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Abstract

Many well-motivated extensions of the Standard Model predict the existence of new
light species that may have been produced in the early universe. Prominent examples
include axions, sterile neutrinos, gravitinos, dark photons, and more. The gravitational
influence of light relics leaves imprints in the cosmic microwave background fluctuations,
the large-scale structure of the universe and the primordial element abundances. In this
paper, we detail the physics of cosmological light relics, and describe how measurements
of their relic density and mass serve as probes of physics beyond the Standard Model. A
measurement of the light relic density at the precision of upcoming cosmological surveys
will point the way toward new physics or severely constrain the range of viable extensions
to the Standard Model.
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1 Introduction
Cosmological observations enable precise measurements of the densities and interactions of
the various constituents of the universe. These measurements have provided firm evidence for
the existence of dark energy and non-baryonic dark matter (DM), and the quest to understand
the nature of these components remains among the most pressing challenges in fundamental
physics. Upcoming cosmological surveys will drastically improve the precision with which we
measure the radiation density of the universe. A precise measurement of the radiation density
may reveal the existence of new dark radiation, or it may place broad constraints on the types
of physics that operate in the dark sector.
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The Physics of Light Relics

Many well-motivated extensions of the Standard Model (SM) predict the existence of new
light species. As such, the hunt for new contributions to the radiation density is much more
than just a speculative blind search. As will be described below, models that can explain the
physics of the dark sector, address the strong CP problem, solve the hierarchy problem, and
account for short baseline neutrino anomalies all contain new light degrees of freedom that
can be detected or severely constrained with upcoming cosmological observations.
It is convenient to discuss the light relic density in terms of the effective number of neutrino

species 𝑁eff defined as

𝜌𝑟 = 𝜌𝛾

(
1 + 7
8

(
4
11

)4/3
𝑁eff

)
, (1)

where 𝜌𝑟 is the total radiation energy density and 𝜌𝛾 is the energy density of photons. This
definition is chosen such that 𝑁eff would count the number of flavors of neutrino species had
SM neutrinos decoupled instantaneously prior to electron-positron annihilation. In reality,
neutrino decoupling was not instantaneous, and the Standard Model prediction is 𝑁SMeff =

3.044(1) [1–4]. As can be seen from this definition, the term ‘light relics’ does not imply a
strict cut-off in mass scale, but rather refers to all species that are relativistic during the epoch
relevant for a given observable. For example, thermal relics with masses below about an MeV
contribute to the light relic density inferred from primordial light element abundances, while
only those with masses below a few eV will be relativistic during recombination and contribute
to the light relic density inferred from the cosmic microwave background (CMB) and large-
scale structure (LSS). Non-thermal relics could be much more massive and still contribute to
the light relic density, so long as they have a phase space density that makes them relativistic
during the relevant period.
The well-understood thermal history of the universe within the Standard Model allows

for the identification of compelling thresholds in the search for new light species. Any model
containing new light degrees of freedom that had ever been in thermal equilibrium with the
Standard Model plasma in the early universe will predict a value of 𝑁eff that exceeds that in
the Standard Model, with Δ𝑁eff = 𝑁eff − 𝑁SMeff ≥ 0.027 for each new light degree of freedom.
This places the cosmological signatures of many models of new physics within reach of the
upcoming generation of cosmological surveys.
Even models that do not involve new light states can predict interesting signatures in the

light relic density. Modified thermal histories can alter the Standard Model prediction of 𝑁eff ,
including the possibility of Δ𝑁eff < 0. The stochastic gravitational wave background con-
tributes to the radiation density of the universe, and measurements of 𝑁eff thereby serve as an
integral constraint on the gravitational wave spectrum.
Furthermore, light relics may have a non-zero mass, and this could leave observable im-

prints in the LSS of the universe. A light relic that is non-relativistic today will have a contri-
bution to the DM density of the universe, and because of their non-zero temperatures we can
distinguish them from the majority of cold dark matter. We will show how this opens up a
new route for finding physics beyond the Standard Model with cosmological observations.
In the sections below we will explore the physics of cosmological light relics and describe

how measurements of the light relic density and mass serve as a broad and useful probe of
physics beyond the Standard Model.

3



The Physics of Light Relics

2 Light thermal relics
The early universe was filled with a hot dense plasma and underwent a very rapid, radiation-
dominated expansion. The conditions during this early phase were sufficiently extreme that
particle-antiparticle pairs of all sorts were rapidly produced and annihilated in frequent ener-
getic collisions. Any species with sufficient couplings to Standard Model degrees of freedom
would have been abundantly produced in the hot dense conditions of the early universe. Parti-
cles which were once in thermal equilibrium and are stable on cosmological time scales persist
as thermal relics of the hot Big Bang. Massive thermal relics became non-relativistic at early
times and provide candidates for cold dark matter. Light thermal relics remained relativistic
throughout the early universe, contributing to the radiation density during this epoch.

2.1 Thermal freeze-out of light relics
The relic density of any light thermal relic can be straightforwardly computed simply through
considerations of comoving entropy conservation. After a light species decouples from the
thermal plasma, it will maintain its relativistic distribution function. The energy density of
decoupled species is diluted compared to that of photons by the disappearance of species in
thermal equilibrium as the temperature drops below their masses. The annihilation of these
states causes their entropy density to be passed to that of the plasma, eventually winding up
in the photons that make up the CMB. By counting the degrees of freedom that annihilate
after the decoupling of a light thermal relic species, it is straightforward to compute its energy
density compared to that of photons.
The contribution of a light thermal relic species 𝑋 to the radiation density is

Δ𝑁eff =
4
7
𝑔𝑋,★

(
𝑇𝑋

𝑇a

)4
=
4
7
𝑔𝑋,★

(
43

4𝑔★(𝑇𝐹)

)4/3
, (2)

where 𝑔𝜒,★ is the effective number of degrees of freedom of 𝑋 , including an additional factor
of 7/8 for fermionic particles, 𝑇a is the temperature of the cosmic neutrino background, given
by 𝑇a = (4/11)1/3𝑇𝛾, where 𝑇𝛾 is the temperature of the cosmic microwave background, and
𝑔★(𝑇𝐹) is the effective number of relativistic degrees of freedom in thermal equilibrium at the
temperature 𝑇𝐹 at which 𝑋 decouples from the plasma. Since we know the particle content of
the Standard Model and therefore 𝑔★(𝑇), we can predict the relic density of any light thermal
relic from its spin and its freeze-out temperature 𝑇𝐹; see Figure 1. The freeze-out temperature
of a given relic is approximately given by the temperature at which the rate of interactions
with the Standard Model, Γ, drops below the expansion rate 𝐻, which during the radiation-
dominated era is given by 𝐻2 = 𝜋2

90𝑔★(𝑇)
𝑇4

𝑀2pl
.

Let us consider a species that has an interaction rate with the Standard Model that scales as
Γ ∼ _2𝑇2𝑛+1, where _ is a coupling constant with units of [Energy]−𝑛, as is expected when the
interaction is mediated by an operator of dimension greater than four. The ratio of interaction
rate to expansion rate is then Γ/𝐻 ∼ _2𝑇2𝑛−1𝑀pl, and a given species will be in equilibrium
when _2 � 𝑀−1

pl 𝑇
−2𝑛+1. For 𝑛 ≥ 1, this implies that the minimum coupling necessary for a

species to be in equilibrium scales as an inverse power of the temperature.
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Figure 1: Contributions of a single massless particle, which decoupled from the Standard
Model at a freeze-out temperature 𝑇𝐹, to the effective number of relativistic species, 𝑁eff =

𝑁SMeff + Δ𝑁eff , with the Standard Model expectation 𝑁SMeff = 3.044 from neutrinos (adapted
from [5, 6]). The purple, green and blue lines show the contributions for a real scalar, Weyl
fermion and vector boson, respectively. The drop in Δ𝑁eff by about one order of magnitude
around 𝑇𝐹 ∼ 150MeV is due to the QCD phase transition, which is denoted by a vertical gray
band, as is neutrino decoupling. The dashed lines indicate the current bound on Δ𝑁eff at
95% C.L. from Planck 2018 and BAO data [7], and the anticipated sensitivity of the Simons
Observatory (SO) [8] and CMB-S4 [9, 10] as examples for upcoming and next-generation
CMB experiments (see also [11], for instance). The horizontal gray band illustrates the future
sensitivity that might potentially be achieved with a combination of cosmological surveys of
the CMB and large-scale structure, such as CMB-HD [12], MegaMapper [13] and PUMA [14],
cf. [15–17]. The displayed values on the right are the observational thresholds for particles
with different spins and arbitrarily large decoupling temperature. We refer to [5, 6] for addi-
tional details.

