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Abstract

Over the past few decades, astronomical and cosmological data sets firmly estab-
lished the existence of physics beyond the Standard Model of particle physics by pro-
viding strong evidence for the existence of dark matter, dark energy, and non-zero
neutrino mass. In addition, the generation of primordial perturbations most likely
also relies on physics beyond the Standard Model of particle physics. Theory work,
ranging from models of the early universe in string theory that that led to novel phe-
nomenological predictions to the development of effective field theories to large-scale
cosmological simulations that include the physics of galaxy evolution, has played a
key role in analyzing and interpreting these data sets and in suggesting novel paths
forward to isolate the origins of this new physics. Over the next decade, even more
sensitive surveys are beginning to take data and are being planned. In this white pa-
per, we describe key areas of the theory program that will be needed to optimize the
physics return on investment from these new observational opportunities.

1 Introduction

Cosmology is by now firmly established as a precision science. Different cosmological ob-
servations, ranging from observations of distant supernovae, to large scale structure (LSS)
surveys, to measurements of the cosmic microwave background (CMB), have established
a standard model of cosmology, referred to as ΛCDM. It describes the evolution of our
universe from a time when it was only fractions of a second old until the present, and it
does so with only six parameters. Four of the six parameters characterize the homoge-
neous solution, the remaining two characterize the power spectrum of primordial density
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perturbations. As a phenomenological model, ΛCDM has proven extremely successful and
its parameters are now known at the percent level. However, the underlying microphysics
behind these parameters remains completely unknown. How was the asymmetry between
particles and anti-particles created? What is the nature of dark matter? Is dark energy
just a cosmological constant or is it dynamical? When and how did the first stars form and
how did reionization occur? What generated the primordial density perturbations that
grew into the temperature anisotropies in the cosmic microwave background and eventu-
ally into the stars and galaxies?

Implicitly the model makes additional assumptions, like the existence of three species
of neutrinos with the sum of their masses assumed to be the smallest mass consistent
with neutrino oscillation experiments. But what really is the sum of their masses? Are
there three species of relativistic degrees of freedom present at the time of recombination?
Or does the number of relativistic degrees of freedom deviate from the standard model
prediction, as expected in many extensions of the standard model?

Over the next decade, CMB experiments and LSS surveys are becoming powerful enough
to begin to answer several of these questions. However, making full use of the upcoming
data sets will require theoretical progress in several areas to ensure that our measurements
are limited by the statistical power, not our theoretical understanding.

In this white paper we present an overview of the main areas where observational
progress is expected as well as the theoretical challenges associated with each of these
areas that have to be overcome to fully utilize the next-generation data sets to reveal the
physics of the primordial universe (§2), dark matter (§3), neutrinos and other possible
light relics (§4), dark energy (§5), and the nature of the Hubble tension (§6). Finally, in
§7, we demonstrate the potential of theory to go beyond interpreting observations, but
guiding new physics searches.

2 Primordial Universe

One of the biggest open questions in cosmology is what generated the primordial perturba-
tions that seeded the stars and galaxies around us. Observations have established that the
primordial perturbations are dominated by density perturbations, and that, within obser-
vational uncertainties, these are adiabatic, Gaussian, nearly but not exactly scale-invariant,
and well-described by a power law that is conventionally parameterized by the amplitude
As and spectral index ns [1].

All these properties of the primordial perturbations are consistent with inflation [2–5],
the idea that the very early universe underwent a period of nearly exponential expansion
driven by one or several scalar fields, and have ruled out various competing ideas, such
as perturbations seeded by monopoles, strings, or textures [6–10]. Inflation is the most
widely studied scenario for the early universe, but there are less explored alternative sce-
narios [11–14]. Future observations that constrain or detect the amplitude of primordial
gravitational waves, measure the primordial power spectrum of density perturbations with
higher precision, and further constrain departures from Gaussianity will provide stringent
tests for any theory of the early universe.

In addition to a nearly scale invariant spectrum of primordial density perturbations,
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inflation also predicts a nearly scale invariant spectrum of primordial gravitational waves.
According to the simplest models of inflation, the expansion is driven by a single scalar
field, the inflaton φ, and the theory is specified by an a priori arbitrary function of the
inflaton, the potential V (φ). In this context, the search for primordial gravitational waves
will help answer several key questions, such as what the energy scale of inflation is, how
far the inflaton traveled in field space, and over what range the scalar potential varies. A
more detailed discussion of inflation and its predictions is available in [15].

A nearly scale-invariant background of gravitational waves is most easily detected
through its imprint on the CMB, where the signal is characterized by a plateau on angular
scales larger than a degree in the temperature anisotropies and a recombination peak on
degree angular scales and a reionization bump on large angular scales in the polarization
anisotropies. The primordial density perturbations generate temperature anisotropies and
anisotropies in so-called E-mode polarization, primordial gravitational waves additionally
generate so-called B-mode polarization. In the context of inflation, a detection of primor-
dial B modes would provide evidence for quantum fluctuations in the spacetime metric
itself, would imply that inflation took place at energy scales comparable to those associ-
ated with grand unified theories, and would imply a Planckian field range, just to mention
some of the consequences. Because of these far-reaching implications, several CMB exper-
iments are currently searching for this polarization pattern [16–21] and more will begin
taking data soon.

One of these experiments, BICEP2, reported a detection of B-mode polarization on
degree scales at 150 GHz and interpreted this detection as evidence for the existence of
primordial gravitational waves [22]. Subsequent analyses demonstrated that the BICEP2
measurements are consistent with polarized emission from dust inside the Milky Way [23–
25]. However, the measurement has both highlighted that experiments are reaching the
sensitivities needed to detect the B modes expected if the simplest models of inflation de-
scribe the first fraction of our universe, and that accounting for astrophysical foregrounds
is crucial for a convincing detection.

Over the next years the BICEP/Keck collaboration will continue to improve their mea-
surements from the South Pole, and Simons Observatory will begin observations from
Chile [26], both improving the sensitivity to the amplitude of power in primordial gravi-
tational waves by an order of magnitude over current limits. By the end of the decade a
larger NSF and DOE funded effort, CMB-S4, will further increase the reach by a factor of
around five and either detect a primordial gravitational wave signal or exclude many of
the best-motivated models of inflation [27–29]. Planning for space-based probes is also
well-underway, for example, for the JAXA led LiteBIRD satellite [30] and for PICO [31].

