, the differential equations (2.15) can be

combined and the rescaled correlator F ≡ |k1 + k2| 〈ϕ1ϕ2ϕ3ϕ4〉 satisfies [64, 67]

(∆u −∆v)F (u, v) = 0 , (2.17)

where we have introduced the differential operator

∆u ≡ u2(1− u2)∂2
u − 2u3∂u , (2.18)

with u ≡ |k1+k2|/(k1+k2). The operator ∆v is defined similarly in terms of v ≡ |k3+k4|/(k3+k4).

Any possible bulk process will generate a boundary correlation function that solves the partial

differential equation (2.17). Specializing to tree-level particle exchange, however, this equation

can be split into a pair of ordinary differential equations [64, 67](
∆u +M2

)
F = Cn ,(

∆v +M2
)
F = Cn ,

(2.19)

where Cn is a solution to (2.17) that has only a total energy singularity and hence corresponds to

a contact interaction in the bulk. The simplest contact solution is C0 = uv/(u + v) and higher-

order contact solutions Cn>0 are obtained by repeated application of ∆u. It is straightforward

to check that any solution to the pair of equations in (2.19) will also solve (2.17). However, the

structure of these ODEs restricts the singularity structure of solutions to be that arising from

bulk tree exchange, where M2 is set by the mass of the exchanged particle. These are second-

order differential equations, so we require two boundary conditions to solve them. A generic

solution will not only have the expected total and partial energy singularities—at u → −v and

u→ −1, respectively—but will also have a folded singularity at u→ +1. The latter corresponds

to a momentum configuration where the quadrilateral formed by the momenta in Fourier space

degenerates to a triangle because two of the momentum becomes colinear (here, k1 and k2).

In Bunch–Davies initial conditions, folded singularities are unphysical and should therefore be

absent [67, 71]. One boundary condition is therefore to forbid the presence of folded singularities.

A second boundary condition is provided by normalizing one of the physical singularities correctly.

The other physical singularities then become consistency checks.

In [67], the equations (2.19) were solved for arbitrary values of M2. The explicit form of the

solution isn’t very illuminating and therefore won’t be displayed here. Let us just remark that the
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solution has a piece corresponding to the EFT expansion of the bulk interactions (arising from

integrating out the massive particles) and a piece describing the production and decay of massive

particles in the expanding spacetime. The latter is a consequence of the time-dependence of the

background, which is reproduced without any explicit reference to the bulk time evolution. In

this sense, the bootstrap procedure has realized the goal of describing “time without time”.

To illustrate the physical principles that select the solution more explicitly, it is useful to

consider the particular case where M2 = 0. This corresponds to conformally coupled scalars

exchanging a conformal scalar in the bulk. In this case, the most general solution to (2.19) with

C0 as a source is

F =
1

2
Li2

(
u(1− v)

u+ v

)
+

1

2
Li2

(
v(1− u)

u+ v

)
+

1

2
log

(
u(1 + v)

u+ v

)
log

(
v(1 + u)

u+ v

)
+
π2

6

+ c1 + c2 log

(
1− u
1 + u

)
log

(
1− v
1 + v

)
,

(2.20)

where Li2(x) is the dilogarithm and c1 and c2 are arbitrary constants. We now need to impose

boundary conditions: the absence of folded singularities requires us to set c2 = 0 and the nor-

malization of the partial energy singularity u→ −1 sets c1 = 0, leaving the first line of (2.20) as

the physical solution [64, 67].13

Massive exchanges and weight-shifting

The equations (2.19) can be solved for arbitrary values of M2, which produces the boundary cor-

relation function for four conformally coupled scalars that arises from the exchange of a massive

scalar. Though the detailed form is complex, it admits a rapidly-convergent power series repre-

sentation so for practical purposes it is very efficient [67]. We will denote this solution abstractly

as F(M). The situation that we have considered may seem somewhat artificial and unphysical,

but remarkably the solution F(M) can be efficiently transformed into other solutions of interest

by utilizing so-called weight-shifting operators [68] which were first constructed in the study of

conformal field theory [192, 193]. Conceptually, these operators map solutions of the kinematic

Ward identities (2.15) to new solutions with different values of masses and spins for both external

and internal operators. This allows us to generate a wide menu of physical processes from F(M),

which acts as a simple seed object [67, 68, 73]. This technique is also readily applied to situations

beyond the four-point function. The fact that all of these different physical solutions can be

mapped to each other by differential operations reveals a unity of perturbative de Sitter physics

that is completely invisible in the standard Lagrangian approaches.

Inflationary three-point functions

In the slow-roll limit, where de Sitter symmetries are softly broken by the interactions of the

inflaton, the three-point correlator of ζ can be obtained as a deformation of an exactly de Sitter

invariant four-point function, evaluated in the soft limit [62, 64, 67, 68]. Combined with the

weight-shifting procedure, this makes it possible to efficiently generate inflationary three-point

13Note that the four-point wavefunction and correlator differ by a constant factor, accounting for the difference

in the factorization limits of the two objects. See [191] for an explicit expression for the wavefunction.
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m2 = 0

J ̸= 0

m2 = 2H2

J = 0

= W · S

Figure 3: The inflationary three-point function due to the exchange of a massive spinning particle inherits

the analytic structure of the four-point function of conformally coupled scalars exchanging a massive

scalar. To obtain the inflationary correlator, we apply a spin-raising operator S (changing the spin of the

exchanged particle) and a weight-shifting operator W (converting the external particles from conformally

coupled to massless). Finally, taking one of the legs to be soft gives the inflationary three-point function

in the slow-roll limit.

functions arising from the exchange of particles of arbitrary mass and spin [67, 68]

〈ζk1ζk2ζk3〉(M,J) = −ε k3
3 PJ(α)U

(J,0)
12 F

(J)
(M)(u, 1) + perms. , (2.21)

where “perms” denotes symmetrization over the external momenta, PJ(α) is a Legendre polyno-

mial with α ≡ (k1 − k2)/k3, and J denotes the spin of the exchanged particle. Here, F
(J)
(M) is the

solution to the conformal kinematic Ward identities for conformal scalars exchanging a particle of

mass M and spin-J , which can be obtained by weight-shifting the scalar solution F(M). The op-

erator U
(J,0)
12 is another weight-shifting operator that changes the mass of the external scalar field

to be that of the inflaton ζ. Notice that this bispectrum is proportional to ε ≡ −Ḣ/H2, which

is the slow-roll parameter that measures the deviation of the background from de Sitter space.

From a phenomenological point of view, these bispectra are interesting because they display a

characteristic oscillatory feature in the squeezed limit (where k1 � k2,k3) that scales as [27, 64]

lim
k1→0

〈ζk1ζk2ζk3〉(M,J) ∼
(
k1

k2

) 3
2

+iµ

+ c.c. , (2.22)

where the exponent is set by the mass of the exchanged field via iµ ≡
√
d2/4−M2/H2 [27, 64,

194, 195]. In addition, the angular structure of the correlator is determined by the spin of the

exchanged particle [64]. In principle, these characteristic features of particle exchange would allow

us to do “cosmic spectroscopy” and use the inflationary epoch as a sort of particle collider if these

features are present. This has motivated a large measure of interest in the area of cosmological

collider physics [27, 64, 129, 147, 194–221].