The extremely high temperatures achieved in the early universe suggest that even very
feebly interacting particles would have been in equilibrium at sufficiently early times. Fur-
thermore, at temperatures above the QCD phase transition, 𝑔★ changes relatively slowly with
temperature, and thus even small improvements in the measurement of 𝑁eff translate into
drastically improved reach in freeze-out temperature and thus the couplings of new light
species. The relic density of any new light species that was ever in thermal equilibrium with
the SM plasma is given by Δ𝑁eff ≥ 0.027 (unless there are changes to the thermal history).
Measurements of the light relic density therefore serve as an extremely broad probe of new
physics.
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The Cosmic Neutrino Background

Cosmic neutrinos provide a useful and familiar example of the freeze-out of light thermal relics
within the Standard Model [18]. Neutrinos interact with charged leptons through the weak
nuclear force, and decoupled from the thermal plasma when the temperature dropped below
about 1MeV. Shortly after neutrino decoupling, electrons and positrons annihilated, causing
photons to be heated relative to neutrinos, such that 𝑇a/𝑇𝛾 = (4/11)1/3 after electron-positron
annihilation. Cosmic neutrinos continued to make a significant contribution to the radiation
energy density, impacting the expansion rate and the evolution of cosmological fluctuations
through their gravitational influence.

2.2 Rethermalization via Standard Model fermions
New light particles can also be out of equilibrium at high temperatures in the early universe,
but come into thermal equilibrium at temperatures below the electroweak symmetry break-
ing (EWSB) scale through interactions with one or more (massive) SM fermions. This is be-
cause the production rate of these particles below the scale of EWSB and above the masses
of the respective fermions scales as Γ𝑛 ∝ 𝑇2𝑛+1 with 𝑛 ≤ 0, which is weaker than the tem-
perature dependence of the expansion rate, 𝐻 ∝ 𝑇2, in contrast to the freeze-out scenario
discussed above. In consequence, this leads to a more complicated thermal evolution. Once
these particles thermalize with the SM, they will contribute to 𝑁eff at an observable level. In
fact, this would be easier to detect since the contribution to 𝑁eff in this rethermalization sce-
nario is larger than their equivalent freeze-out contribution. At the same time, the absence of
a detection would allow us to place direct constraints on the interaction strength between the
light particles and the SM fermions [19].

To be more specific, we can consider the couplings of SM fermions to pseudo-Nambu-
Goldstone bosons (pNGBs), which are scalar particles that arise as a consequence of the break-
ing of (approximate) global symmetries, such as axions (shift symmetry) [20–23], familons
(flavor symmetry) [24–27], majorons (neutrino masses) [28, 29] or the gravitino (supersym-
metry). Of general interest is the dimension-5 derivative coupling of a pNGB 𝜙 to the SM axial
vector current, 𝜕`𝜙𝜓𝛾`𝛾5𝜓, for instance. In this case, the approximate chiral symmetry of the
fermions makes this interaction effectively marginal below the EWSB scale resulting into an
interaction rate with 𝑛 = 0, Γ0 ∝ 𝑇 . In consequence, the out-of-equilbrium pNGB recou-
ples to the SM bath at low temperatures. However, this is only true above the mass of the
SM fermion since the production rate will again become negligibly small once the number
density of the fermion is sufficiently Boltzmann suppressed, which implies that the effective
decoupling temperature is below the associated fermion mass, resulting in the corresponding
contribution to 𝑁eff .
To avoid this large energy density of pNGBs requires that the recoupling temperature is

smaller than this effective decoupling temperature so that the interaction rate is already Boltz-
mann suppressed when the pNGBs would rethermalize. This requirement can be expressed as
a bound on the interaction strength coupling the pNGBs to the SM fermions. Although these
constraints are usually weaker than the freeze-out bounds, they have the advantage that they
do not make any assumptions about the reheating temperature (as long as reheating occurs
above the relevant SM fermion mass). As a consequence, both current constraints on 𝑁eff
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Figure 2: Contribution to the radiation density as parametrized by Δ𝑁eff as a function of
the axion interaction strength Λ𝑖 to different Standard Model fermions 𝜓𝑖 for the dimension-5
derivative coupling to the SM axial vector current,L ⊃ −Λ−1

𝑖
𝜕`𝜙𝜓𝑖𝛾

`𝛾5𝜓𝑖 (taken from [36]).
The displayed values for the bottom and charm couplings are conservative and may be (sig-
nificantly) larger. The horizontal dashed lines and gray band are the same as in Fig. 1. From
this figure, current and future constraints on 𝑁eff can be directly translated into the equivalent
bounds on Λ𝑖 for any couplings to matter. We refer to [36] for a detailed discussion.

from Planck and BBN, and in particular future measurements of Δ𝑁eff at the projected sensi-
tivity of CMB-S4 set interesting constraints on the couplings of some SM fermions to axions
and other pNGBs, see e.g. [19, 30–36]. This is illustrated in Figure 2. In particular, the cos-
mological constraints on axion-muon and axion-tau couplings are currently complementary
to astrophysical constraints from supernova 1987A (cf. [37, 38]) and white dwarf cooling,
respectively, and will be competitive or even supersede these bounds with future 𝑁eff mea-
surements [36]. While the derivation of precise constraints on the couplings of axions to the
heavy quarks depends on the strong-coupling regime of QCD, upcoming CMB and LSS ex-
periments will also be sensitive to these interactions. More generally, the required modeling,
physical understanding and the environment in the early universe is quite different to the in-
teriors of stars which means that cosmological probes can be an important complementary
test of these pNGB-matter couplings (see e.g. [39]).

3 Fluid-like light relics
Cosmological observables are sensitive to more than just the total energy density of light relics.
Perturbations in the light relic density affect photon, baryon, and dark matter perturbations
due to their gravitational interactions, which can in turn be observed in CMB and large-scale
structure surveys. This sensitivity to perturbations in the density of light relics provides a
cosmological window into the interactions of light relic species.

7



The Physics of Light Relics

Model Constraint from Planck TT,TE,EE+BAO Reference
𝑁eff,fs = 3.046 + Δ𝑁eff,fs Δ𝑁eff,fs < 0.28 [7]
𝑁eff,fs = 3.046, Δ𝑁eff,fld Δ𝑁eff,fld < 0.38 [58]
𝑁eff,fs + 𝑁eff,fld = 3.046 𝑁eff,fld < 0.6 [58]

𝑁eff,fs, 𝑁eff,fld 𝑁eff,fld < 0.6 [58]
𝑁eff,fs + 𝑁eff,fld = 3.046,

∑
𝑚a 𝑁eff,fld < 0.5 [59]

𝑁eff,fs, 𝑁eff,fld,
∑

𝑚a 𝑁eff,fld < 0.51 [59]

Table 1: The 95% C.L. constraints on 𝑁eff,fs and 𝑁eff,fld from Planck 2018 TT,TE,EE+BAO data
sets. SM neutrinos are assumed to be massless for the first four models and massive for the
last two. Here, we consider six cases: (1) 𝑁eff,fs = 3.046 + Δ𝑁eff,fs, (2) 𝑁eff,fs = 3.046 with
additional Δ𝑁eff,fld, (3) the sum of 𝑁eff,fs and 𝑁eff,fld is fixed to 𝑁eff,fs + 𝑁eff,fld = 3.046, (4)
both 𝑁eff,fs and 𝑁eff,fld are allowed to vary, and (5) and (6) are the same as (3) and (4), but
with the neutrino mass sum being varied.