These experiments will begin to cross critical thresholds in the search for primordial
gravitational waves from inflation. For example, they will either detect gravitational waves
or exclude one of the two classes of potentials that naturally predict a value of the spectral
index ns consistent with observations [27]. In this class of models the potential during
the inflationary period is well approximated by a monomial potential V (φ) ≈ µ4−2pφ2p.
The value of µ is constrained by the observed amplitude of density perturbations As, and
for plausible values of p the models predict an amplitude of the gravitational wave signal,
measured in terms of the tensor-to-scalar ratio r, of r > 0.01. This class of models already
appears in tension with observations [32]. However, the tension is predominantly based on
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constraints on ns, and the theoretical prediction is modified by the presence of additional
degrees of freedom [33]. In addition, a detection of a primordial gravitational wave signal
with an amplitude in excess of r ≃ 0.01 are of interest because they imply that the distance
in field space traveled by the inflaton during the inflationary period exceeds the Planck
scale [34], which would have profound theoretical implications, like the existence of a
symmetry that protects the inflaton potential in quantum gravity. See the Snowmass white
paper [35] for more details.

An additional critical threshold that CMB experiments will begin to cross over the next
decade is r ≃ 0.001. This threshold provides information about the structure of the in-
flationary potential rather than the field displacement. The second class of single-field
models that naturally predict a value of the spectral index ns consistent with observations
are hilltop and plateau models. Prominent examples in this class include Starobinsky’s R2

inflation [2], models in which the Higgs boson takes on the additional role of the infla-
ton [36, 37], α-attractors [38–40], fibre inflation [41], and Poincaré disk models [42, 43].
These potentials contain an additional parameter compared to the first class, the scale in
field space over which the potential appreciably changes from its hilltop or plateau value.
The absence of a detection by CMB-S4 and LiteBIRD would constrain the tensor-to-scalar
ratio to be below r ≃ 0.001, and would exclude all models in this class in which this scale
exceeds the Planck scale.

Primordial B modes generated by primordial gravitational waves are not the only
source of B-mode polarization. As we already mentioned, astrophysical foregrounds also
create B modes. In addition, the presence of matter along the line of sight between us and
the so-called last-scattering surface at which the CMB is emitted deflects the CMB photons
through weak gravitational lensing. This converts primordial E modes into a mixture of
E modes and so-called lensing B modes [44, 45], which are brightest on angular scales
around ten arcminutes.

Ground-based experiments will probe tensor-to-scalar ratios as small as r ≃ 0.001 by
searching for the recombination peak on a carefully selected part of the sky with minimal
foreground contamination. To reduce the sample variance from lensing B modes, these
experiments will rely on high-precision measurements of polarization on arcminute angu-
lar scales that will allow the removal of the lensing contribution on degree scales [46–49].
This process is referred to as delensing. Satellite missions measure primordial B modes
over a large fraction of the sky. As a consequence, they are less dependent on delensing
both because the sample variance of the lensing B modes is reduced, simply because more
modes are observed, and because they also target the reionization bump on large angular
scales where the ratio of primordial B-mode power to lensing B-mode power is largest. At
the same time, because they observe the full sky, satellite missions must, on average, deal
with significantly higher levels of foregrounds. As a consequence, the different approaches
are highly complementary.

Contamination of the primordial B-mode signal by B modes of astrophysical origin
remains one of the main challenges for both ground- and space-based observations. The
two main sources of astrophysical B modes are polarized emission by dust grains that are
aligned with the Galactic magnetic field, and synchroton radiation emitted by relativistic
electrons in the Galactic magnetic field. The amplitude of the astrophysical signal exceeds
the amplitude of the primordial signal at all frequencies and on all angular scales, even in
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the cleanest regions of the sky. As a consequence all experiments searching for primordial
B modes necessarily rely on multifrequency observations that use together the different
frequency dependence of the CMB and foreground signal. Ground-based observations can
target the cleanest regions of the sky, but the atmosphere severely restricts the viable ob-
serving frequencies. All-sky observations from space are not subject to limitations imposed
by the earth’s atmosphere but must deal with higher levels of astrophysical B modes.1

Independent of the observing platform, a better understanding of these astrophysical fore-
grounds is critical, both for the analysis and interpretation of current and upcoming data
sets as well as for the design and planning of experiments. There has been recent progress
both in the form of ab initio magnetohydrodynamic (MHD) simulations [50, 51], phe-
nomenological models [52], and in the form of generative models [53, 54], but additional
work in this direction, in particular a coordinated effort to make full use of the different
approaches is needed.

While the frequency dependence of astrophysical foregrounds differs from that of the
CMB signal, lensing B modes have the same frequency dependence as the primordial sig-
nal and cannot be reduced by multi-frequency observations. However, since the statistical
properties of the CMB are well understood, high-precision measurements of the polariza-
tion on scales near the lensing peak can be used to reconstruct the lensing potential, and
ultimately to remove the lensing B modes [46–49]. This has only recently been demon-
strated on data [17, 55–60], and work is ongoing to develop techniques appropriate for
the stringent requirements of future ground-based surveys [61–65]. A key aspect that re-
mains to be better understood is the effect of foregrounds on delensing. Because delensing
relies on the correlations between modes on arcminute and degree scales, this motivates
higher resolution ab initio MHD simulations with a larger dynamic range than currently
available.

Precision measurements of the polarization of the cosmic microwave background on
small scales [26–29] will also lead to improved measurements of the power spectrum of
primordial density perturbations that will provide interesting constraints on inflation and
fundamental physics more generally. Over the next decade, constraints on the scalar spec-
tral index ns will improve by a factor of two. Similarly, constraints on its scale dependence,
referred to as the running of the scalar spectral index, will improve by a factor of two to
three [27–29]. In combination with the increased precision on r, this will significantly
reduce the space of viable inflation models.