Spinning correlators

All inflationary models have two compulsory light degrees of freedom: the Goldstone of sponta-

neously broken time translations, π, and the graviton, γij . It is therefore important to understand

the properties of correlation functions involving particles with spin in inflationary spacetimes. In

addition to the kinematic constraints of conformal symmetry (which are substantially more com-

plex in the spinning case), correlation functions with massless fields with spin must satisfy WT

identities (2.16). This means that massless spinning fields are more constrained than their scalar

counterparts. This is to be expected, indeed it is well known in the scattering context that space
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of allowed interactions is extremely limited, with theories like Yang–Mills and General Relativ-

ity being essentially unique consistent theories. Similarly, in the cosmological context, it is not

always possible to simultaneously solve the constraints of kinematic conformal invariance and

current conservation [73, 75]. Indeed, requiring that correlation functions solve both equations

at the same time reproduces, from the boundary perspective, the relations between couplings

required by consistent gauge theories [73, 75]. Moving forward, it will be interesting to fully

map out the space of consistent theories involving massless particles in cosmology. For instance,

there exist interesting types of gauge fields in de Sitter space (partially massless particles) that

do not have any direct flat-space counterparts [222–224]. Progress has been made in the study

of their correlation functions in the presence of matter [75], ruling out certain matter couplings,

and an interesting question is whether a theory with a finite number of such particles can be

consistent (given the existence of some no-go results [225–229]). Such a question can reasonably

be answered from the bootstrap perspective.

2.2.2 Boostless Three-Point Functions

To generate any sizable non-Gaussian n-point function in single-field inflation requires that the

de Sitter boost symmetry is strongly broken by the interactions of ζ [230]. It is highly desirable,

therefore, to be able to apply the bootstrap methodology to compute correlation functions in

these less symmetric theories. Since we no longer have the constraints of de Sitter boosts, one

might expect that this situation is too unconstrained to make progress. However, the singularities

of consistent correlators along with information about locality and the remaining symmetries can

still be used to reconstruct the boundary correlators [72, 76, 77, 173–175, 177, 185]. It is somewhat

remarkable that inflationary correlators can be bootstrapped with such minimal input. In the

following, we briefly review some success stories of this approach.

Bispectrum of the EFT of inflation

We can construct the bispectrum in the EFT of inflation by first writing down the most generic

ansatz compatible with a small set of “boostless bootstrap rules” that enforce symmetries and

basic physical principles such as locality and then using the MLT (discussed in Section 2.1.4) to

fix all remaining coefficients [72, 173]. The result is the most general tree-level bispectrum to

all orders in the derivative expansion. For simplicity, we discuss here only scalars, but a similar

approach has been used to bootstrap also all graviton bispectra [175]. The bootstrap rules

are: (i) invariance under translations rotations and dilations (but no assumption about boosts)

fixes the kinematic variables, (ii) massless fields at tree-level in dS ensures that the result is a

rational function, (iii) Bose symmetry enforces permutation invariance and finally (iv) locality

and the choice of the Bunch–Davies vacuum imply that the only singularity is at vanishing total

energy, kT ≡ k1 + k2 + k3. Under these assumptions, the most general bispectrum must take the

form [72, 173]

〈ζk1ζk2ζk3〉 =
1

(k1k2k3)3

∑
p

Polyp+3(k1, k2, k3)

kpT
, (2.23)

where Polyp+3(k1, k2, k3) is a polynomial with mass dimension p + 3 that is symmetric in its

arguments and can therefore be written uniquely in terms of elementary symmetric polynomials.

The order p of the pole is fixed by (2.12) and is found to coincide with the total number of
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derivatives in the corresponding interaction. Terms with larger p are higher order in the EFT

derivative expansion. The set of all possible polynomials Polyp+3 is given by all possible solutions

of the MLT [173], which requires

∂k1

(
k3

1〈ζk1ζk2ζk3〉
)∣∣∣∣
k1=0

= 0 . (2.24)

This ensures that the bispectrum arose from a local bulk interaction involving massless inflatons.

Taking account of all of these constraints, the number of free parameters in (2.23) can be shown

to exactly match the free parameters in the EFT of inflation Lagrangian, order by order in p [72].

The result satisfies some general properties: the leasing residue of the kT → 0 pole is determined

by a corresponding flat-space scattering amplitude, which needs not be invariant under Lorentz

boosts [231], and it satisfies the single-field soft limit that are a consequence of the nonlinearly

realized symmetries of ζ [146–149, 232–235].

A similar derivation to the one above was carried out for the contact four-point function

in [174]. To describe boostless exchange diagrams, we need unitarity in the form of the cosmo-

logical optical theorem to be discussed in Section 3.1.

Graviton correlators

In addition to the inflationary scalar correlators, techniques that don’t rely on de Sitter boost

symmetries can also be applied in the construction of graviton correlators. In the simplest

and most studied inflationary setup of the EFT of inflation, graviton interactions are de Sitter

invariant to leading order in the slow-roll expansion. Hence, there are only a finite number

of possibilities at three points (three possible wavefunction coefficients producing only two cubic

correlators in D = 4) [53]. However, in more general models of inflation such as Solid Inflation [47,

236, 237], gravitons can also be sensitive to the departure of the background from pure de Sitter

space, leading to a larger menu of possible shapes and non-Gaussianities that can be large enough

to be detected by cosmological surveys (see [238–241] for related discussions). Here, we wish

to focus on one interesting feature that arises for parity-odd graviton bispectra at tree-level.

Such a signal cannot arise in the presence of de Sitter boost symmetry. Instead, for general

boost breaking theories one naively expects infinitely many possible shapes corresponding to

the infinitely many cubic Lagrangian operators with an ever increasing number of derivatives.

Remarkably unitarity dictates that only three shapes are allowed, as we will now see.

We can write any n-point correlator from a single contact interaction in terms of the wave-

function coefficients as [175]

Bcontact
n ({k}; {k}) = −ψn({k}; {k}) + ψ∗n({k};−{k})∏n

a=1 2 Re ψ2(ka)
. (2.25)

The crucial point is that unitarity in the form of the cosmological optical theorem (see Section 3.1)

implies that ψn({k}; {k}) + ψ∗n({−k};−{k}) = 0. Hence, if ψn(k) happens to be even under

flipping the sign of its arguments, then the corresponding contact correlators will vanish. Focusing

on the bispectrum and writing down a generic ansatz compatible with the boostless bootstrap

rules, analogous to (2.23), one discovers that only terms without any total energy pole have this
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property.14 This implies that (i) parity-odd correlators from contact interactions are actually

regular at vanishing total energy and (ii) there are only a handful of possibles shapes because the

degree of the arbitrary polynomial is fixed by scale invariance. For three gravitons there are only

three allowed shaped, for graviton-scalar-scalar also three, and only a single shape for graviton-

scalar-scalar. Explicit expressions for these shapes are given in [175] and provide important

targets for non-Gaussian searches in the graviton sector in the case of a detection of primordial

tensor modes.

This example is a poster child of the bootstrap approach because it displays the stark jux-

taposition between the Lagrangian description and the actual observables: there are an infinite

number of EFT vertices that cannot be removed by field redefinitions, but nevertheless they do

not contribute to the parity-odd graviton three-point function. Conversely, from the bootstrap

perspective it is immediate to see that only a handful of possible observables are allowed.

Building to higher points

The techniques discussed in this section are more widely applicable beyond the examples that

we have outlined. In particular, these boostless approaches are well-suited to construct correla-

tions/wavefunctions of massless particles, which are typically rational functions. As such, these

tools can be adapted to also study correlation functions of massless spin-1 and spin-2 fields in the

de Sitter setting [73, 130]. In addition, these techniques readily generalize to higher points [174],

and can be combined with recursive techniques in order to construct a wide variety of rational

correlators [76, 77, 173, 177].