Light relic particles that have no significant non-gravitational interactions propagate at
nearly the speed of light in the early universe. Perturbations to the light relic density of such
free-streaming radiation therefore propagate at a speed that exceeds the sound speed of the
photon-baryon plasma, leading to anisotropic stress. The gravitational influence of the free-
streaming radiation beyond the sound horizon of the plasma leads to a characteristic phase
shift in the spectrum of acoustic oscillations [40–42]. The phase shift due to free-streaming
cosmic neutrinos has been measured in the CMB [43] and in baryon acoustic oscillations [44].
For a more detailed discussion, we refer to the dedicated Snowmass 2021 White Paper on
neutrinos in cosmology (and the laboratory) [18].
Light relics exhibiting significant interactions may instead behave like a fluid. Perturbations

to the density of fluid-like light relics propagate with a speed that does not exceed the sound
speed of the photon-baryon plasma, and therefore do not lead to a phase shift. Fluid-like light
relics may arise in models with neutrino self-interactions, neutrino-dark sector interactions,
or dark radiation self-interactions [45–56].
While both free-streaming and fluid-like light relics contribute to the radiation energy den-

sity and, therefore, have identical effects on the expansion rate, the behavior of their pertur-
bations is different, allowing them to be distinguished in observations. Current CMB mea-
surements have placed constraints on the amount of energy density in free-streaming and
fluid-like light relics. We list the limits from Planck 2018 TT,TE,EE+BAO data sets [57] on dif-
ferent models in Table 1. To avoid confusion, we denote the energy density of free-streaming
light relics to be 𝑁eff,fs while that of fluid-like relics to be 𝑁eff,fld. If we fix the contribution from
SM neutrinos to be 𝑁eff,fs = 3.046, the constraints are Δ𝑁eff,fs < 0.28 and Δ𝑁eff,fld < 0.38 at
95% C.L. (see first and second models in Table 1). In general, CMB data allows larger Δ𝑁eff,fld
due to the physical effect of fluid-like light relics (or lack thereof) discussed above.
It is also possible in many scenarios beyond the Standard Model (BSM) that light relics

may have additional features that are not captured in the two cases above. For example, the
rate of interactions that keep light relics in equilibrium can have a certain time dependence,
which might drop below the Hubble rate at an early time or a later time. Depending on the
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type of interactions, light relics may be fluid-like in the early universe and start to free stream
later (the decoupling case), or the other way around (the recoupling case), cf. Sections 2.1
and 2.2. Therefore, the effects of these types of light relics on the CMB power spectra should
be a hybrid of the free-streaming and fluid-like cases. Moreover, due to different properties
before and after the transition, decoupling/recoupling light relics leave distinct features on the
spectrum that depend on the transition time. Interestingly, models with decoupling [49, 60–
62] and recoupling neutrinos [63–66] are proposed to resolve the 𝐻0 tension. These two cases
can arise from majoron models where SM neutrinos couple to a scalar majoron. Depending on
the mass of the majoron, neutrinos can have decoupling (recoupling) features if the majoron
is heavy (light). While the decoupling case is disfavored by other terrestrial and cosmological
constraints [59, 67–69], the recoupling neutrino model with an eV-scale majoron may help
mitigate the 𝐻0 tension [70].

4 Light but Massive Relics - LiMRs

4.1 Motivation
Light relics appear from new physics at a broad range of energy scales, and while we commonly
assume that the relics themselves are massless, this need not be exactly true. Light relics
with non-zero masses can give rise to interesting cosmological signatures. A light relic that
is non-relativistic today will contribute to the dark-matter density. However, their non-zero
temperatures will allow us to distinguish them from the majority of cold dark matter, which
provides us with a new avenue to find light relics in cosmology, as well as to distinguish them
from each other and from other cosmological uncertainties.
The best-known example of a light (but massive) relic, or LiMR, are neutrinos. These par-

ticles decoupled while relativistic (at 𝑇 ∼ 1 − 10 MeV [71]), so they keep a large cosmic
abundance (with a number density 𝑛a ∼ 102 cm−3 today). Their non-zero masses, while small
enough to be unresolved by current laboratory experiments [72], can be tightly constrained by
cosmological datasets [73]. Other examples of LiMRs that may populate our universe are mas-
sive gauge vectors (i.e., dark photons [74, 75]), axions [20–22, 76], and the gravitino [77, 78].
We will return to the different relic examples, and their relation to neutrinos in Section 4.5.

4.2 The effect of relic masses
Light relics decouple from the SM bath while relativistic, so they retain their original (Fermi-
Dirac or Bose-Einstein, assuming thermal equilibrium) phase-space distribution. Thus, their
temperature scales linearly as 𝑇𝑋 (𝑧) = 𝑇

(0)
𝑋 (1 + 𝑧) with redshift 𝑧, and their momentum is

𝑝𝑋 ≈ 3𝑇𝑋 . For the common assumption of massless relics, their effect can be fully absorbed into
a change to the effective number 𝑁eff of neutrino species (see above), which parametrizes extra
contributions to cosmic radiation. However, massive LiMRs can transition to be non-relativistic
when 𝑝𝑋 (𝑧) ≈ 𝑚𝑋 , and change from contributing to the radiation energy budget (Δ𝑁eff) to
the matter content (Ω𝑀) of the universe. Unlike the majority of DM—which is cold—LiMRs
have significant velocities due to their temperature, which impedes their clustering beyond a
characteristic free-streaming scale [73]. Therefore, LiMRs (like neutrinos) behave as a type
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of hot DM, impacting the growth of matter fluctuations and thus the observable LSS of the
universe. This provides us with an interesting target for cosmological observations.
We can find the scales at which a relic affects the growth of structure by calculating the

(comoving) free-streaming scale [79, 80]

𝑘fs ≈
0.1 ℎMpc−1
√
1 + 𝑧

1.95 K
𝑇𝑋

𝑚𝑋

0.1 eV
(3)

as a function of its mass 𝑚𝑋 and temperature 𝑇𝑋 , for a fiducial Planck 2018 cosmology. Like-
wise, the size of the effect of a LiMR in the matter clustering will be given by its cosmic
abundance, given by

𝜔𝑋 = Ω𝑋 ℎ2 ≈ 𝑚𝑋

93.14 eV

(
𝑇𝑋

1.95 K

)3
(4)

in terms of that of neutrinos [73, 81]. By studying at which location (𝑘fs) the suppression in
power due to a LiMR is centered, and how deep it is (which is proportional to 𝜔𝑋), we can
find not only whether there is any cosmic LiMR, but also its particle properties, mass 𝑚𝑋 and
temperature 𝑇𝑋 [82].

4.3 Current constraints
Our most straightforward measurements of radiation energy are anchored at the epochs of Big
Bang Nucleosynthesis (BBN) and recombination.
If the relic is non-relativistic at present, then an additional avenue for observation might be

found in the large-scale structure of the universe, where the free-streaming of the species at
small-scales will impede the formation of structure therein. Figure 3 illustrates this suppression
effect in the linear-theory matter power spectrum (orange) and in the galaxy power spectrum
(after perturbative corrections have been included) (blue). As the relics redshift into becoming
non-relativistic, a joint analysis of cosmological data sets at different epochs (for instance CMB,
LSS, and weak lensing) is important to maximally search for these degrees of freedom.
The present best constraints on the temperature-mass parameter space for massive light

relics are shown in Figure 4 (from [82]), obtained via a joint analysis of BOSS DR12 full-shape
galaxy data, Planck 2018 temperature polarization and lensing anisotropies, and CFHTLens
galaxy-galaxy ellipticity correlations. Presently, there is no evidence of light relics in our uni-
verse beyond the cosmic neutrinos predicted in the Standard Model. Focusing on the bench-
mark temperature of 𝑇 (0)

𝑋 = 0.91 K, expected of a minimally coupled thermal relic, the analysis
of [82] constrains light relics scalars at masses of 11.2 eV, Weyl fermions at 2.26 eV, vectors
at 1.56 eV, and Dirac fermions at 1.06 eV, all at 95% CL.

4.4 Observational prospects
Upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument
(DESI), the Vera Rubin Observatory and Euclid will reduce the error bar on the sum of neutrino
masses by a factor between 3 and 5 [83, 84], depending on the uncertainties in the nonlinear
modeling of galaxy and dark matter clustering. Next generation CMB experiments like the
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Figure 3: The effect of a single species ofWeyl fermion relic at𝑇 (0)
𝑋 = 0.91 K and variousmasses

2.5 (lightest) to 3.5 (darkest) eV, on the linear CDM+baryon (orange) and galaxy-galaxy
monopole (blue) power spectra. The shaded region is taken to be representative of current
experimental shot noise, specifically that of the BOSS DR12 low-redshift, North Galactic Cap
catalogue.

Simons Observatory [8] and CMB-S4 [9] will also contribute to further constrain neutrino
masses [85, 86]. Given the similarity between neutrino masses and other LiMRs we can thus
expect similar improvement for the latter, especially in the mass range at or below an eV, as
indicated by recent forecasts [87].
Forthcoming surveys will be able to improve the bounds on LiMRs masses by another factor

of two at least, thanks to the larger volume accessible. Moreover, they will operate at redshift
𝑧 & 2, deep in the matter-dominated regime, and will therefore allow robust and strong
constraints on the LiMR parameter space even in more extended cosmological models (for
instance with evolving dark energy).
Within the next five years we could therefore be able to rule out the entire thermal gravitino

parameter space [82, 87] at the 2𝜎 level, and other motivated light relic scenarios such as Mir-
ror Twin Higgs [88] (see Sec. 5.1.1), sterile neutrino (see Sec. 6), and hot axion models [19]
will be likewise severely constrained within the next decade.