In addition, the improved measurements of ns have implications for the aftermath of
inflation. As inflation ends, the potential energy density stored in the inflaton is trans-
ferred into kinetic energy and eventually into the energy density of a thermal plasma of
standard-model particles. This process is referred to as ‘reheating’ [66–68]. How reheat-
ing occurs in detail remains unknown, but at least for the simplest models of inflation the
observational predictions related to inflationary physics only depend weakly on these de-
tails of reheating [69–71]. The dependence only arises because observables depend on the
relation between physical scales today and physical scales during inflation, which depends
on the amount by which the Universe expands during reheating. More quantitatively, the

1Of course, this also provides an opportunity to those interested in a better understanding of the processes
that produce the foreground emission.
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details of the reheating process lead to small changes of the spectral index ns. With the in-
crease in precision on ns, observations will begin to distinguish between different reheating
histories for a given model of inflation [72–74]. The physics that is probed in this way is
very rich. For example, the expansion history and the duration to radiation domination af-
ter inflation can depend on the self-interactions of the inflaton [75, 76], inflaton couplings
to other fields and the efficiency of the energy transfer between the inflaton and daughter
fields [77, 78]. Constraints on the expansion history can also impact predictions for dark
sector abundances [79–85], provide insights into the possibility of producing primordial
black holes [86, 87] and additional small scale structure in the early universe [88–90]. For
a recent review, see [74].

There are several well-motivated classes of inflationary models that predict departures
from a power law in the form of oscillatory or sharp features in the primordial power
spectrum. For example, as we mentioned earlier, a detection of primordial gravitational
waves with an amplitude above r ≃ 0.01 would imply the existence of a symmetry that
protects the inflaton potential. In this case axions are natural inflaton candidates because
they enjoy a shift symmetry to all orders in perturbation theory. Non-perturbatively, the
inflaton acquires a potential that may contain both a non-periodic contribution suitable to
drive inflation and a subdominant periodic contribution. The small periodic contribution
leads to features in the primordial power spectrum [91]. These contributions have been
searched for and have been constrained using CMB data [91–95] and more recently using
the BOSS data, which currently provides the strongest constraints on these models for a
significant part of parameter space [96]. Constraints from LSS data will improve further
as new data from DESI [97] and Euclid [98] becomes available [96].

If the inflaton is the only light degree of freedom during inflation, the primordial den-
sity perturbations are adiabatic [71]. The improved measurements of the power spectrum
of primordial density perturbations will tightly constrain departures from adiabaticity, re-
ferred to as isocurvature modes, that would be expected in theories with additional light
degrees of freedom like axions [99–101], or in the curvaton scenario [102–106]. Just
like the inflaton, light degrees of freedom present during inflation experience quantum
fluctuations and contribute to the density perturbations. Since the two fields fluctuate
independently, their contributions are uncorrelated. If the density perturbations are pre-
dominantly sourced by the inflaton and departures from adiabaticity are associated with
additional light fields, the adiabatic and isocurvature modes are uncorrelated. Over the
next decade limits on this type of departures from adiabaticity will improve by a factor
five [27]. The curvaton scenario is an alternative to single-field models of inflation in
which the observed density perturbations are dominated by the vacuum fluctuations in a
second field, the curvaton, that subsequently decays. Depending on the details of the decay
process, this scenario allows for a wide variety of departures from adiabaticity. Since the
density perturbations are dominated by the curvaton and the departures from adabaticity
are set by the curvaton as well, in this scenario the adiabatic and isocurvature components
are fully correlated (or anti-correlated). Constraints on these departures from adiabaticity
will improve by as much as an order of magnitude [27].

The upcoming precision measurements of CMB polarization will also tighten constraints
on departures from Gaussianity. The constraints are most commonly presented as con-
straints on amplitudes of different functional forms, typically referred to as shapes, of
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low-order correlation functions. Constraints on the amplitudes of the most widely studied
shapes of the 3-point function will improve by a factor of two to three compared to exist-
ing constraints [27, 28]. These constraints can, for example, help answer the questions
how strongly the inflaton interacts with itself, and more generally whether there was a sin-
gle light degree of freedom or several. The constraints achievable with CMB observations
alone just fall short of key theoretical targets [107], and further improvements will re-
quire measurements of higher order correlation functions from galaxy surveys or intensity
mapping [108, 109].

Nominally, LSS data provides access to orders of magnitude more Fourier modes than
the CMB. However, as already briefly mentioned, the analysis of LSS data is more chal-
lenging because of nonlinear effects of matter clustering, galaxy formation physics, and
redshift space distortions. On sufficiently large scales (larger than 1 Mpc), these effects can
be systematically described within the Effective Field Theory (EFT) of Large Scale Struc-
ture [110–112], and there has recently been significant progress in deriving constraints on
departures from non-Gaussianity from large scale structure [113–116].

The EFT framework provides robust first-principle theoretical models for the late-time
non-Gaussian patterns in the galaxy distribution, which act like a background noise that
complicates the extraction of the primordial non-Gaussian signal. The other important in-
gredients necessary for the analysis of primordial non-Gaussianity (PNG) in galaxy surveys
are optimal estimators of summary statistics [117, 118], efficient data compression and
covariance matrix estimation techniques [119, 120], and codes for EFT calculations [121–
123]. The recent application of these tools to the galaxy power spectrum and bispectrum
data from the BOSS [124] is a proof of principle that measurements of PNG from galaxy
surveys are feasible, and there is a systematic program that aims to reach the level of
precision necessary to answer key questions about inflation.

Over the next few years the upcoming surveys like DESI [97] and Euclid [98] will create
a detailed map of our Universe up to redshift of z ≈ 2, which will permit the improvement
of the current limits on PNG from galaxy surveys at least by a factor of four [125]. An even
more impressive improvement will become possible with future surveys like MegaMap-
per [125–127], which will map our Universe up to z ≈ 5 and will reach unprecedented
precision in measuring PNG. In addition, the local type of non-Gaussianity will soon be
probed with the SPHEREx mission [128].

To make full use of the data, it will be important to improve the accuracy of the EFT
calculations (higher order n-point functions and high loop orders), and to obtain inputs
from high fidelity hydrodynamical simulations. These simulations will yield tight priors
on the Wilson coefficients of the EFT (nuisance parameters) that capture the details of
galaxy formation on large scales. This will break the degeneracy between PNG and galaxy
formation physics, and hence reduce the error bars on the potential PNG signal [115, 119].
On the experimental side, the biggest challenge will be imaging systematics. This issue can
be addressed, e.g. with recently developed network-based techniques [129].