2.3 Cosmological Polytopes and Beyond

The disappearance of bulk time and its encoding in the momentum dependence of boundary

observables is inspiring, and it emboldens us to consider the more ambitious task of removing

the entire spacetime from the picture, to have it reemerge as a derived concept. Indeed, similar

attitudes have been remarkably powerful in the study of scattering amplitudes, where many deep

structures have been uncovered by phrasing constructions in auxiliary or dual spaces.

In the cosmological context, one notable development in this direction is the study of cosmolog-

ical polytopes. These are geometrical objects whose volumes compute the (rational) wavefunction

coefficients of a conformally coupled scalar [66]. These rational wavefunctions can then naturally

be integrated to construct the wavefunction of a conformal scalar in more general FLRW spaces.

It is interesting and intriguing that an object describing cosmology (the wavefunction) arises from

a purely geometric question that does not obviously have anything to do with physics.

Aside from being of intrinsic interest as an example of spacetime physics arising from an aux-

iliary structure, the study of cosmological polytopes—or more generally of simplified models of

the wavefunction—has been of great utility in revealing an underlying simplicity in cosmological

perturbative dynamics [66, 176, 183, 184, 191, 244]. In these simplified models it is often possible

to compute to high multiplicity and prove general statements about the structure of the theory.

14There is an infinite number of possible nonzero wavefunction coefficients, but all but three drop out of the

bispectrum. In particular, the single parity-odd interaction compatible with de Sitter boost symmetry in D = 4

cannot contribute to the bispectrum [242, 243].
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For example, these models were instrumental in elucidating the structure of singularities of the

cosmological wavefunction, which was then abstracted to more general settings [66, 183, 184]. An-

other example involves the transformation of flat-space wavefunctions to their de Sitter or FLRW

counterparts [176], which can also be applied to more general theories [76, 177]. Cosmological

polytopes have also enabled the construction of powerful recursion relations for conformally cou-

pled scalars [66, 191] and have been important in the study of how locality and unitarity manifest

at the level of the wavefunction [244].

Looking forward, we expect these investigations to yield further insights. Interesting questions

to explore include searching for analogues of these geometric structures for spinning wavefunctions

and further elucidating how aspects of unitarity manifest themselves geometrically. An important

challenge is to understand how these geometric structures (which are defined diagram-by-diagram

in perturbation theory) fit together into a larger structure in theories that require diagrams to be

combined in observables, like in gauge theories and theories of Goldstones. This would provide

an illuminating step toward moving “beyond Feynman diagrams” in cosmology.

3 Unitarity in Cosmology

In this section, we summarize recent progress on deriving the consequences of unitarity for cos-

mological correlators. The discussion is organized into two parts. First, we discuss a cosmological

equivalent of the optical theorem [130] and the associated cosmological cutting rules [76, 186, 245]

(see [246, 247] for an AdS version). This is a genuinely perturbative result that is valid to all

orders in perturbation theory, including any number of loops. It applies to fields of any mass

and spin with arbitrary local interaction on any FLRW spacetime (including de Sitter) that

admit a Bunch–Davies vacuum. A generalization to other choices of vacuum was proposed in

[248]. The underlying principles is that time evolution in the bulk is implemented by a unitary

transformation. Second, we review consequences of unitarity that leverage representation theory

and are therefore specific to de Sitter spacetime and non-perturbative in nature. The simplest

example is the de Sitter analog of the Källén–Lehmann representation of the two-point function

(early discussions appeared in [249–251], and more recently in [78, 79]). A more powerful result

is the positivity of the spectral density appearing in the conformal partial wave decomposition of

the four-point function, whose derivation borrows heavily from recent progress in the AdS/CFT

literature.

3.1 Cosmological Optical Theorem and Cutting Rules

Consider QFT in a generic FLRW spacetime, which we assume to be spatially flat for simplicity.

Let’s assume that an initial state is chosen at past infinity and that time evolution is generated by

a unitary operator. In perturbation theory, the analytic structure of the initial state is preserved

by time evolution. More concretely, consider a scalar field that at linear order obeys the equation

of motion

φ′′ +
2a′

a
φ′ +

[
c2
s(η)k2 + a2(η)m2(η)

]
φ = 0 , (3.1)

where we allowed for a generic time-dependent mass m(η) and speed of sound cs(η) as long as

they become approximately constant in the asymptotic past. The most relevant and best studied
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case is that in which one chooses the Bunch–Davies vacuum, which corresponds to selecting the

positive-frequency solution of this differential equation in the asymptotic past, φ+ ∼ eicskη. This

initial condition is “Hermitian analytic” for complex k, namely

(eics(−k
∗)η)∗ = eicskη . (3.2)

Since the equation of motion is real, it can be proven that this property is maintained in the full

solution [245]

φ+(k, η) = φ+(−k∗, η)∗ =⇒ Disc[φ] ≡ φ(k)− φ∗(−k∗) = 0 . (3.3)

The calculation of wavefunction coefficients ψn in (2.2) in perturbation theory is organized in

terms of Feynman diagrams that consist of a series of nested time integrals over bulk-to-bulk G

and bulk-to-boundary K propagators. These are fixed by the mode functions above and hence

inherit the property of Hermitian analyticity

K(−k∗, η)∗ = K(k, η) ,

G(−k∗, η)∗ = G(k, η) .
(3.4)

As proven in [186], this leads to infinite set of propagator identities that relate the imaginary

part of products of K’s and G’s to other products of K’s and fewer G’s. Assuming that all

coupling constants in theory are real—as required by unitarity—and that all interactions are

local, and hence Hermitian analytic, these propagator identities can be commuted with the time

integrals over the local of interactions. This leads to infinitely many identities relating different

combinations of wavefunction coefficients, which are called cosmological cutting rules. There is

one such cosmological cutting rule per diagram to all orders in the perturbative expansion.

In words, the cosmological cutting rules say that the sum over all possible “cuts” of a diagram

must vanish. It is often helpful to isolate the term in this sum with zero cuts, in which case one

finds the schematic relation

i Disc
internal

lines

[
i ψ(D)

]
=
∑
cuts

 ∏
cut

momenta

∫
P

 ∏
subdiagrams

(−i) Disc
internal &

cut lines

[
i ψ(subdiagram)

]
, (3.5)

where D represents a diagram that is divided into subdiagrams by all possible cuts of one or

more internal lines. An integral must be performed over every cut line including a factor of the

associated power spectrum P . The Disc acts as in (3.3) and analytically continues the energies

of all lines except those indicated in its subscript argument and with a minus sign on all spatial

momenta

Disc
k1···kj

f(k1, · · · , kn; {p}; {k})

≡ f(k1, · · · , kn; {p}; {k})− f∗(k1, · · · , kj ,−kj+1, · · · ,−kn; {p};−{k}) ,
(3.6)

In Fig. 4 we provide a graphical summary of these cutting rules. They can be summarized as

follows. Consider a given diagram representing a specific contribution to an n-point wavefunction

coefficient at some order in the perturbative expansion in coupling constants. We parameterize
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Figure 4: Graphical summary of the cosmological cutting rules for wavefunction coefficients [186]. The

discontinuity of a given diagram in perturbation theory with all internal energy kept fixed is equal to the

product of the discontinuities of all disconnected diagrams obtained by summing over all possible ways to

cut one or more internal legs and substituting them with a pair of external legs. For each cut leg, one

should multiply by the associated power spectrum and integrate over the cut momentum.

the kinematics by the n external energies {k1, k2, · · · , kn}, all the energies of internal lines, and

finally all rotation invariant products of momenta, such as ka·kb. Then, sum over all possible ways

to cut any number of internal lines. A “cut” means substituting an internal line (bulk-to-bulk

propagator) connecting two vertices with a pair of external lines (bulk-to-boundary propagators)

attached to each of the vertices and a factor of the power spectrum of the cut momentum. This in

general breaks up a diagram into a number of disconnected components. Take the discontinuity

of each of these components separately keeping constant the energies of all internal lines and all

cut lines. Finally, integrate over the momenta of all cut lines. The cutting rules dictate that the

sum over all these terms must vanish. Notice that one can isolate the term with zero cut as in

(3.5) and interpret the cutting rules as fixing the discontinuity of a given diagram in terms of that

of other diagrams with fewer loops and/or fewer external legs. Relations of this type—between

different orders in perturbation theory—are typical of unitarity.