Theoretical challenges

For relics lighter than about an eV the modeling of the observables is well understood, and we
thus expect current forecasts to be relatively accurate. The same cannot be said for all heavier
LiMRs. As a relic becomes more massive, its nonlinear clustering becomes more important and
it should be included in the prediction of the galaxy and weak lensing power spectra [89]. At
the same time, heavier LiMRs will affect the nonlinear growth of standard cold dark matter
(similarly to massive neutrinos [80, 90]). While both effects are qualitatively well understood,
their technical implementation in perturbation theory has proven quite challenging, and we
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Figure 4: Constraints on the mass-temperature parameter space of an additional species of
fermion light relic obtained via analysis of Planck 2018 TT+TE+EE+lensing, BOSS DR12
broadband spectra, and CFHTLens weak lensing data. Superimposed are the temperature
constraints for a LiMR of fixed mass at 95% CL. The joint analysis of CMB, LSS, and weak
lensing data is critical to obtaining the most competitive constraints, as even in the limit of
massless relic the shown constraints outperform 𝑁eff constraints from CMB information alone
– and the incorporation of massive relic observables strengthens the constraining power con-
siderably.

still lack exact and rigorous predictions of the cosmological observables. Developing analytical
approaches to perturbation theory in presence of LiMRs will therefore be vital for amore robust
detection or bound on the LiMRs parameter space.

4.5 Relation to neutrino mass
For LiMRs with masses below about 0.2 eV, the free-streaming length appears at large cosmo-
logical scales where LSS surveys sample few independent modes. In this regime, the shape
of the suppression of the matter power spectrum (see Figure 3) is difficult or impossible to
resolve, implying that observations are only sensitive to the amplitude of the suppression.
These low-mass LiMRs therefore have observational signatures that can be well captured in
terms of Δ𝑁eff and

∑
𝑚a [91]. Similarly, models in which a fraction of the dark matter ac-

quires a large velocity after recombination (e.g. via DM-neutrino scattering [92]) will lead to
a suppression of clustering in a manner similar to that described above. Despite the different
physical mechanism, the observable consequences for cosmology are also similar to a change
to

∑
𝑚a [91]. Cosmological measurements of both 𝑁eff and

∑
𝑚a provide useful insights for

dark sector physics.
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5 Dark sector complexity
The Standard Model of particle physics is very far from minimal. The rich dynamics that
characterize our visible universe arise due to several different matter states with different
masses interacting under three different gauge forces, most notably for this discussion the
confining strong force, which gives rise to hadronic as well as nuclear bound states, and the
long-range electromagnetic force, which gives rise to atomic bound states, chemistry, and
dissipation. The chiral nature of SMmatter and the origin of fermionmasses from spontaneous
symmetry breaking can also be connected to the lightness of some of the leptons, i.e. the
neutrinos. We probably would never have expected the existence of the SM if we did not
live in it. What other strange sectors could be making up a similar O(10%) fraction of the
universe’s matter budget? At its most basic level, this bottom-up plausibility argument sets
the stage for considering Dark Complexity, the possibility of hidden sectors with particles and
forces that approach the SM in complexity, with possibly equally interesting dynamics in the
early universe and today.
The argument for Dark Complexity is not just based on plausibility, however. From a top-

down point of view, many BSM theories postulate the existence of hidden sectors related by
discrete symmetries to the SM [88, 93–106] (see also the dedicated Snowmass 2021 White
Paper on early-universe model building [107]). As will be discussed in more detail in Sec-
tion 5.1, this includes models of “neutral naturalness” such as the Mirror Twin Higgs that
address the hierarchy problem of the Higgs boson mass [88, 93–99] by positing the existence
of a hidden sector related to the SM by aℤ2 or other discrete symmetry, resulting in analogues
of electromagnetism, strong and weak forces as well as various matter states existing in the
dark sector. Interestingly, while these dark sectors are qualitatively analogous to the SM in
their ingredients, their dynamics can be very different owing to different effective values of
the corresponding fundamental constants. This can result in a fraction of dark matter being
made up of dark baryons, with dark protons, dark electrons, dark photons, and even dark
nuclear forces that are similar to their SM counterparts but with possibly different values for
masses and interaction strengths. Another solution to the hierarchy problem that may give
rise to similar phenomena is N-Naturalness [108].
Regardless of any detailed UV-motivation, Dark Complexity is a broad umbrella term for a

variety of DM models that have been considered in the literature, which feature significantly
richer dynamics than the single collisionless WIMP or minimal axion. Light relics are often the
result of dark complexity, precisely because there are many possible ways to realize very light
or massless particles even just with analogues of dynamics that are contained in the SM.
A simple example is composite DM [109–117]. In analogy to SM QCD, a composite DM

sector could be as simple as some dark fermion(s) charged under a confining dark gauge force.
All or part of DM could then be made up of a dark-hadronic bound state, with the details of its
possible dynamics in our universe today ranging from being effectively collisionless to acting
like self-interacting dark matter [113, 117, 118] or even the nucleonic part of atomic dark
matter (see below). However, it is noteworthy that the composite nature of the dark sector
can itself give rise to a light degree of freedom if the confinement breaks a chiral symmetry,
thereby ensuring the existence of a dark-pion pseudo- or exact Goldstone boson that can act
like self-interacting dark radiation [117].
Another archetypical benchmark scenario of dark complexity is atomic dark matter [109,
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119–134], which postulates that dark matter contains at least two states with different masses
and opposite charge under a dark electromagnetism 𝑈 (1)𝐷 gauge symmetry. Straightforward
generalizations include different charge ratios of the ‘dark nucleon’ and the dark electron,
and the possibility of many dark nucleon species. The latter scenario is especially motivated
if atomic dark matter is realized together with composite DM, i.e. if the dark nucleons are
actually dark-hadronic bound states which in turn form different nuclei, in analogy to the SM.
This gives rise to one very obvious light relic: the dark photon, which in most atomic DM
scenarios of interest is either very light or massless to allow for the formation of bound states.
The dark photon contributes to the effective number of light species that can be measured
from the CMB Δ𝑁eff ∼ 4(𝑇𝐷/𝑇𝐶𝑀𝐵)4. For a dark sector that was in thermal equilibrium with
the SM at the formation of the CMB, this is obviously excluded by Planck constraints [7], but
the strong temperature dependence means that even the normal entropy injections within
the SM could supply sufficient dilution to make dark photons consistent with current data.
A variety of other dilution mechanisms that lower the hidden sector temperature relative to
the SM are also possible, see e.g. [96, 97, 135–137], making a dark photon contribution to
Δ𝑁eff at the percent-level plausible and an attractive target for CMB-S4 [9, 138]. The long-
range dark-electromagnetic interaction also causes dark acoustic oscillations of the atomic DM
component (see e.g. [88, 127]), which can leave oscillatory deviations in the matter power
spectrum measurements compared to the ΛCDM expectation.
Complete models can often feature several of the above mechanisms. For example, the

Twin Higgs features a dark sector with composite twin protons (made of confining twin
quarks) bound into twin atoms with twin electrons via twin electromagnetism. Depending
on the nature of the discrete symmetry to the SM, it can also feature light twin neutrinos, as
well as some source of dilution [96, 97] to satisfy CMB bounds on Δ𝑁eff . Therefore, a variety
of light states are present contributing to the above-discussed observables. It may well be that
all these effects have to be present to resolve cosmological mysteries. For example, it has been
shown that the 𝐻0-𝜎8 tension could be resolved by such a twin sector [133, 134, 139], owing
both to dark acoustic oscillation delaying structure formation at the required scale to amelio-
rate the 𝜎8 anomaly [140], and the interacting and non-interacting species of dark radiation
contributing to Δ𝑁eff , thereby alleviating the 𝐻0 tension between the CMB measurement and
the direct measurement today [141–143].
Models featuring dark photons and several matter states, like atomic or twin dark matter,

are also interesting due to their rich dynamics in the universe today. They could easily be
compatible with cosmological and self-interaction bounds, especially if the dark atoms make
up a . O(10%) subcomponent of dark matter [88, 124, 127]. Like their SM counterparts,
dark particles could cool and form structure, leading to the formation of a dark disk or dark
microhalos [124, 125, 129]. On even smaller astrophysical scales, collapsing atomic dark
matter would form mirror stars [103, 104, 144, 145], possibly emitting dark photons long
past their Kelvin-Helmholtz time if dark nuclear interactions release energy in their cores.
This opens a new window for astrophysical dark matter searches, since it has recently been
shown [144, 145] that mirror stars can produce electromagnetic signals that may be visible
in optical/IR and X-ray telescopes if the dark photon has a tiny kinetic mixing with the SM
photon. Such a small mixing 𝜖𝐹`a𝐹

`a

𝐷 is a renormalizable operator in the Lagrangian and
generically expected to be produced at some loop level in the complete theory [146], but even
without such a coupling, purely gravitational signatures, like microlensing and gravitational
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waves, will be able to detect mirror stars in our galaxy and beyond [147, 148].
Dark Complexity is difficult to study experimentally and theoretically due to the enormous

range of possible dynamics it can generate in our universe, but any discovery would herald a
new golden age of astrophysics and particle physics. A myriad of different signatures would
need to be meticulously observed and understood to discern the nature of the dark sector. The
robust nature of light dark relic signatures make them a crucial part of this puzzle.