Given the leaps in sensitivity and data quality for both CMB experiments and LSS sur-
veys, cross-correlations between the data sets are an important additional avenue to con-
strain PNG and cosmological parameters more generally. For example, upcoming CMB
experiments like Simons Observatory and CMB-S4 will provide exquisite measurements of
the lensing convergence that contains information about the projection of matter along the
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line of sight. Correlations between the CMB lensing maps and deep LSS surveys can pro-
vide complementary and highly competitive constraints on PNG [130]. Secondary CMB
anisotropies, caused by interactions of CMB photons with electrons in non-linear struc-
tures along the line of sight similarly correlate with LSS surveys and provide yet another
route to constrain PNG [131, 132].

Most theoretical work and analyses have focused on scale-invariant shapes of the 3-
point correlation function. However, the inflationary models mentioned earlier that predict
oscillatory or sharp features in the primordial power spectrum also predict corresponding
features in higher order correlation functions [91, 133]. Since searches for these shapes
are computationally more challenging than the searches for the scale-invariant shapes, at
present only constraints from the CMB exist [134–139], and the information available in
LSS data remains to be extracted.

Finally, there are several examples of physical processes for which departures from
Gaussianity are not well described by the first few moments of the probability distribution
function [140–145]. Signatures associated with these processes might be missed in tradi-
tional searches. For the example of reference [141] the optimal estimator has been found
and is naturally formulated in real space [146]. This raises the more general question
of how to systematically and optimally extract the information stored in the data beyond
the power spectrum and low-order correlation functions [147]. See [35] for additional
discussion.

3 Dark matter

The discovery of dark matter in galaxy clusters [148] and individual galaxies [149, 150]
was one of the first signs of physics beyond what we now know as the Standard Model
[151–153]. By the 1980’s it was clear from astronomical observations what dark matter
could NOT be, namely neutrinos [154, 155, 155–157]. Simulations showed that the clus-
tering of halos in a neutrino-dominated universe could not be reconciled with observations
for masses consistent with matching the relic abundance of neutrinos. Instead, simulations
suggested that another, colder form of dark matter could be consistent with both the cos-
mological abundance of dark matter and its small-scale clustering [158, 159]. Since then,
it has been recognized that the physics of dark matter shapes the homogeneous evolution
of the Universe and the evolution of perturbations. Particle theorists have drawn inspi-
ration for dark matter model building from astronomical observations (e.g., [160]), and
the community is using observations paired with high-resolution simulations to illuminate
dark-matter particle properties.

In fact, dark matter astrophysics is becoming a precision science [161–164]. On the
observational side, there are many different probes of dark matter on a variety of scale,
from the expansion history to LSS to dark-matter halos so small that they may not contain
luminous matter. Importantly, new wide-field surveys, from radio to optical to gamma-ray,
are enabling the discovery of new targets for dark-matter searches, with well-quantified
statistical and systematic uncertainties (e.g., [165–169]). When these observations are
paired with a commensurate cosmological simulation and theory program (e.g., [170–
183]), we as a community are obtaining stringent constraints on the WIMP annihilation
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cross section, the momentum distribution of dark matter at its production era, dark mat-
ter self-interactions and interactions with Standard Model particles, and the dark matter
particle mass (e.g., [184–194]). The constraints inform dark matter model builders and
complement dark matter searches in the lab.

As detailed in other Snowmass contributions, the observational facilities of the next
decade or two can provide tremendous insight into the nature of dark matter (e.g., [195–
203]). However, this opportunity can only be realized with a strong theory and simulation
program. The opportunities and challenges are detailed in Ref. [199] (see also Ref. [203]),
which we summarize here. In brief, collaboration between particle theorists and simulators
is desirable to translate from the Lagrangian model level to phenomenological cosmolog-
ically relevant parameter space (e.g., as in the ETHOS framework [204, 205]). Part of
this process is figuring out how best to map specific physics into simulation algorithms.
For example, for self-interactions, what matters is simulating the transfer of momentum
and energy in dark-matter halos, and so careful thought must go into determining which
cross section is relevant for the coarse-graining of the transfer [206]. Simulations must
include the physics of galaxy formation, and the simulation outputs need to be rendered
in the space of real astronomical observations (see Ref. [207] for an application to dwarf
HI single-dish observations). Because simulations are slow, we will use simulations to
train emulators and semi-analytic models (e.g., [208–211]). Thus, likelihood function
approaches to constraining dark-matter parameter space will become possible in finite
compute time, and we will have a unified theoretical framework to consider all astronom-
ical probes of dark matter together (e.g., [188, 212, 213]). Simulations can also point to
completely new types of observables [190, 214, 215], including ones that affect lab dark
matter searches [216–218]. This mapping between dark matter particle models and astro-
nomical observables, including the effects of galaxy evolution physics, enables sharp tests
of dark matter microphysics with telescopes, and a connection to terrestrial experiments.

There is an enormous discovery potential for dark matter physics with the next gener-
ation of experiments on telescopes and in the lab. Revealing the particle nature of dark
matter from these experiments requires a theoretical and simulations program to unite all
probes of dark matter into a consistent interpretation framework.

4 Neutrinos and other light relics

Standard cosmology predicts that the Universe is filled with a sea of relic neutrinos pro-
duced during the Hot Big Bang. As the Universe expands and cools, the neutrino momenta
redshift along with photons and other particles leaving a relic background characterized
by a temperature Tν ∝ 1/a ≈ 10−4 eV today. In the early Universe, when Tν(a) ≫ mνi,
these particles were relativistic and contributed to the radiation energy budget. Today,
we expect that at least two of the three neutrino mass eigenstates have masses mν ≫ Tν .
Cosmology therefore probes neutrinos across a range of epochs from the era of decoupling
(T ∼ 10 MeV) through the non-relativistic transition and to today. Measurements of the
radiation density in the early universe provide constraints on the number of neutrino states
and the energy density carried by each. Measurements of the Universe at late times char-
acterizing the matter budget and amplitude of large-scale structures provide constraints on
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the neutrino energy density at late times, and therefore the sum of the neutrino masses.
Both provide powerful constraints on the thermal history of the Universe and new physics
beyond the Standard Model. For a thorough discussion of the science of light relics, see
these Snowmass papers [219, 220].