The above derivation is reminiscent of that of Cutkosky’s cutting rules for amplitudes [252],

and in fact those relations should emerge on on the residue of the total energy pole, E → 0, where

wavefunction coefficients are related to Espace amplitudes [247]. In that case, one can think of

cutting rules and encoding the content of the optical theorem to each order in perturbation theory.

Analogously, we can refer to the collective constraints coming from the cosmological cutting rules

as a cosmological optical theorem (COT). An open problem is that of finding a non-perturbative

formulation of such a result in terms of the full wavefunction.

The COT is a powerful bootstrapping tool. To elucidate the cosmological cutting rules sum-

marized above and to show how they can be used in practice to bootstrap new results we discuss

below two examples: partial-energy recursion relations for tree-level exchange diagrams and the

reconstruction of loop diagrams from their discontinuity.
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3.2 Partial-Energy Recursion Relations

The cosmological optical theorem is a powerful tool to bootstrap tree-level exchange diagrams

without any assumption about dS boosts [173]. The general idea is to use the knowledge of the

analytical structure of wavefunction coefficients to compute them via Cauchy’s integral formula.

Recall from Section 2.1 that tree-level wavefunction coefficients have a very simple analytic struc-

ture: the only singularities are poles where partial energies vanish. In Minkowski, these are all

simple poles so the amplitude limit in (2.9) is sufficient to fix all relevant residues [66]. Con-

versely, in general FLRW spacetimes and in dS poles can have any order as in (2.12). The crucial

insight is that the cosmological optical theorem fixes the residues of all partial energy singularities

of a given diagram in terms of lower-order diagrams [173], in a way analogous to factorization

theorems for amplitudes. What is left is fixing the terms that are regular in all partial energies,

which appear as boundary terms in Cauchy’s integral formula. This can be achieved by imposing

the MLT (see Section 2.1.4).

A good example of this procedure is the tree-level four-point function of four identical scalars

ψ4 from a single exchange, which we take here to be in the s-channel with the other channels

simply obtained by permutations. Interactions are allowed to contain any number of time deriva-

tives and local, rotation invariant contraction of spatial derivatives. The kinematic variables

are the four external energies {k1, k2, k3, k4} plus the exchanged energy kI ≡ |k1 + k2| and are

conveniently arranged into the two partial energies EL,R and the total energy E:

EL = k1 + k2 + kI , ER = k3 + k4 + kI , E = k1 + k2 + k3 + k4 . (3.7)

Inspired by recursion relations for amplitudes, the idea is now to extend ψ4 to a function of a

single complex variable ψ̃4(z) such that (i) ψ̃4(0) = ψ4, (ii) ψ̃4(z) is analytic in z except for poles

and (iii) the residues of all the poles are fixed by unitarity. Such a function can be constructed

with the following partial energy shift [173, 184]15

ψ4(EL, ER, kI)→ ψ̃4(z) = ψ4(EL + z, ER − z, kI) . (3.8)

which is carefully crafted to avoid total energy poles, kT = 0, whose residues are not fixed by

unitarity. The cosmological optical theorem for the tree-level ψ4 dictates

ψ4(EL, ER, kI) + ψ∗4(−EL + 2kI ,−ER + 2kI , kI)

= P (kI)
(
ψ3(EL, kI)− ψ3(EL − 2kI ,−kI)

)(
ψ3(ER, kI)− ψ3(ER − 2kI ,−kI)

)
.

(3.9)

Notice that on the left-hand side only ψ4 is singular at EL,R → 0 and so in that limit the residues

of all partial-energy poles are fixed by the right-hand side. We can now use Cauchy’s integral

formula to compute ψ4 as a complex integral of ψ̃4(z)/z which is given by a sum over residues

fixed by (3.9) plus a boundary term that can be fixed by locality in the form of the MLT [173].

For some given cubic interactions, this procedure was shown to give a ψ4 that differs from that

obtained from an in-in calculation only by contact interactions, as expected from the fact that

these have vanishing discontinuity. More generally, this can be used to bootstrap all tree-level

diagrams from lower-orders ones using only unitarity and locality, without any assumption about

de Sitter boosts.
15We omit the kinematical variables k1k2 and k3k4, as they don’t change when applying the optical theorem.
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3.3 Nonperturbative Implications of Unitarity

In the discussion of Section 3.1, unitarity served to constrain the analytic structure of perturbative

observables, essentially requiring that the structure present in the initial conditions was conserved

as time evolves. We now wish to discuss a different—but related—manifestation of unitarity: the

positivity of the Hilbert space norm. Assuming invariance under the full dS isometry group, it is

possible to derive a cosmological Källén–Lehmann (KL) representation of the two-point function

and a conformal partial wave decomposition of the four-point function. In both cases unitarity

implies the positivity of the corresponding spectral densities.

Cosmological KL representation

To begin with, we consider the two-point function 〈φ(x, η)φ(x′, η)〉 in de Sitter space, where we

take φ to be a scalar for simplicity. This can only depend on the de Sitter invariant distance, ξ,

between the points {x, η} and {x′, η′}, which in planar coordinates (2.5) takes the form

ξ ≡ 4ηη′

|x− x′|2 − (η − η′)2
. (3.10)

We can insert a resolution of the identity between the two fields by summing over all possible

unitary irreducible representations of the dS group. The two-point function then becomes a sum

of terms with coefficients related to the norms of the intermediate states in each representation,

which are required to be positive by unitarity. Putting this together, one finds [250]

〈φ(x, η)φ(x′, η)〉 =

∫ d
2

+i∞

d
2
−i∞

d∆ ρ(∆)G(ξ,∆) , (3.11)

where ρ(∆) ≥ 0 is the spectral density, while G(ξ,∆) is the two-point function for a free scalar of

mass m with the Bunch–Davies vacuum choice. This can be written in terms of a hypergeometric

function 2F1, where ∆ = d
2 + iµ:

G(ξ; ∆) =
Γ(d2 + iµ)Γ(d2 − iµ)

H1−d(4π)
d+1

2 Γ(d+1
2 )

2F1

(
d

2
+ iµ,

d

2
− iµ;

d+ 1

2
; 1− 1

ξ

)
. (3.12)

In (3.11), we have only included the contribution from states in the principal series, but more

generally the complementary and discrete series can contribute as well. This result is conceptually

similar to the KL representation of the two-point function in Minkowski space: a general, two-

point function can be written as an integral over free two-point functions with a positive spectral

density. Upon taking the late-time limit this expression can be used to derive an inversion formula

that computes the coefficient in a boundary operator expansion [78].