5.1 Connections to Naturalness
It is well known that the Higgs boson in the Standard Model of particle physics introduces a
naturalness puzzle in the presence of additional scales. The fact that the weak scale is para-
metrically smaller than the scale of new physics (which could be as high as the Planck scale)
cries out for an explanation. There are two known theoretical mechanisms that can solve this
problem for an arbitrarily high new physics scale: supersymmetry and Higgs compositeness.
Both approaches imply new physics states near the weak scale that should be accessible at
collider experiments. The current absence of evidence for new physics at the Large Hadron
Collider (LHC) has motivated the exploration of new explanations for the lightness of the weak
scale.
Our focus here is on the connection between light relics and electroweak naturalness. To

this end, we will focus our attention on two classes of models that both rely on the presence
of hidden sector ‘copies’ of the Standard Model. (These copies could be exact duplicates or
could be Standard Model-like ‘pseudo-copies.’) For both classes of model, the copies could
have associated light degrees of freedom that could impact cosmological observables. These
models provide examples where the first hint of the solution to the electroweak hierarchy
problem could appear from cosmology.

5.1.1 Twin Higgs

The Twin Higgs [93] is the simplest realization of the phenomenon of “neutral naturalness”,
in which partner particles appear near the weak scale consistent with natural expectations,
but do not carry the same quantum numbers as their Standard Model counterparts [93–95,
149]. These partner particles arise from discrete symmetries relating the Standard Model
to additional sectors, as the discrete symmetry results in a larger accidental symmetry that
protects the Higgs mass without requiring new states charged under the Standard Model.
Although these models only stabilize the Higgs mass over one or two decades in energy (above
which a more conventional solution such as supersymmetry or compositeness must appear),
they suffice to reconcile the observed Higgs mass with the non-observation of new charged
particles near the weak scale. While the new Standard Model-neutral partner particles are
difficult to detect at the LHC, their cosmological signatures are among the most promising
avenues for discovery.
The discrete symmetry at play in the Twin Higgs is a ℤ2 symmetry relating the Standard

Model to a mirror copy that contains the same field content and interactions. The existence
of this mirror copy and a quartic coupling _ between the Standard Model Higgs doublet and
its mirror counterpart are sufficient to postpone the appearance of new charged particles as-
sociated with supersymmetry or compositeness by an amount _/_SM compared to a theory
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without the ℤ2 symmetry. If the ℤ2 symmetry were exact, the scales 𝑣 and 𝑓 of Standard
Model and mirror electroweak symmetry breaking would be identical. However, in the Twin
Higgs model the couplings of the observed Higgs boson deviate from Standard Model pre-
dictions by an amount proportional to 𝑣2/ 𝑓 2, so 𝑣 ∼ 𝑓 is disfavored by LHC Higgs coupling
measurements. Soft breaking of the ℤ2 allows 𝑣 � 𝑓 , but involves a fine-tuning proportional
to 𝑓 2/𝑣2. This tuning is modest given current Higgs coupling measurements, but favors the
Twin scale 𝑓 to lie as close as possible to the electroweak scale 𝑣.
The strongest constraint on the mirror Twin Higgs model comes from cosmology. The

quartic coupling between the Standard Model Higgs doublet and its twin keep the two sectors
in thermal equilibrium down to O(GeV) temperatures [96, 97]. Assuming that the universe
reheated above this temperature with otherwise typical cosmological evolution, the energy
density in mirror photons and neutrinos corresponds to Δ𝑁eff ≈ 5.6, such that the simplest
mirror Twin Higgs is badly excluded by current bounds on Δ𝑁eff . There are then two broad
possibilities consistent with current bounds: either the Twin sector is not an exact mirror
copy (such that the Twin partners of the photon and neutrinos are heavy or decoupled [150–
152]), or the energy densities in the Standard Model and Twin sector differ significantly in
the early universe [96, 97, 153]. While the former possibility can be arranged, it requires
understanding why theℤ2 symmetry is good for particles that couple strongly to the Higgs but
bad for particles that do not. In contrast, the latter possibility preserves theℤ2 symmetry in its
entirety (modulo the soft breaking that leads to 𝑣 � 𝑓 ) and predicts compelling cosmological
signatures within reach of near-future experiments.
But how can the energy densities in the StandardModel and Twin sector differ significantly

if the ℤ2 symmetry is only broken by the scale hierarchy 𝑣 � 𝑓? A simple possibility is for
a new particle coupling symmetrically to both sectors to decouple while relativistic, become
non-relativistic and induce an era of matter domination, and then decay. Despite coupling
symmetrically to both sectors in the underlying theory, its decay rate to each sector is inversely
proportional to the corresponding scale. For example, if the new particle is a right-handed
neutrino (motivated independently by neutrino mass generation), the ratio of its decay rates
to the Standard Model and Twin sectors scales as [96]

Γ(𝑁 → Twin)
Γ(𝑁 → SM) ∝ 𝑣2

𝑓 2
. (5)

As long as the new particle decays after the Standard Model and Twin sectors decouple, it
will asymmetrically reheat the two sectors and suppress the energy density in the Twin sector
proportional to the ratio in Eq. 5. This is sufficient to reconcile the Twin Higgs with current
limits on Δ𝑁eff but provides a compelling target for future measurements: since the tuning of
the weak scale is proportional to 𝑓 2/𝑣2 and the Twin contribution to Δ𝑁eff is inversely pro-
portional to the same ratio, improved sensitivity to Δ𝑁eff probes the most natural parameter
space of mirror Twin Higgs models. More broadly, the rich hidden sectors predicted by mod-
els of neutral naturalness provide a compelling target for cosmological probes of light relics
connected to the stability of the weak scale.
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Figure 5: A sketch of the 𝑁naturalness setup. There are 𝑁 copies of the StandardModel, where
the only parameter that varies is the Higgs mass squared. The accidentally lightest sector with
a non-zero Higgs vev is our copy of the Standard Model. Reproduced from Ref. [108].

5.1.2 𝑵naturalness

The starting point for the 𝑁naturalness model [108] is to assume that there are 𝑁 copies of the
Standard Model1, which are identical except that their Higgs mass squared parameter take a
random value between−Λ2𝐻 and Λ2𝐻 , where Λ𝐻 is the effective UV cutoff that causes there to be
fine-tuning in the Higgs mass parameter (see Figure 5). This imples that we expect there to be
one sector that accidentally has the smallest non-zero Higgs vev, which should parametrically
be around the scale Λ𝐻/

√
𝑁. The 𝑁naturalness approach is to find a dynamical reason that

this sector is the one that dominates the energy density of the universe today. This is the sense
in which this model solves the hierarchy problem. We live in the sector that is accidentally
light, since this is the one that dominates the energy density of the universe.
To this end, we assume that when inflation ends, all of the energy density of the Universe

is dominated by a particle that we call the “reheaton”. It is the decay of the reheaton that
reheats the universe. We assume that the reheaton is a gauge singlet, that it has a mass that
is parametrically of order Λ𝐻/

√
𝑁, and that its couplings are the most relevant possible that

couple it to the Higgses of all the sectors. A simple model with a scalar reheaton 𝜙 is therefore

L ⊃ −𝑎𝜙
∑︁

|𝐻𝑖 |2 −
1
2
𝑚2𝜙𝜙

2, (6)

where 𝐻𝑖 is the Higgs field for sector 𝑖. For the lightest sector with a non-zero Higgs vev,
the reheaton decays are unsuppressed. For the rest of the sectors, the branching ratios for 𝜙
decays scale as Γ ∼ 1/𝑚2

ℎ
(Γ ∼ 1/𝑚4𝐻), where the decays into sectors with non-zero (zero)

vevs are dominated by decays to fermions (massless gauge bosons).
Although the decays into the other sectors are suppressed, they are non-zero, which implies

that a variety of light relics will be produced. In order to parametrize the observable impact
1It is not strictly required that the 𝑁 sectors be copies of the Standard Model. This assumption is taken because

it leads to a very predictive setup.
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Figure 6: Contours of the contribution to Δ𝑁eff for BBN and the CMB in the 𝑟 versus 𝑚𝜙 (the
mass of the reheaton) plane. Reproduced from [108].