The radiation energy budget is conventionally parameterized by Neff ≡ (ρradiation/ργ −
1)/(7

8
( 4

11
)4/3), where ργ is the CMB photon energy density and 7

8
( 4

11
)4/3ργ is the expected

energy density of a single species of neutrino and anti-neutrino that decouples instanta-
neously. The standard model prediction of three light neutrino and anti-neutrino states
translates into a prediction of Neff = 3.044, where the additional digits after the decimal
are due to residual heating of neutrinos due to electron-positron annihilation [221–225].
Current constraints on Neff from CMB and BAO data are Neff = 2.99±0.17 [226], in remark-
able agreement with the Standard Model expectation. CMB data is expected to continue to
provide evermore stringent constraints on Neff , large-scale structure is an emerging probe
of Neff [227, 228] that can also produce interesting limits on neutrinos.

A variety of well-motivated beyond-the-Standard-Model scenarios predict additional
light degrees of freedom such as axions, gravitinos, gravitational waves, or other dark
radiation ([219]) that, at some point in the early Universe, would have been in thermal
equilibrium with the rest of the Standard Model particles. These very same measurements
of neutrinos in the early and late Universe can be used to infer the presence of these
new particles. There are firm theoretical predictions for the additional contribution to Neff

from any light (.eV) thermal relic particle that was ever in equilibrium with the primordial
plasma, specifically ∆Neff = 0.027, 0.047, 0.054 for a single scalar, Weyl fermion, or vector
Boson that decoupled at epochs when all Standard Model degrees of freedom were in
equilibrium. Remarkably, experiments in the next decade are approaching these thresholds
of detection [26–28, 219, 229, 230]. For particles that decoupled at later epochs, the
contribution to Neff is larger because those particles would have experienced the same
heating as the photon bath when heaver particles fell out of equilibrium.

Simple counting of particles and spins gives a prediction for ∆Neff(Tfreeze−out), the func-
tion specifying the contribution to Neff from a species that freezes out at Tfreeze−out, that is
accurate to the %-level at epochs when the relativistic degrees of freedom are not changing.
For particles that decouple during the QCD or electroweak phase transitions, for instance,
computing ∆Neff is considerably more complicated. During this epochs perturbative tech-
niques and lattice gauge theory are required (for a summary, see, e.g. [27, 231]) and the-
oretical uncertainties are currently present at the 10%-level. Reaching sub-percent-level
accuracy for the neutrino contribution to the energy density requires detailed computa-
tions including non-instantaneous decoupling and, to a lesser extent, neutrino oscillations
[221–225].

CMB and LSS datasets sensitive to Neff , a measure of the total energy density in rela-
tivistic particles, are also able to infer properties of the perturbations in relativistic parti-
cles. This allows these experiments to set limits on the existence of non-standard neutrino
self interactions [232–239] and interactions among other new contributions to the rel-
ativistic energy budget [80, 240] such as self-interacting dark radiation [241] or dark
radiation that is tightly coupled to other dark sector particles [242].

At present the strongest constraints on Neff come from CMB temperature and polariza-
tion anisotropies. The physical effects can be understood as follows: the radiation density
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in the early Universe dictates the Hubble rate, which characterizes lengths and timescales
that impact features in the CMB power spectra (for a review see, e.g. [27, 243]). For
free-streaming contributions to Neff , there is an additional change to the power spectra,
a phase shift in the peaks, due to the different propagation speeds of perturbations in
free-streaming particles (c) and perturbations in the photon-baryon fluid (cs = c/

√
3)

[244]. These signatures on CMB primary power spectra are well-understood and straight-
forward to model, for instance using publicly available Boltzmann codes CLASS and CAMB
[245, 246]. On the other hand, reaching target constraints on Neff will require removing
the changes to the CMB power spectra induced by gravitational lensing from matter along
the line of sight [60, 247] as well as cleanly separating out any foreground emission con-
taminating the measured power spectra. While galactic and extragalactic foregrounds are
not expected to be a limiting factor for CMB polarization data at ℓ . 5000, future experi-
ments will be measuring CMB polarization anisotropies on those scales for the first time.
Quantifying the impact of foregrounds, and delensing in the presence of foregrounds, on
measurements of Neff is an active area of research that requires accurate simulations of
high-resolution maps of galactic and extragalactic foreground emission, as well as nonlin-
ear CDM and baryon structure.

Neutrino oscillation data specifies the splitting of the square of the neutrino masses
to be ∆m2

12 = 7.42+0.21
−0.20 × 10−5 eV2 and ∆m2

13 = |2.51 ± 0.027 × 10−3| eV2 [248]. As the
relic neutrino temperature is Tν ∼ 10−4eV today, at least two of the three mass eigenstates
are non-relativistic. These particles then contribute to the matter budget of the Universe
today, with Ωνh

2 ≈
∑

i mνi/94eV (e.g. [249]). This contribution has yet to be detected,
but remains the only unknown parameter in the simplest ΛCDM cosmology. As the mass
splittings are known, a cosmological measurement of Ων translates into a constraint on
the lightest of the neutrino mass states2. Detecting the neutrino mass scale, and finding
consistency with laboratory experiments, would be a triumph of cosmology and particle
physics. Determining the neutrino mass scale would also set a benchmark for neutrinoless
double-β decay experiments: if the neutrino mass sum is detected at & 0.1 eV via cos-
mology and that process is not observed, the simplest interpretation is that neutrinos are
Dirac particles (see, e.g. [27, 220]). In the event that neutrinoless double beta decay is
detected, a cosmological measurement of the neutrino mass sum can help to constrain the
Majorana phases. Pinning down the neutrino mass scale is also important for studies of
new physics. Dark energy constraints, for example, can be affected by degeneracies with
the neutrino mass.