Conformal partial wave expansion

In perturbation theory, boundary correlators in de Sitter space, evaluated in the Bunch–Davies

vacuum, share the same singularity structure as in Euclidean anti-de Sitter space (EAdS) [74,

79, 80]. This can be used to import insights from the EAdS setting into de Sitter space. (See

Section 4 for a discussion.) Boundary correlators in EAdS are single-valued functions of con-

formally invariant cross-ratios which, in turn, implies that they admit an expansion in terms of

a special set of functions, F∆,J , known as conformal partial waves. These form an orthogonal
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basis of single-valued eigenfunctions of the Casimir equation of the euclidean conformal group

SO (d+ 1, 1).

Harmonic analysis on SO (d+ 1, 1) [253] implies that the partial-wave expansion of a single-

valued conformally invariant four-point function of operators, O, in d-dimensional euclidean space

takes the form (say, in the (12)(34) channel):

〈O(x1)O(x2)O(x3)O(x4)〉 = 112134 +

∞∑
J=0

∫ d
2

+i∞

d
2
−i∞

d∆ ρJ(∆)F12,34
∆,J (x1,x2,x3,x4) , (3.13)

where the first term is the contribution from the identity operator. For boundary correlators in

EAdS the spectral density ρJ(∆) is meromorphic as a function of ∆, which is a consequence of

the fact that the operator product expansion converges. In perturbation theory, dS boundary

correlators can be written as a linear combination of EAdS Witten diagrams, which implies that

ρJ(∆) is also meromorphic in dS space.

If the four-point function of interest continues to be single-valued at the nonperturbative

level, then the expansion (3.13) will continue to hold nonperturbatively. This has been explored

recently in [78, 79]. In terms of the conformal partial wave expansion (3.13), unitarity in the

SO (d+ 1, 1) sense implies positivity of the spectral density for dS boundary correlators [78, 79]:

ρJ(∆) ≥ 0 . (3.14)

The consequences of the positivity of this spectral density have not been fully explored, and

such studies are interesting for the future. A particularly interesting open question is whether

an analogue of the numerical conformal bootstrap can be formulated to constrain theories in de

Sitter space. (See [78] for some preliminary work in this direction.)

4 From Anti-de Sitter to de Sitter

The structural similarities between de Sitter and anti-de Sitter space suggest that insights from

the AdS setting can be imported into dS. This notion is buoyed by the fact that the natural

questions to ask in AdS are also essentially holographic. Indeed, it has long been known that

perturbative calculations in the two spaces are closely related. In this section, we summarize

recent progress in utilizing this connection to develop new cosmological insights, and comment

on the challenges to developing a holographic description of cosmology at the same level of

refinement as that in AdS.

4.1 Holography and Quantum Gravity

In the search of a complete description of quantum mechanical and gravitational phenomena, we

are inevitably led to consider observables on boundaries at infinity. On the one hand, only with

an infinitely large apparatus are we free from errors due to quantum mechanical fluctuations of

the apparatus itself. On the other hand, to avoid gravitational collapse the apparatus must be

placed at the boundary of space-time. This is the common mantra that in quantum gravity there

are no local observables and is closely related to the holographic principle, which suggests the

existence of a purely boundary—or holographic—description of the physics in the interior.
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The AdS/CFT correspondence [254–256] provides an important working example of these

ideas. It conjectures that quantum gravity in asymptotic anti-de Sitter space can be regarded

as equivalent to a non-gravitational conformal field theory living on the boundary, which is flat

Minkowski space. Lorentzian CFTs are, in particular, examples of theories where the rules are

well understood. This is exemplified by the tremendous success of the conformal bootstrap

program [82], which aims to carve out the space of CFTs simply by requiring basic quantum

mechanical consistency. Remarkably, the requirements of conformal symmetry, unitarity and a

consistent operator product expansion (crossing symmetry) has led to nontrivial bounds in the

space of CFTs and the determination of critical exponents in the Ising and O(N) models in three

dimensions to record breaking accuracy [257]. In AdS, experiments that start and end at infinity

are then computed by correlation functions of operators in the dual CFT description, meaning

that the enigma of observables in quantum gravity in asymptotic anti-de Sitter space can be

translated to sharp questions about the consistency of correlation functions in Lorentzian CFTs.

This in turn has led to a wide range of powerful techniques to compute boundary correlators in

AdS space which place consistency of the dual CFT description at the centre.

It would be desirable to have a similar level of understanding for the universe we actually live

in. To this end, a number of conceptual challenges need to be overcome. It should be noted that

the success story of holography in AdS space largely stems from its causal structure. See Fig. 5.

In AdS, the boundary lies at spatial infinity, meaning that the boundary theory is an ordinary

quantum mechanical system with a standard notion of locality and time. Unitarity and causality

of the bulk quantum gravity theory are therefore intimately related to unitarity and causality of

the boundary quantum mechanics. This is to be contrasted with the situation in de Sitter space,

where the role of time and space get interchanged: In dS, the boundaries are instead purely spatial

and located at past/future infinity, which obscures how boundary correlators encode unitary time

evolution in the interior of de Sitter space. In this type of scenario, dubbed “time without time”,

quantum mechanics itself should be an emergent concept hidden in some way in the structure of

boundary observables.

Under this map, inflationary backgrounds correspond in AdS holography to a class of slow-RG

flows [258]. The symmetries characteristic of the boostless bootstrap for inflationary correla-

tors correspond in (quasi)-AdS to a unitary, approximately scale-but-not-conformal field theory

dual [259]. These analogues of inflationary background are consistent with known results about

scale and conformal invariance in QFT [260], but shows that natural questions about the nature

of inflation can also spark new questions about AdS holography.

The larger challenge for de Sitter holography (and the nonperturbative bootstrap more gen-

erally) is the lack of rigorously defined nonperturbative observables in de Sitter space in the

presence of dynamical gravity [261, 262]. As the metric fluctuates at the future boundary of

de Sitter, one cannot define local boundary observables. Calculations of the wavefunction can

circumvent this problem because the boundary metric is fixed. This motivates the dS/CFT ap-

proach to holography [16, 134–143] which shares some features with the bootstrap approach to

the wavefunction. Unfortunately, the wavefunction approach only delays the problem, as the

cosmological correlators of interest arise from integrating over the boundary metric. The full

challenge of de Sitter holography includes dynamical gravity and remains an open problem in
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Figure 5: Penrose diagrams showing the asymptotic boundaries of AdS (left) and dS (right). An important

difference between the two cases is that the boundary in AdS is timelike, so that there is a boundary notion

of causality and unitarity. On the other hand, the boundary of dS is spacelike, so the only natural notions

of this kind are the ones inherited from the bulk spacetime, casting into relief the challenge of holography

in this space.

the cosmological slicing of de Sitter. Approaches like dS/dS holography [263–266] reflect this

fundamental challenge, but are less directly connected to traditional cosmological observables.

4.2 From AdS to dS and Back

To bridge the gap between boundary correlators in AdS and dS, a natural starting point would

be to try to understand the extent to which we can import our intuition from the AdS case.

In both AdS and dS, the isometry group acts as the conformal group on the boundary: In

AdSd+1, this group is SO(d, 2) acting on the boundary R1,d−1, while, in dSd+1, it is SO(d+ 1, 1)

acting on Rd (see Fig. 5). These can be placed on a similar footing by Wick rotating AdSd+1

to (d+ 1)-dimensional Euclidean anti-de Sitter space (EAdSd+1), which also has isometry group

SO(d + 1, 1) acting on the Euclidean boundary Rd. Boundary correlators in (A)dS thus satisfy

the same conformal Ward identities (reviewed in Section 2) and any differences in the way they

encode consistent physics lies in the freedom left over after they are imposed.