this would have on 𝑁eff, we introduce a parameter 𝑟:

(𝑚𝐻)2𝑖 = −
Λ2𝐻
𝑁

(2𝑖 + 𝑟), (7)

where 𝑖 = 0 corresponds to “us.” This parameter 𝑟 tracks how close by the next sector is to
us. This parameter has a huge impact on the phenomenology, since it effectively controls how
much energy density of the reheaton decays go into other sectors. One can think of 𝑟 as a
proxy for how much of an additional accident is required for the 𝑁naturalness model to be
phenomenologically viable. In Figure 6, we show the predictions for 𝑁eff in the 𝑟 versus 𝑚𝜙

plane. This shows that viable parameter space exists for the model. Additional constraints on
the model (and an example model with a fermionic reheaton) are provided in [108].
While these results are specific to the case of exact copies of the Standard Model, the

generic expectation is that the hidden sectors would contain massless states. Therefore, if the
reheaton has a non-trivial branching ratio into the other sectors, there should be a non-trivial
contribution to 𝑁eff. This is the sense in which probes of light relics correspond to testing the
framework of 𝑁naturalness.
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5.2 Dark matter freeze-in
Dark matter (DM) could achieve its observed abundance through a mechanism known as
freeze-in, where DM is produced non-thermally from SM particles in the thermal bath of the
early universe annihilating and decaying. In particular, since the DM is non-thermal in this
scenario, freeze-in is one of the few mechanisms for making sub-MeV DM from the SM plasma
while still remaining consistent with bounds from BBN and 𝑁eff on thermal dark sectors [154–
160].
A classic example of a DM candidate born via freeze-in is the Dodelson-Widrow sterile neu-

trino [161], but freeze-in is now known to be a more general mechanism that can be realized
in a number of different models in the limit of small DM-SM couplings [162–167]. Producing
the observed DM relic abundance without thermalizing the DM itself implies a tiny value for
the coupling constants of order∼ 10−12 [168, 169], which is difficult to target with accelerator
searches. However, if the DM-SM coupling is via a light mediator, this aids in the experimental
observability of this candidate in direct detection experiments, since scattering will scale like
𝑣−4 for velocity 𝑣, which is 𝑣 ∼ 10−3𝑐 at the Earth’s location in the Milky Way (MW). For this
reason, DM freeze-in via a light mediator is one of the key benchmarks for direct searches for
DM where the same couplings determine the relic abundance and laboratory signals [170–
183]. Because of the temperature scaling of freeze-in production of DM via a light mediator,
most of the DM is produced at late times, making this scenario relatively insensitive to initial
conditions (unless the mediator is thermally populated at early times, see e.g. Ref. [184]).
If the mediator responsible for freeze-in is able to come into thermal equilibrium with the

Standard Model plasma, it necessarily contributes Δ𝑁eff ≥ 0.09 [156, 157]. A cosmological
exclusion of Δ𝑁eff at this level would dramatically improve on direct constraints on DM-baryon
interactions from cosmology and astrophysics (or meson decay searches) by many orders of
magnitude [156]. In this sense, the constraints onmediators imposed bymeasurements of 𝑁eff
is one way in which the light relic density provides useful insights into the physics of the dark
sector. On the other hand, if the light mediator is the SM photon, then 𝑁eff remains unchanged
and if the mediator is a kinetically mixed dark photon then it will generically not thermalize
with the SM due to a strong in-medium suppression of producing ultralight dark photons in
a plasma [185]. Therefore, in the most viable models of freeze-in via an ultralight mediator,
the DM is effectively millicharged; freeze-in is one of the few ways of making millicharged
DM, since the couplings for standard thermal freeze-out are excluded by other constraints on
millicharged DM [186].
Freeze-in via a light mediator therefore sits at the nexus of many interesting DM properties:

it can make millicharged DM at sub-MeV mass scales without being excluded by present con-
straints, in a way that is insensitive to initial conditions and that can be imminently tested by a
host of proposed DM direct detection experiments. It is thus timely to consider how the cosmo-
logical effects of DM freeze-in provide an observational handle that is complementary to other
probes. There are two main effects that lead to observable departures from standard ΛCDM:
(1) the portal responsible for creating the DM necessarily implies a drag force between the
DM and the photon-baryon fluid before and during recombination, altering anisotropies seen
in the CMB and (2) the DM is born with a nonthermal, high-velocity phase-space distribution,
which suppresses clustering on small scales. For both observable effects, the full non-thermal
velocity distribution of the DM is of critical relevance. The DM-SM scattering cross section
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space from the freeze-in mechanism (blue) and the resulting phase space from thermalization
(red). Figure reproduced from Ref. [193].

responsible for the drag effect scales like 𝑣−4 and depends strongly on the low-velocity part of
the non-thermal distribution, while the suppressed growth of structure is sensitive to DM in
the high-velocity tail of the non-thermal distribution.
For sub-MeV DM, the main channels for freeze-in production as computed in Ref. [169]

are from annihilation of electrons 𝑒+𝑒− → 𝜒�̄� and from plasmon decays 𝛾∗ → 𝜒�̄� (the de-
cay of photons that acquire an effective in-medium plasma mass, see e.g. [187]). The initial
non-thermal phase space can potentially become thermal at late times through DM-DM in-
teractions; there is a window for this to occur without violating bounds on self-interacting
DM [188].
If the DM does not self-interact substantially and the primordial phase space is preserved,

then the implication for effect (1) is that constraints on millicharged DM assuming cold initial
conditions (e.g. [189–191]) will be relaxed somewhat because DM that is born via freeze-in
through a light mediator is born relativistic; this is even more true for DM that does thermalize
with itself through self-interactions. Current Planck 2018 [192] constraints on DM freeze-in
through a light mediator are 18.5 and 19.3 keV for these respective scenarios; in the future,
CMB-S4 [9, 138] could probe up to masses of 28.8 and 28.1 keV, respectively [193].
Meanwhile, for effect (2), if the DM retains its primordial freeze-in phase space distribu-

tion and does not interact non-gravitationally, then it effectively behaves as a massive neutrino
species with a unique velocity distribution. On the other hand, if freeze-in DM thermalizes at
a later time, it behaves as a collisional fluid. In either case, advances in constraining warm
DM can be used concurrently for the purposes of constraining freeze-in via a light media-
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tor. For example, limits on warm DM have been set using the Lyman-𝛼 forest [194–196]
and inferences about the subhalo mass function from quasar strong lensing [197, 198], stel-
lar streams [199, 200], and MW satellite galaxies as observed by the Dark Energy Survey
(DES) [201, 202]. The strongest constraints on freeze-in via a light mediator come from
DES, corresponding to 16.6 and 17.3 keV for nonthermal and thermalized freeze-in distri-
butions [193] (see Refs. [203–207] for complementary treatments of keV-scale non-thermal
DM and the effect on structure formation). Note that analogous analyses with DES [202] have
placed a lower limit on the mass of Dodelson-Widrow sterile neutrinos of 50 keV and have sim-
ilarly excluded nearly all the allowed parameter space for the Shi-Fuller mechanism for the
production of sterile neutrinos [208]. In the near future, advances in analyzing the Lyman-𝛼
forest [209, 210] as well as joint analyses of different probes [211, 212] may strengthen these
bounds up to the ∼ 30 keV level [193]. On longer timescales, these bounds on freeze-in can
extend up to 50 − 80 keV using inferences about small-scale halos from the Rubin Observa-
tory [213] and Hydrogen Epoch of Reionization Array [214] (see Figure 7).