Neutrinos were relativistic for much of the history of the Universe and therefore kine-
matically forbidden from participating in gravitational clustering until late times. This
manifests as a strong suppression in the amplitude of neutrino perturbations on scales
smaller than the neutrino free-streaming scale, a length scale characterizing the typical
distance neutrinos travel in a Hubble time. The absence of neutrinos on these scales weak-
ens the gravitational potentials and slows the overall growth of cold dark matter and
baryon structures. The net result is a suppression in the amplitude of structures, which

2Unless mνlightest is sufficiently large (e.g. & few meV), next generation cosmological detections of the
neutrino mass sum will only provide an upper bound on mνlightest. Detecting the value of mνlightest directly
would require σΣmν

. mνlightest.
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can be parameterized by σ8. The suppression in structure is detectable via a variety of
methods, from gravitational lensing of galaxies or CMB [226, 250–253], to redshift space
distortions to galaxy clustering [97, 253, 254], and galaxy cluster counts (for a summary,
see [220]). The transition of relic neutrinos from relativistic to non-relativistic also alters
the evolution of the neutrino energy density, and therefore the Hubble rate, but this sig-
nature is expected to be too small to detect [243]. The physical processes and observables
described here will also occur for other light relic species. Consequently, constraints on
neutrino mass and Neff can be generalized to constrain the mass of other light relic species
[255].

If neutrino masses are described by the minimal mass normal or inverted orderings,∑
mν ≈ 0.06 eV or ≈ 0.1 eV. In these scenarios the primary observable for neutrino mass

– a suppression in the matter power spectrum, relative to what would be seen from CMB
predictions for the amplitude of structure in a universe with massless neutrinos – is a small
effect (∼ 3 − 6%). To robustly detect the neutrino signal and confidently limit the masses
of any other new light relic particles, will require exquisite control over theoretical and
observational systematics. Achieving that control will require strong efforts in the theory
and simulations of structure formation, astrophysical processes, and survey data. There are
also opportunities to identify observables or techniques that may help isolate a signature
of neutrino or other light relic particle masses.

Current constraints on the neutrino masses from primary CMB, CMB lensing, and
LSS power spectrum measurements combined are

∑
mν < 0.16 eV at 95% confidence

[256]. This bound on the mass puts the neutrino free-streaming scales well into the linear
regime of structure formation. Yet, datasets probing the suppression in structure due to
neutrinos receive contributions from quasilinear and nonlinear scales where simulations,
or advanced techniques such as EFT [110–112], are typically used to model nonlinear
gravitational evolution. Neutrinos are fast-moving particles that travel over cosmological
distances and have a significant velocity dispersion, accurately incorporating them into
studies of gravitational evolution can therefore pose challenges. A number of different
approaches exist in the literature.

On the simulations side, a popular technique consists in including neutrinos as parti-
cles, while adding a thermal component to their initial velocities [257–265]. This method
naturally takes into account neutrino nonlinearities, which can be important in some sce-
narios [266–269]. However, it also suffers from a few challenges that are associated to the
large thermal velocities of neutrinos, such as the need for a special relativistic description
[270] and shot noise. Shot noise arises as a problem when treating neutrinos as N -body
particles because the neutrino density field lacks intrinsic power on small scales so shot
noise due to finite sampling of the density field quickly dominates. The shot noise can
be reduced by increasing the number of neutrino particles, at the expense of significantly
increasing the use of computational resources. Alternative approaches have been devel-
oped to mitigate this problem [271–274]. To achieve robust constraints with future survey,
simulations will also need to accurately account for baryonic feedback processes [275].

Another simulations-based approach consists in treating the neutrinos in linear theory,
while coupling to the non-linear gravitational potential of the cold dark matter [276–281].
This can make simulations with massive neutrinos only as computationally expensive as
in the case of cold dark matter alone, while also accounting for all relativistic correc-
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tions [282–284]. This approach of treating neutrinos in linear theory, while accounting
for nonlinear evolution of CDM, is also adopted in separate universe simulations, which
allow for precise calculations of a subset of nonlinear statistics such as halo bias and the
squeezed-limit bispectrum [285]. However, in all of these approaches the effects of nonlin-
ear clustering of neutrinos are neglected. While neglecting nonlinear clustering of massive
neutrinos should be adequate for

∑
mν . 0.3 eV and studies of structure on large scales

[268], for heavier neutrinos or observables on halo scales one should account for them.
There are also some hybrid schemes that aim to combine the advantages in both methods
[286–288].

Finally, there continues to be rapid progress in the development of analytic or hybrid
methods for large-scale structure. For example, multi-component perturbation theories to
compute the power spectra and bispectra of matter fields [289–296], spherical collapse
models to compute halo formation [297, 298], and peak-background split / separate uni-
verse approaches to halo clustering statistics [285, 299]. At this stage there continues
to be a strong interplay between simulations and analytic approaches to modeling large-
scale structure in the presence of massive neutrinos, and therefore observables sensitive to
neutrino mass.

5 Dark energy

Discovering the mechanism that drives cosmic acceleration, whether it is a cosmological
constant Λ, a time-dependent scalar field, or modifications of the laws of gravity, is a core
science goal of ongoing and future DOE experiments and NASA missions. Dark energy as a
term describes our lack of understanding of the physical concepts that underlie cosmic ac-
celeration. As such it encompasses a wide variety of fundamental physics topics including
modified gravity, neutrino physics, dark matter-dark energy coupling, early dark energy,
and more. A joint analysis of multiple cosmological probes across multiple experiments
is required to control the systematics budget and to increase the constraining power such
that the community can discriminate between the different physical concepts that explain
cosmic acceleration.

Two complementary avenues emerge in order to constrain the underlying physics model
driving cosmic acceleration: 1) Measuring tensions between different experiments within
the same underlying model and 2) combining the constraining power of different experi-
ments that are not in tension in order to compare different models.

Major progress on this topic is made by the current (Stage 3) generation of photometric
surveys, such as Kilo-Degree Survey (KiDS) [300], the Hyper Suprime Cam (HSC) [301],
the Dark Energy Survey (DES) [302] and spectroscopic surveys, such as the Baryon Os-
cillation Spectroscopic Survey (BOSS) [303]. These low-redshift constraints of the ΛCDM
model can be contrasted with CMB measurements from the early Universe made e.g., by
the Planck satellite [1], the Atacama Cosmology Telescope (ACT) [304, 305], and the
South Pole Telescope (SPT) [17].

These initial results will become more exciting in the near future with the decreas-
ing statistical uncertainty and better systematics control. With the advent of so-called
Stage 4 surveys, e.g., the Dark Energy Spectroscopic Instrument (DESI) [97], the Prime
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Focus Spectrograph (PFS) [306], the Vera C. Rubin Observatory [307], Euclid [98], the
Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Ex-
plorer (SPHEREx) [128], and the Nancy Grace Roman Space Telescope [308] the science
community can expect an abundance of data to study the late-time Universe at increased
precision. Similarly, the next generation of CMB surveys, such as the Simons Observatory
(SO) [26] and CMB-S4 [27] will enable us to contrast high and low redshift at increased
precision and to combine information from both eras to increase the constraining power
on cosmological models.