As we have seen in Section 2.2, the freedom remaining after imposing the conformal Ward

identities is in the singularity structure: Unphysical singularities must be absent, while physical

singularities must be normalised correctly. In the Bunch–Davies vacuum, what is regarded as an

unphysical singularity is actually the same both in AdS and dS. In both cases folded singularities

must be absent. In this case the difference between perturbative boundary correlators in EAdS

and dS therefore solely lies in the physical singularities and their normalisation, which must be

consistent with factorisation and unitarity in the respective space-times.

The above suggests that, at least perturbatively, dS boundary correlators in the Bunch–

Davies vacuum can be recast as boundary correlators in EAdS. Since unitarity manifests iself

differently in dS and AdS, a priori the theory generating dS boundary correlators in EAdS is not

necessarily the analytic continuation of a unitary theory in AdS. In the following we shall show

this explicitly by using the fact that dS and EAdS are related by a double Wick rotation, to
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reduce the computation of dS boundary correlators in the in-in formalism to the computation of

Witten diagrams in EAdS. In the next section this is revisited from a bootstrap perspective.

It will be useful to work in Poincaré coordinates, where the metric of EAdS reads

ds2 = R2
AdS

dz2 + dx2

z2
. (4.1)

This is related to the flat slicing of the de Sitter metric in (2.5) via the following double Wick

rotation:

z = ±i(−η) , RAdS = ±iRdS , (4.2)

where RdS ≡ 1/H. At the level of correlation functions, the direction of the Wick rotation

in z should be specified to ensure the correct treatment of branch cuts. In particular, taking

z = +i(−η) has been shown to map AdS boundary correlators to wavefunction coefficients of the

same theory in dS [16] and has been used to relate dS boundary correlators in the Bunch–Davies

vacuum to their AdS counterparts [267–269] at the level of three-point functions.

One can also consider dS boundary correlators directly by relating the in-in formalism (see

Section 2.1.1) to the computation of boundary correlators in EAdS [74, 80]. The ± branch of the

in-in contour is obtained by the Wick rotation:

± branch : z = (−η) e±
πi
2 , (4.3)

where the different branches are obtained by Wick rotating in opposite directions. Under (4.3),

bulk-to-bulk propagators G∆± in EAdS with Dirichlet (∆+) and Neumann (∆−) boundary

conditions map to dS in-in propagators G±±̂ for the ∆+ and ∆− modes.16 Solutions in the

Bunch–Davies vacuum propagate the linear combination of ∆+ and ∆− modes symmetric under

∆+ ↔ ∆−. Combined with (4.3), it follows that they can be expressed as the following linear

combination of propagators G∆± in EAdS:17

GdS
±±̂(η; η) = c∆+ e

∓ iπ∆+
2 e∓̂

iπ∆+
2 GAdS

∆+ (z; z) + c∆− e
∓ iπ∆−

2 e∓̂
iπ∆−

2 GAdS
∆− (z; z) , (4.4)

where ± and ±̂ refer, respectively, to the in-in contour branch of η and η. From (4.5) we see

that taking a particle with scaling dimension ∆ in EAdS to the ± branch of the in-in contour in

dS entails multiplying by the phase e∓
iπ∆

2 while the coefficient c∆ accounts for the difference in

normalisation of the boundary two-point functions in (A)dS and can be found explicitly in [80],

equation (2.15). Similarly, bulk-to-boundary propagators KdS
± on the ± branch are related to

their EAdS counterpart KAdS
∆ via

KdS
± (η) = c∆ e

∓ iπ∆
2 KAdS

∆ (z) . (4.5)

The relations (4.4) and (4.5) between dS in-in propagators and their EAdS counterparts make

clear that, perturbatively, any boundary correlator in the Bunch–Davies vacuum of dS can be

expressed in terms of corresponding Witten diagrams in EAdS.

16Note the ± on ∆± are unrelated to the ± branch of the in-in contour.
17For a detailed derivation of this identity, see Appendix A.2 of [80].
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This mapping between AdS and dS correlators is simplest to illustrate at the level of contact

diagrams, where the relation (4.5) between bulk-to-boundary propagators in (EA)dS implies that

contact diagrams generated by the same vertex in dS and EAdS are proportional to each other.

For example, for general 4-point contact diagram, we have

= λ∆1∆2∆3∆4 (4.6)

The proportionality constant λ∆1 ∆2 ∆3,∆4 itself can be determined using the analytic continuation

(4.3) and the relation (4.5). For the n-point contact diagram generated by the non-derivative

interaction φ1φ2 . . . φn of scalar fields φi, by summing the contributions from the ± branches of

the in-in contour one obtains [69]:

λ∆1 ∆2 ...∆n = 2

 n∏
j=1

c∆j

 sin

d(n− 2)

4
+ 1

2

n∑
j=1

(
∆j −

d

2

)π

 . (4.7)

Note that the above relations between theories in dS and EAdS hold for arbitrary scaling

dimension ∆, i.e. arbitrary masses of the corresponding bulk fields. However, as is well known,

unitarity places restrictions on the values that the scaling dimensions can take. For theories in

AdS, although we have Wick rotated to EAdS, we consider particles that are unitary irreducible

representations (UIRs) of SO (d, 2), while in dS we consider UIRs of SO (d+ 1, 1). Crucially,

these do not coincide! See Fig. 6. This implies that using the above relations to import from

EAdS to dS may require input from a non-unitary theory in AdS.

From the relations (4.4) and (4.5) between dS and EAdS propagators it follows that it is

possible to write down a Lagrangian in EAdS whose perturbative expansion matches that of the

theory in dS [79]. Consider a theory of a scalar field φ in dS,

LdS = −1

2
∂µφ∂

µφ− 1

2
m2φ2 − V dS (φ) . (4.8)

The fact that dS propagators can be replaced by a linear combination of propagators for fields

subject to the ∆± boundary conditions in AdS tells us that the (perturbative) boundary corre-

lators of this theory are equivalently reproduced by the following theory of two scalar fields Φ∆±

in EAdS subject to the ∆± boundary conditions:

LAdS (Φ∆+ ,Φ∆−) = sin
(
π(∆+ − d

2)
) (
∂µΦ∆+∂µΦ∆+ −m2Φ∆+Φ∆+

)
+
(
∆+ → ∆−

)
− e−iπ( d−1

2
) V dS

(
ei
π
2

∆+
Φ∆+ + ei

π
2

∆−Φ∆−
)

− e+iπ( d−1
2

) V dS
(
e−i

π
2

∆+
Φ∆+ + e−i

π
2

∆−Φ∆−
)
. (4.9)
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Figure 6: Plot of the unitary representations in de Sitter and anti-de Sitter space. Top: Unitary irreducible

representations of the de Sitter group SO(d+ 1, 1) for scalars (left) and for spin-J fields (right). Bottom:

Unitary irreducible representations of the anti-de Sitter group SO(d, 2) for scalars (left) and spin-J fields

(right). Notice that the allowed representations are quite different in the two spaces, and are not simple

analytic continuations of one another. For a more detailed discussion of (A)dS representations—and the

differences between them—see e.g. [253, 270, 271].