6 Sterile neutrinos

6.1 Status and motivation for a light sterile neutrino
The LSND short-baseline neutrino experiment operated in the 90s observed an excess of
electron-antineutrino events using a pion decay-at-rest beam [215, 216]; see Figure 8 (left).
Given the energies and baselines relevant for LSND and known neutrino oscillation lengths,
this observation cannot be accommodated in the Standard Model with three massive neutri-
nos. The simplest explanation to this observation is to introduce a new, heavier neutrino mass
state of order 1 eV [217]. This new mass state is predominantly of sterile flavor — i.e. the
new flavor state does not participate in the Standard Model interactions — to avoid stringent
constraints from the invisible 𝑍 decay [218].
This anomalous electron-neutrino appearance has motivated experiments to confirm the

light sterile neutrino hypothesis. These experiments range in energies from MeV to TeV and
have baselines from meters to the diameter of the Earth as shown in Figure 9. At the lowest
energies they search for electron-neutrino disappearance using reactor neutrinos [219–236],
at the intermediate energy ranges O(1GeV) they use pion decay-in-flight beams [237–245],
while at the highest energies they use neutrinos produced in the atmosphere from pion and
kaon decay [246–250].
Notably, theMiniBooNE experiment [239, 240], operating at Fermilab, searched for electron-

neutrino and -antineutrino appearance at a ratio of baseline to energy similar to LSND. Mini-
BooNE has reported an excess of electron-like events that is consistent with the observation of
LSND and results in a combined significance that is above 5𝜎 [240]; see Ref. 8. Recently, the
MicroBooNE experiment operating on the same beam as MiniBooNE has performed searches
for an excess of electrons using a data-driven model that predicts the expected number of
events in MicroBooNE given the excess observed in MiniBooNE. MicroBooNE performed anal-
yses [241–244] searching for different final states and did not find significant evidence of
electron-neutrino appearance given the shape predicted by the data-driven model. However,
when these results are interpreted in the context of light sterile neutrinos, they result in either
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Figure 10: Tension between the appearance and disappearance data sets. The a` → a𝑒
appearance amplitude in a 3+1 model is shown in the horizontal axis. Allowed or preferred
regions for appearance and disappearance global combinations from three different global-fit
groups are shown in left [256], center [251], and right [257, 302] plots. See the references
for the details.

weak hints of electron-neutrino disappearance [252] or weak constraints [253, 254].
Additionally, measurements of electron-antineutrino disappearance in reactor experiments

using ratios of events measured at different positions have shown hints of oscillations [231]
compatible with light sterile neutrinos. Recently, the BEST experiment operating in Russia
and using a radioactive source has reported electron-antineutrino disappearance in the region
of interest at a significance that also exceeds 5𝜎 [225]; however, at a mixing angle that is in
tension with other reactor measurements [255]. Unfortunately, searches for muon-neutrino
disappearance have failed to find significant evidence for a light sterile neutrino. Notably the
MINOS+ [245] and IceCube neutrino experiments [247–249] have place stringent constraints
on the muon-neutrino component of the heavy mass state.
The situation described above has been studied in global analyses to the relevant neutrino

data [251, 256–258] and have found that the regions preferred by the appearance experi-
ments are in severe tension with those allowed by disappearance experiments; see Figure 10.
This implies that even though the data significantly prefers something beyond the known
three neutrinos, the light sterile neutrino hypothesis is inconsistent with the global data and
is disfavored as a solution to the short-baseline anomalies. This situation has propelled the
community to explore scenarios beyond the light sterile neutrino. These include introducing
additional new physics that aims to resolve the tension between appearance and disappearance
such as neutrino decay [259–262], additional neutrino mass states [251], and secret neutrino
interactions with non-minimal heavy neutral leptons [263–276], among others [277–301].
At present, this confusing experimental situation requires further measurements to be re-

solved and differentiate between the vanilla light sterile neutrino solution and new proposed
solutions to the short-baseline puzzle.

6.2 Cosmological light sterile neutrinos
Standard cosmological scenarios predict that the three active neutrino states remain in ther-
modynamic equilibrium with other Standard Model particles in the early universe through
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weak interactions. As the universe expands eventually the neutrino interaction rate falls be-
low the Hubble expansion decoupling the neutrinos from the plasma. At the time of neutrino
decoupling, the neutrino temperature O(1MeV) is significantly larger than the known neu-
trino masses, < 1 eV, and these can be considered a relativistic ensemble. The number of
effective relativistic species at these time, 𝑁eff , is expected to be close to three with small cor-
rections [3, 4]. Additionally, relativistic degrees of freedom, such as additional neutrino states,
would contribute to 𝑁eff .
Light sterile neutrinos motivated by the anomalies previously discussed are expected to

thermalize in the early universe and contribute to 𝑁eff . If the mixing between active and ster-
ile neutrinos is large enough, these will be produced in the early universe via a combination
of active-sterile neutrino oscillations and collisions of Standard Model particles. Concretely,
active neutrinos begin to oscillate when the oscillation frequency, Δ𝑚2/2𝐸, is larger than the
Hubble expansion rate, 𝐻 (𝑡), transforming into sterile neutrinos. Collisions can also produce
the heavier mass state since it has a small active flavor mixing, increasing the population of
light sterile neutrinos. If the mixing is large enough light sterile neutrinos will become ther-
malized and have the same temperature as active neutrinos before decoupling. This implies
that they would contribute to 𝑁eff . The modification to 𝑁eff due to light sterile neutrinos de-
pends on the mass and mixing with the active states. This is shown in Figure 11 (left) for a
mass-square-difference compatible with LSND and MiniBooNE observations. Decreasing the
mass compared to the scenario shown in this figure reduces the value of 𝑁eff , while increasing
it has the opposite effect as discussed in [303]. Recent constraints on 𝑁eff from [304] are
shown in Figure 11 (right) and indicate a tension between the measurements of 𝑁eff and the
expectation from light sterile neutrinos. These have been translated in terms of electron- and
muon-neutrinomixing amplitudes andmass-squared-difference in [305] and are shown in Fig-
ure 12. As can be observed from this figure, cosmological constraints are significantly stronger
over most of the relevant parameter space both in electron-neutrino and muon-neutrino chan-
nels, except for regions of relatively small mass-square differences where they are comparable
to muon-neutrino disappearance constraints; however, these regions are not preferred by re-
cent global fits which favor Δ𝑚2 > 1 eV2 [251].
Similarly to the situation with terrestrial probes of light sterile neutrinos, the tension
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with cosmological observations [303, 305–310] has propelled the search for possible solu-
tions [311–321]. The proposed solution can be organized in three main categories: large
chemical potential or asymmetries in the active neutrino flavors [322–325], secret neutrino
interactions [314, 315, 317–320, 326–330], and modifications on the universe thermal his-
tory [331–335]

7 Gravitational waves as light relics
While additional particle species may exist and contribute to 𝑁eff as described previously, one
source of radiation beyond the Standard Model is already present in Einstein’s general relativ-
ity: gravitational waves. Formally, gravitational waves (GWs) backreact onto the expansion of
the universe at second order in perturbation theory, contributing an effective energy density
and pressure [336–338]. GWs with wavelengths much smaller than the Hubble radius behave
like a relativistic, spin-2 degree of freedom; their energy density is therefore constrained by
measurements of 𝑁eff .
The contribution of gravitational waves to the effective number of relativistic degrees of

freedom is [339]

Δ𝑁eff,GW =
8
7

(
11
4

)4/3 ΩGW,0

Ω𝛾,0
=

ΩGW,0ℎ
2

5.61 × 10−6
(8)

where Ω𝛾 and ΩGW are the critical fraction of standard model radiation and GWs, respec-
tively, and a subscript 0 denotes their value today. The abundance of GWs (relative to the
energy density in a flat universe, 𝜌crit) is an integral over the contribution from all subhorizon
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wavelengths,

ΩGW =
1

𝜌crit

∫ ∞

ln 𝑓★

𝑑 ln 𝑓
𝑑𝜌GW( 𝑓 )
𝑑 ln 𝑓

(9)

The lower bound on the integral depends on the probe in question, i.e., it is some frequency
smaller than the horizon scale at the time of nucleosynthesis or smaller than the scales ob-
served in the CMB. Constraints on Δ𝑁eff thus provide a powerful indirect probe of GW back-
grounds across a wide frequency range, extending beyond the reach of current or planned GW
detectors. Note that constraints on the integrated abundance of GWs roughly correspond to a
constraint on the peak amplitude of the spectral abundance ΩGW( 𝑓 ), provided the peak is not
narrower than an 𝑒-fold in frequency.
Despite the lack of frequency-dependent information, the utility of a global upper bound

on ΩGW is particularly pronounced for stochastic backgrounds at present-day frequencies in
the range of kHz to GHz. The signal-to-noise ratio for direct detection experiments depends
not upon the energy density in GWs, but on their power spectral density 𝑆ℎ( 𝑓 ) ∝ ΩGW( 𝑓 )/ 𝑓 3.
Measurements of 𝑁eff thus act as a probe of high-frequency stochastic GW backgrounds with
extremely favorable frequency scaling compared to direct detectors, which in the near term
will not be competitive for frequencies beyond kHz (the upper reach of ground-based interfer-
ometry). See Ref. [340] for a review of sources and detectors of ultra-high frequency GWs.
In standard ΛCDM cosmology, the relative precision of measurements of Δ𝑁eff translates

closely to the corresponding abundance of gravitational waves in the early universe: applying
conservation of entropy,

ΩGW(𝑎)
Ωrel,SM(𝑎)

≈ 1.06 · 106.75
𝑔★(𝑎)

(
106.75
𝑔★𝑆 (𝑎)

)−4/3 Δ𝑁eff
𝑁eff

. (10)

The abundance of relativistic SM species Ωrel,SM(𝑎) is unity in the early universe unless GWs
(or other relics that were never in equilibrium with the SM) contribute non-negligibly. Current
limits of Δ𝑁eff ∼ 0.2 from Big Bang Nucleosynthesis (BBN) [341] and Planck data [341]
thus limit the abundance of GWs to . 7% in the early universe, which next-generation CMB
experiments may improve by upwards of an order of magnitude [9, 342]. Wewill now describe
how these Δ𝑁eff-derived limits constrain cosmological sources of GW backgrounds and the
expansion and thermal history of the universe.