Below we list the main focus areas in theory and numerical modeling that need to be
addressed in order to fully extract the cosmological information from multi-probe, multi-
survey analyses (see e.g. [309, 310] and the Snowmass Computational Frontier white
paper [311] for more details):
Observational modeling uncertainties: For example, photo-z errors, shear calibration,
depth variations need to be parameterized consistently across the different probes and
surveys if the datasets are combined.
Astrophysical modeling uncertainties: For example, nonlinear modeling of the density
field, baryonic physics, intrinisic alignment, galaxy bias and Halo Occupation Distribution
models are key astrophysical uncertainties that need to be modeled through a combina-
tion of numerical simulations, analytical models and combinations thereof. Consistent
parameterizations and coordination of priors is important if datasets or probes are to be
combined.
Statistical uncertainties: For example, the functional form of the likelihood and, if a mul-
tivariate Gaussian is assumed, the computation of data covariances are key uncertainties
in a joint CMB-LSS analysis.
Simulated likelihood analyses: Simulated likelihood analyses are important early on
to design survey strategy, and at later stages to inform costly numerical simulation cam-
paigns, and to optimize the final analyses on the measured survey data. These simulated
mock analyses need to be run to quantify the error budget as a function of the analysis
choices (scales, redshifts, galaxy samples, summary statistics) for the different probe and
experiment combinations. At later stages, mock analyses are required to quantify tensions
between different probes and/or experiments and to do model comparison.
Numerical simulations: Nonlinear modeling of the density field and exploring the statis-
tical uncertainties mentioned above requires numerical simulations. The initial conditions
of these simulations should be coordinated across all survey collaborations to enable a
better comparison.
Hydrodynamic simulations: Baryonic physics, intrinsic alignment, galaxy bias and Halo
Occupation Distribution models require a hydrodynamic simulation campaign that is com-
putationally extremely expensive. In order to utilize the available computing resources
most effectively this simulation campaign must be informed by the composition of the er-
ror budget of a joint analysis. In other words, the requirements for a simulation campaign
will be different when analyzing data from a single survey as opposed to data from multi-
ple surveys. Simulated cosmological likelihood analyses of multi-survey data can identify
the main contributors to the overall error budget and can inform a corresponding simu-
lation campaign. A close connection between the simulated analyses and the simulation
effort is required.
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6 Expansion rate of the universe

A current cosmological mystery that could have significant implications for our under-
standing of the Universe in the near future is the observed large discrepancy between
different inferences of the Hubble constant H0. Indeed, measurements of the luminosity
distance of Cepheid-calibrated Type Ia supernovae [312] differ at ∼ 5σ from the predic-
tions of our current standard ΛCDM cosmological model once its parameters are fitted to
observations of the temperature and polarization anisotropies of the CMB [226, 313, 314].
This inconsistency is known as the “H0 tension" since distances in cosmology are inherently
linked to the Hubble constant. At the moment, there is a strong case that this discrepancy
is not caused by systematics in CMB data [315–317]. The situation is more ambiguous for
distance-ladder-based inferences, for which different calibration techniques yield some-
what conflicting distance-redshift relations. Of particular note, a distance-ladder calibra-
tion based on the Tip of the Red Giant Branch (TRGB) [318–327] find important inconsis-
tencies with the Cepheid-based SH0ES team [328–331] in estimates of luminosity distances
to neighboring supernovae. Nonetheless, several independent attempts to determine H0

from distance and redshift measurements from a suite of different observations [332–343]
also find higher values than inferred from the CMB, albeit with larger uncertainties [344].
To shed new light on this observational puzzle, several new ideas for probing the recent
expansion history of our Universe have been proposed (see e.g. Ref. [345]). Turning these
ideas into actual observational realities is a key priority in the coming decade to help
provide more clues into the fundamental nature of the tension.

While this discrepancy is commonly referred to as the H0 tension, it is important to re-
alize that what is actually in “tension” is cosmological distance measurements [346–348].
For instance, one could rephrase the current tension by saying that a ΛCDM model fit to
Planck CMB data [226] places the Hubble-flow Type Ia supernovae further away from us
than the Cepheid-calibrated distance ladder does. Turning the problem around, we could
also phrase the issue by saying that a ΛCDM model fitt to Cepheid-calibrated Type Ia su-
pernovae places the CMB last-scattering surface closer to us than what is required by CMB
observations. This emphasis on distances is important to identity physics-based solutions
that can actually address the root cause of the problem. In other words, simply finding a
cosmological model that has a value of H0 compatible with that quoted in Ref. [312] is not
sufficient [349, 350]; the model must instead provide a good fit to all distance measure-
ments available (including supernovae, BAO, time-delay strong lenses, etc.), in addition to
CMB data. Therefore, a better characterization of the current situation would be that we
have a cosmological “distance crisis” on our hands.

For theoretical physics, this apparent discrepancy presents an opportunity to carefully
reexamine all the different assumptions that go into our current cosmological model. As
a starting point, one could ask how well we understand the late-time expansion history of
our Universe. Observations of the relative luminosity distances to Type Ia supernovae at
0.02 . z . 2 [351, 352] strongly constrain deviations from the standard ΛCDM expansion
history at those redshifts, giving us confidence that our understanding of the Universe is
on solid ground at these epochs. Given these constraints, one might be tempted to instead
change the expansion history at very late times (z < 0.02). Such models, while technically
able to accommodate large value of H0 (typically at the price of a phantom dark energy
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equation of state), do not provide good fits the actual measured distances to low-redshift
supernovae and therefore do not address the root cause of the tension [348–350]. Given
the variety of low-redshift distance measurements available, such “late solutions” do seem
to face an uphill battle in resolving the current discrepancy. Future measurements of low-
redshift cosmological distances, such as those from multi-messenger astronomy, will play
an important in determining whether late solutions are at all viable.