Note that the kinetic terms of the theory in EAdS are of incorrect sign, for all values of ∆±, which

is another manifestation of the non-unitarity of an EAdS theory whose perturbative expansion

generates dS boundary correlators. At the level of boundary correlators, this difference manifests

itself in the relative coefficient (4.7) between dS and EAdS contact diagrams. The latter in

particular implies that contact diagrams in dS vanish for certain collections of particles in certain

dimensions, which also follows from the cosmological optical theorem (see Section 3.1 and the

corresponding result below equation (2.25)).

4.3 Bootstrapping Perturbative Correlators

In the previous section, we showed how boundary correlators in dS can perturbatively be ex-

pressed as a linear combination of Witten diagrams in EAdS. Formally, the precise relative coef-

ficients of the EAdS Witten diagrams follow either from the in-in formalism or the non-unitary

Lagrangian (4.9). In practice, however, it can be quite cumbersome to evaluate them beyond the

simplest of diagrams and, moreover, since they require us to take various auxiliary steps (which

individually are unphysical) they obscure the properties of the final result.

To align with the bootstrap philosophy, we seek an approach to fix the dS boundary correlators

that places their consistency at the centre. From this perspective, the fact that perturbative

boundary correlators in the Bunch–Davies vacuum in dS can be expressed as a linear combination

of corresponding EAdS Witten diagrams follows as a consequence of:
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1. Symmetries: In both cases, the boundary correlators must obey conformal symmetry, and

in particular must obey the conformal Ward identities reviewed in Section 2.

2. Initial conditions: Throughout we have considered boundary correlators in the Bunch–

Davies vacuum, which requires the absence of folded singularities [21, 38, 272–274]. Folded

singularities are also absent in AdS boundary correlators owing their single-valuedness in

the Euclidean region.

Like for the bootstrap of perturbative dS correlation functions presented in Section 2.2, the

remaining freedom is fixed by on-shell factorisation and the requirement that particles correspond

to UIRs of the appropriate isometry group. Factorisation implies that the relative coefficients of

the EAdS Witten diagrams appearing in a given dS boundary correlator are given by the product

of coefficients (4.7) that relate each contact subdiagram in dS to their EAdS counterpart [80].

For example, the tree-exchange diagram of a particle mass (2.8) in dS can be written as a sum

of the two tree-exchange diagrams in EAdS for the ∆± modes [74]:

m2

=
∑
I=±

λ2
∆I

c∆I ∆I

(4.10)

The coefficients λ∆± convert the two three-point contact subdiagrams for each ∆± mode in the

AdS exchange to their dS counterpart as in (4.7).

More generally, starting from a given Witten diagram in EAdS with definite boundary condi-

tions imposed on any exchanged particle, one can obtain the corresponding boundary correlator

in dS in the Bunch–Davies vacuum as follows [80]: (i) For each contact subdiagram, multiply by

the factor (4.7) which converts it to its dS counterpart; (ii) For each internal line with mode,

say ∆, divide by c∆ accounting for the change in two-point function normalisation from AdS to

dS. (iii) Symmetrise under the interchange of ∆+ and ∆− boundary conditions for each internal

line.

To summarise, in the case that the universe at early times was in the Bunch–Davies vacuum

there is the potential to make significant progress in closing the gap between boundary correlators

in AdS and dS. We have seen that, perturbatively, dS boundary correlators in the Bunch–Davies

vacuum can be expressed as a linear combination of Witten diagrams generated by the same

collection of particles and couplings in EAdS. The relative coefficients of the Witten diagrams

encode perturbative unitarity in dS and ensure consistent on-shell factorisation.

Let us note that this result implies that in the Bunch–Davies vacuum boundary correlators

in dS and EAdS have the same singularity/analytic structure. This opens up the possibility to

leverage a variety of powerful techniques that were originally developed in the context of the

conformal bootstrap approach to boundary correlators in EAdS (see e.g. [275] for a recent re-

view) to study dS boundary correlators—at least those which do not rely on unitarity in AdS.
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An example was presented in Section 3.3 when considering the conformal partial wave expansion

of dS boundary correlators, which assumes that they are single-valued. Since boundary correla-

tors in AdS are single-valued in the Euclidean region, the above results establish that—at least

perturbatively—the same is true in dS [74, 79, 80].

5 Conclusions and Outlook

The bootstrap approach to cosmological correlations is still nascent. There is an irony to the

fact that the spacetimes most similar to our own—asymptotically de Sitter—are still the most

mysterious (see Fig. 7). In recent years, progress has been made in many directions, some of

which we have reviewed. Nevertheless, there are still many puzzles to decipher and challenges

to overcome. These challenges provide opportunities for further progress, and we close by listing

some important open directions to pursue in the coming years.

• Beyond Feynman diagrams: The current guise of the cosmological bootstrap still some-

what mirrors bulk perturbation theory, proceeding diagram by diagram. However, the

most dramatic manifestations of the simplifying power of the S-matrix bootstrap reveals

themselves in situations where observables cannot be meaningfully split into various di-

agrammatic contributions, for example in gauge theories and gravity. Indeed, one could

view the discovery of the Parke–Taylor formula [276]—a dramatic simplification of tens

of thousands of Feynman diagrams—as marking the beginning of the modern amplitudes

revolution. Similar simplifications have not yet been achieved in the cosmological setting.

However, given that scattering amplitudes live within cosmological correlators, it is natural

to expect that these structures exist, and finding them is an important goal. Whenever

cosmology’s Parke–Taylor moment does arrive, we expect that it will catalyze a number of

new discoveries.

under-
standing

Rd,1dSd+1 AdSd+1

nonperturbativetree level
(some loops)

(tree level)

Figure 7: Remarkably, the closer we get to spacetimes that describe the universe we live in (de Sitter

space), the less we understand about how to rigorously define a theory in that space. In contrast, we have

a perfect nonperturbative definition of quantum gravity in AdS spacetimes in terms of a boundary CFT.

In flat space, we have some understanding of the perturbative structure of QFT and partial understanding

of some nonperturbative effects. On the other hand, we are just beginning to scratch the surface of the

rules underlying consistent theories in dS, where our understanding is not even complete at tree level.
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• From trees to loops: Most of the explicit results in the cosmological bootstrap have

been derived for tree-level correlators. It is important both conceptually and practically to

push our understanding further in perturbation theory. As we reviewed in Section 2, we

now have a reasonably complete understanding of the singularity structure at tree level.

However, aside from isolated examples, at loop level little is known in a systematic fashion.

Developing a similar understanding at one-loop to what is currently know at tree level

presents a concrete challenge that can serve as a gateway to better understanding the

analytic structure of correlation functions more generally in perturbation theory. Beyond

this, there are a number of situations where loop corrections are practically important. For

example, from the phenomenology side, the leading couplings of the inflaton to fermions

(including Standard Model fields) only arise at one-loop [277–280]. Moreover, there has been

much recent work exploring both the stability of de Sitter space [281] (and the consistency

of perturbation theory in cosmological spacetimes [94–128]) and the dynamics of eternal

inflation [26, 282–290], which are both situations where loops become important, and further

developing the bootstrap to approach these cases will also provide opportunities to make

connections with this work.

• Uncovering hidden structures: The deepest and most far-reaching insights arising from

the S-matrix bootstrap have involved the discovery of completely unexpected physical and

mathematical structures [178]. In many cases these structures were uncovered through the

change in perspective provided by the on-shell philosophy. Of course, it is difficult to plan

to discover similar such hidden structures in cosmology. Fortunately, we can leverage the

successes of the S-matrix and conformal bootstrap for some clues of where to look. As an

example, one of the more surprising structures lurking inside scattering amplitudes are dou-

ble copy relations. First noticed within string theory [291], they are now known to be much

more far-reaching in field theory, not only allowing gravity amplitudes to be expressed as

suitably-understood squares of Yang–Mills amplitudes [292], but more generally connecting

a web of theories [293]. An interesting concrete challenge is to develop a similar under-

standing in the cosmological context. Some progress has been made recently [294–304],

but the fate of the cosmological double copy remains somewhat mysterious. We expect

that resolving this mystery will reveal that the double copy is just the tip of the iceberg,

and that there are other beautiful structures within cosmological correlators waiting to be

mined.

• Pushing the limits of EFT: The majority of developments thus far have focused on

situations where the inflationary background is close to de Sitter space (though allowing

for sizeable breaking of de Sitter symmetries in interactions) and low-order correlation

functions are the dominant signature [52]. However, large deviations from these implicit

assumptions are not excluded by observations, and suggest novel observables like oscillatory

features [87, 305]. These situations are less symmetric and thus present a novel challenge for

the bootstrap approach. For similar reasons, the signatures themselves vary significantly

from model to model and thus finding an organizing principle for these less symmetric

cases is of broad interest. The tail of the distribution of density fluctuations [306–309]

and/or higher N-point functions [310] are areas where novel theoretical insights could have
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important observational consequences. Enhanced information at large multiplicity can arise

in models of cosmological particle production [311], but may be better understood as a

feature in a map rather than a change to the statistics [90, 312]. There has been much

recent interest in flat space at large-multiplicity perturbation theory and non-trivial classical

saddles (e.g. [313, 314]). It will be very interesting to understand these features more

systematically and their cosmological implications. Often we learn about a formalism by

pushing it to its limits, and trying to approach these situations where the EFT naively

breaks down will doubtless be illuminating.

• From IR to UV: In the inflationary paradigm, the largest-scale structures we see today

originated as quantum-mechanical fluctuations in the very early universe. This striking

bridge between large and small is a remarkable feature of inflation, and a unique opportu-

nity to learn about physics at very short distances. To maximally leverage this connection,

it is critical to make the link between infrared observables and ultraviolet physics com-

pletely precise. In the context of scattering amplitudes, our understanding of the structure

of the S-matrix is mature enough that we can connect the IR physics that we observe,

and the UV physics that we want to know about, by means of powerful dispersion rela-

tions and positivity bounds [91]. Deriving analogous relations in cosmology requires two

main ingredients: 1) an improved (nonperturbative) understanding of the consequences of

unitarity for cosmological correlators and 2) further insights into their analytic structure.

Fortunately, these developments are already underway. As a concrete first step, it will be

important to connect our understanding of perturbative and nonperturbative unitarity in

de Sitter space. Further development of perturbative techniques at loop level and beyond

will provide insights necessary to characterize the analytic structure more fully. Another

important direction to pursue is to elucidate the consequences of de Sitter causality for

cosmological correlators, which has not been extensively studied. These insights can then

be synthesized into dispersion relations that will constrain cosmological EFTs, which will

be an important milestone in the development of the cosmological bootstrap.

• Carving out theory space: An important goal of the cosmological bootstrap is to clas-

sify the space of consistent cosmological field theories. There are two aspects to this broad

theme. One is to understand in a fixed cosmological background what QFTs can con-

sistently be defined. The second and more ambitious goal is to go one step further and

classify the full space of models that can give rise to inflation in the first place. In the

perturbative context, some consistency requirements are already known, and it is impor-

tant to fully map out the space of consistent theories. It is also critical to further develop

nonperturbative bootstrap tools that constrain the space of possible inflationary models.

An important question is whether “single field” inflation can occur in a consistent model

of quantum gravity. That is, can the inflaton be an isolated degree of freedom, with a

parametric gap to other states? Or are there necessarily other fields that are important to

the inflationary dynamics? A famous fact about de Sitter space is that it does not admit

linearly realized supersymmetry [315–317]. Hence, one might speculate that it will be diffi-

cult or impossible to find de Sitter solutions in string theory with a parametric gap to the

string scale if indeed supersymmetry plays a fundamental role. Fortunately, this is a ques-
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tion that can be approached systematically utilizing tools developed in the context of the

conformal bootstrap [82], which have already begun to be imported into the cosmological

setting [74, 78, 79].

• Towards the Veneziano correlator: The inception of string theory traces its way back

to the discovery of the Veneziano amplitude. From this remarkable structure, innumerable

marvels have emerged. In de Sitter space, one can place sharp requirements on the proper-

ties of the analogous “Veneziano correlator”. Such a UV-complete correlator would not have

the field-theoretic energy singularities described in Section 2.1.3 and would posses a Regge-

like spectrum of resonances with corresponding oscillatory factors analogous to (2.22). If

such an object exists, it would provide a glimpse into string theory in de Sitter space in the

regime where there is no separation between the string scale and the Hubble scale. Such a

scenario would be extremely interesting because these string states would be excited during

inflation leading to striking signatures.

• De Sitter holography: One of the deepest goals of cosmology as a discipline is to uncover

what really happened at the initial singularity in the early universe. This is a question for

quantum gravity in cosmological spacetimes. Given our experiences in AdS—and with

quantum gravity more generally—it stands to reason that this is a question best addressed

holographically. However, holography in de Sitter space is underdeveloped compared to

AdS. Conceptually, the difficulty compared to anti-de Sitter space is that the holographic

direction in the de Sitter context is time, and so our familiar notions of unitarity and

causality must be emergent in this setting. A further challenge is that in the presence of

dynamical gravity, the future boundary itself fluctuates, making it harder to sharply define

observables. Notably, none of the developments described in this paper posit the actual

existence of a holographic dual to inflation or cosmology (though there is much interesting

work in this direction, e.g.,[16, 134–143]), instead they are relying on kinematic properties

of boundary correlators, or on other consequences of bulk dynamics. Nevertheless, these

perturbative results serve as a sort of theoretical data, which any putative holographic dual

must reproduce, and also help us understand the rules that such a boundary theory must

obey. There is evidence that it should share some properties with a Euclidean CFT, though

it is unclear what the allowed spectrum of such a theory is or should be. Despite the obvious

challenges, we view this as an essential open problem in cosmological physics, and it provides

an opportunity for connection with other efforts in the Theory Frontier [82, 305, 318, 319].

• New observational strategies: A central objective of the cosmological bootstrap is to

understand how fundamental physical principles are encoded in cosmological observables.

This more refined understanding of the signatures of fundamental physics will suggest ob-

servational targets to look for in data, or protected observables that cannot be mimicked by

late-universe effects. There are already several success stories of this philosophy [71, 90, 320]

and further developing this line of inquiry is extremely important to be able to fully utilize

the inflationary epoch as a tool for discovery, and to decode the physics of inflation itself.

The question of the origin of the universe is one that has captured human imagination for cen-

turies. We are lucky enough to live in a time where this is a scientific question that can be
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approached systematically. Nevertheless, information about the universe’s earliest moments is

scant—we cannot directly image this epoch, instead we must reconstruct its history from subtle

correlations frozen on its boundary. This difficulty is an opportunity in disguise, as it challenges

us to make sense of the time evolution of the universe from this static vista. To guide ourselves,

we fall back on cherished fundamental principles in order to understand how to reconstruct ob-

servables directly on this late-time surface. The hope is that this will further illuminate the path

forward. In this white paper, we have summarized some recent progress in this direction. These

are only the first steps and it is clear there is a long journey ahead, but one where many new

discoveries surely await us.
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