Another possibility is that we are missing some important physics in the early Universe.
Since the CMB is fundamentally observed in angular space, making it compatible with a
larger value of H0 (which brings the last-scattering surface closer to us) requires shrinking
all physical length scales present near photon decoupling to leave the observed angles
invariant. In particular, the angular size of the baryon-photon sound horizon θ∗ is one
of the most precisely measured quantities in all of cosmology. Since θ∗ ∝ rsH0, where
rs is the physical size of the sound horizon, keeping this angle constant with a larger H0

value requires a smaller rs. Not too surprisingly, most proposed “early times” solutions
(see e.g. Refs. [49, 353–357]) to the current tension effectively work by reducing the size
of the baryon-photon sound horizon. As rs is mathematically given by an integral over the
sound speed cs,

rs =

∫
∞

z⋆

csdz

H(z)
, (1)

several models shrink the sound horizon by increasing H(z) in the pre-recombination uni-
verse, which suppresses the integrand. Others do so by changing z∗ (the photon decoupling
redshift) to an earlier epoch (see e.g. Refs. [358–360]). Whichever mechanism is used, the
difficulty lies in doing so without ruining the detailed fit to the temperature and polariza-
tion power spectra of the CMB. Indeed, another important length scale to the CMB is the
photon diffusion length (also called the photon mean free path). Shrinking the baryon-
photon sound horizon without also reducing the photon diffusion length by the same factor

nearly guarantees either a poor fit to CMB data, or the introduction of new tensions with
other data sets, especially those from large-scale structure, or both. Thus, any successful
“early solution” needs to include a mechanism to properly adjust this diffusion length.

The centrality of the photon diffusion length (or its inverse, the photon scattering rate)
to the Hubble tension as a whole was recognized in Ref. [361]. Modifying this quantity is
highly non-trivial as it involves low-energy Standard Model physics, which is well under-
stood. While this represents a significant model-building challenge, it also provides a clear
target for future studies on which kind of new physics is required. One possibility that has
been explored is a variation of the fine-structure constant and of the electron mass between
the epoch of last scattering and today [362, 363]. Such an approach has had significant
phenomenological success in a fair model-to-model comparison [364, 365]. However, sig-
nificant model-building is required to explain the required percent-level changes in these
quantities (see e.g. Refs. [366, 367]). Another possibility is modify the helium abundance
near the epoch of recombination, which would affect the free-electron fraction in the cos-
mic plasma and thus change the photon diffusion length. Such an approach would require
modifying Big Bang Nucleosynthesis predictions of the helium and deuterium abundances,
which is challenging given their current consistency with direct light-element abundance
measurements [368]. Whichever physical mechanism is proposed to adjust the photon
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diffusion length to make the CMB compatible with a larger Hubble constant, it will leave
subtle signatures in the data that could be detected in future observations, such as those
from CMB-S4 [29].

Whether it is the result of unknown systematics or new physics, the Hubble tension
presents a golden opportunity to scrutinize both our theoretical beliefs and our data anal-
ysis techniques with the hope that they can be reconciled. As more high-precision data
become available, our leading cosmological model might have to be amended, ushering in
a new era of fundamental physics understanding.

7 Theory as guide for the development of future experi-

ments

As we consider future opportunities, it is useful to consider past successes at the intersec-
tion of particle theory, particle experiment, astronomical observations, and simulations as
a guide for what might be possible.

The simplest models of inflation predicted a universe with primordial perturbations that
are dominated by adiabatic, Gaussian, and nearly but not exactly scale-invariant density
perturbations with a spectral index ns . 1 at a time when measurements with a precision
that could test these predictions were a distant dream. These predictions have now all
been confirmed to high precision [1]. In addition to the density perturbations, many of
the simplest models of inflation predict primordial gravitational waves within reach of the
next generation of experiments [26, 27]. The detection of this characteristic signature of
inflation is one of the main science goals for upcoming CMB experiments, and both the
planning and design relies on close collaboration between theorists and experimentalists.

While this example was one about inflation, other examples exist for the other funda-
mental physics topics in this work. Theorists can guide the development of new experi-
ments (e.g., SPHEREx).

As another example of fruitful interplay that leads to the development of a novel class
of experiments, consider the case of dark matter with a hidden-sector Yukawa coupling
(see Ref. [206] for a comprehensive review). In the early 2000’s, the “missing satellites
problem” [369, 370]—the apparent mismatch between the number of luminous satellite
galaxies in the Milky Way relative to simulated dark matter subhalos, now recognized to
not, in fact, be a problem [193, 371, 372]—motivated physicists to consider that dark
matter may have a strong self-interaction cross section [373]. As direct-detection and col-
lider experiments continued to search for WIMP and axion dark matter without success3,
attention turned to the anomalous ratio of cosmic-ray positrons to electrons as observed
with the ATIC [376] and PAMELA [377] experiments. Many particle theorists suggested
that such an excess could arise via enhanced dark matter annihilation from light dark-
sector mediators that could be kinetically mixed with elecroweak gauge bosons (see, e.g.,
[378–380]).

3All the while, they continue to place strong constraints on particle parameters and open the window on
solar neutrino searches (e.g.,[374, 375]).
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Several authors pointed out that this could lead to enhanced elastic dark matter self-
interactions as well [381–383], leading to significant theory work to characterize the cross
section as a function of velocity [384, 385], and many cosmic numerical simulation studies
for signatures of this kind of self-interaction on a wide variety of scales [170, 172, 214,
386–388].

All the while, new annihilation searches in gamma rays and direct detection searches
on Earth constrained the coupling of these “hidden sector" models to the Standard Model
[389, 390], and new searches for the “dark matter photon" in these models commenced at
a variety of colliders [391–393].

To this day, simulators and observers are working to sharpen predictions and tests for
Yukawa coupling of dark matter in the smallest halos to nearly horizon scales [172, 173,
175, 386, 388, 394–402]. More broadly, if dark matter exists in a rich hidden sector, its
physics may be primarily accessible through cosmic probes if its interaction with the Stan-
dard Model is small. But, only when measurements of dark matter in the sky are coupled
with terrestrial experiments can we fully characterize dark matter’s particle properties.

For most applications (perhaps most notably for neutrinos and dark matter), there is
a strong foundation of interdisciplinary work among observational cosmology and labo-
ratory experiments, united by theory, to reveal new physics. We expect this interaction
among fields to be even more critical to suss new physics out of the next generation of
cosmological and laboratory data sets.
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