7.1 Primordial gravitational-wave background from inflation
A stochastic gravitational-wave background (SGWB) from primordial tensor fluctuations is
generically produced in the inflationary paradigm (cf. the dedicated Snowmass 2021 White
Paper [343]). In fact, even before inflation was proposed, it was realized that the expansion of
the universe allows for amplification of gravitational waves and production of gravitons [344,
345]. Such a process of parametric amplification requires that (1) modes spend time outside
the Hubble radius (i.e., the background universe expands more rapidly than GWs vary in time),
when (2) the universe is not radiation-dominated (RD).
Inflation naturally meets both requirements above and hence enables production of macro-

scopic GWs from initial quantum fluctuations of the vaccum. After inflation ends, tensor modes
start to reenter the Hubble radius and each, thereafter, redshifts like radiation. Together, all
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modes that reentered and remain inside the Hubble radius constitute the primordial SGWB.
For a given mode, the parametric amplification regime spans its horizon exit and reentry, and
the amplification coefficient is just the ratio of the scale factors at these horizon crossings
[346].

Stiff amplification of the primordial SGWB While all modes of interest exit during in-
flation, different modes can reenter during post-inflationary eras with different equations
of state. For nearly scale-invariant superhorizon amplitudes, the contribution to ΩGW( 𝑓 ) ≡
dΩGW/d ln 𝑓 by tensor modes that reentered during the radiation-dominated era is nearly
frequency-independent. This results in a long “plateau” in ΩGW( 𝑓 ) today [347]. However,
the equation of state of the universe before BBN are poorly constrained and may depart from
𝑤 = 1/3. If there is a pre-BBN era with an equation of state stiffer than radiation (i.e.,
𝑤 > 1/3), high-frequency modes that reenter during such an era will have their ΩGW( 𝑓 )
amplified relative to the plateau. This effect is referred to as stiff amplification [348, 349].
Stiff-amplified primoridal SGWBmay significantly contribute to Δ𝑁eff , and thus measurements
of the latter provide a probe into nonstandard expansion histories in the early universe; see
also [350–354]. Furthermore, since a stiff era can arise from the early kination phase of scalar
field dark matter (either real or complex), during which 𝑤SF = 1 [355], any evidence of a
Δ𝑁eff from amplified primordial GWs may even shed light on the nature of dark matter.

7.2 Additional sources of cosmological gravitational-wave backgrounds
Stochastic GW backgrounds can be sourced by a number of subhorizon nonlinear processes
in the early universe. As the universe expands and cools, a variety of scenarios predict a
brief phase characterized complex, nonlinear field dynamics, including phase transitions, non-
perturbative particle production, and the formation of solitons or other topological defects
(see, e.g., Refs. [356, 357]). Such processes generate anisotropic stress which sources a
GW background often characterized by a narrow peak cut off at some peak frequency and
a power-law tail at lower frequencies [358]. The signal today would be observed at frequen-
cies 𝑓0 ∼

√︁
𝐻0𝐻g in terms of the Hubble rate at the time of generation, 𝐻g [359–361]. The

peak amplitude of the GW signal when it was generated (at a scale factor 𝑎𝑔) approximately
scales as [356, 359, 360, 362]

ΩGW(𝑎𝑔, 𝑘peak) ∼
(
𝑎g𝐻g

𝑘peak

)2
𝛿2𝜋 , (11)

where 𝛿𝜋 is the fraction of the total energy budget of the universe that sources GWs and is
bounded to be 𝛿𝜋 . 1 in the case of a maximally inhomogeneous universe. Furthermore, such
nonlinear processes occur inside the horizon, so 𝑎g𝐻g/𝑘peak . 1. As such, in order for Δ𝑁eff
bounds on the integrated spectrum to be useful, GWs must be sourced on scales just inside
the horizon or over a broader range (in 𝑒-folds) of frequency.
Preheating, a phase of resonant particle production at the beginning of reheating after

inflation, and associated inhomogeneous dynamics can lead to 𝛿𝜋 which is not too small com-
pared to unity. In many scenarios involving scalar fields, particle production occurs on scales
well within the horizon and often does not deplete the entirety of the inflaton’s energy [363],
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leading to a signal with peak amplitude . O(10−9) [356, 359, 360, 362]. In contrast, gauge-
field–inflaton couplings offer an especially efficient preheating channel: strong tachyonic am-
plification of the gauge fields on scales just inside the horizon, draining nearly 100% of the
inflaton’s energy within 2 𝑒-folds of expansion [364]. For axion-driven inflation, the mecha-
nism is so efficient that existing 𝑁eff constraints already place constraints on the coupling to
gauge fields [365–367], while future observations will have sufficient sensitivity to rule out
the model as a preheating mechanism. In hybrid inflation models, or if the inflationary energy
scale is sufficiently low, the signal could also be visible at interferometers [368].
Other scenarios which can give rise to substantial GW signals, of interest for future direct-

detection experiments and cosmological probes of Δ𝑁eff , involve first order phase transitions
and cosmic strings. Phase transitions source GWs due to subhorizon nonlinear processes like
bubble collisions, sound waves produced by the bubble walls, and the turbulence following
the completion of the phase transition (for a review, see, e.g., [369]). Phase transitions in
gauge theories can also lead to the formation of cosmic string networks. Their evolution can
be described with a scaling solution for which the total density of the strings is a constant
small fraction of the total density. As the universe expands, on near-horizon scales the string
network is broken down into loops, which undergo multiple oscillations and eventually decay
into GWs. This continuous emission of GWs gives rise to a characteristic plateau in the GW
power spectrum for a standard expansion history before BBN and can be sensitive to deviations
from it (for a recent review, see, e.g., Ref. [370]).

Amplification of signals in nonstandard expansion histories If any of the above mech-
anisms generated gravitational wave before the universe reheated (i.e., before the Standard
Model was produced and reached equilibrium), the expansion of the universe in the interven-
ing period modulates ΩGW,0. In particular, a stiff equation of state 𝑤 > 1/3 can boost the GW
signal significantly even for a modest number of 𝑒-folds of expansion between GW generation
and the end of reheating.

7.3 Observational prospects
As mentioned before, cosmological GW backgrounds can be searched by indirect probes, e.g.,
light element abundances from BBN, the CMB, and large-scale structure of the universe. These
probes measure the value of 𝑁eff and provide what is known as “integral bounds” on the SGWB;
see Eq. (9). It should be noted that 𝑁eff at different epochs can be different, not only because
of different lower bounds on the ΩGW integral but because components other than GWs may
additionally contribute to 𝑁eff at a given epoch. For example, an early stiff matter may boost
the expansion rate during BBN, enhancing the value of 𝑁eff then [348]. Therefore, caution
must be exercised when combining 𝑁eff measured by different probes. Another interesting
aspect of GWs as radiation relics comes from the possibility to alleviate the Hubble tension
with non-negligible Δ𝑁eff [371]. Currently, the high-𝑧 measurements of the Hubble constant
from the CMB + BAO data can admit a higher value of 𝐻0, closer to those from local distance-
ladder measurements, if fitted by the seven-parameter ΛCDM + 𝑁eff model. A cosmological
SGWB then naturally provides such a contribution to 𝑁eff without introducing other exotic
components or new physics [349].
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Apart from the indirect probes, there are also direct probes of relic GW backgrounds across
a wide range of frequencies [372]. Existing approaches include the CMB temperature and
polarization, pulsar-timing array (PTA), and GW laser interferometry, from low to high fre-
quencies.
The primordial SGWB can leave an observable imprint on the CMB temperature and po-

larization anisotropy (e.g., [373]). In particular, detection of the CMB 𝐵-mode polarization
around � ∼ 100 would be a convincing signature of the primordial SGWB. Recently, BI-
CEP3/Keck Array has updated the upper bound on the tensor-to-scalar ratio, 𝑟0.05 < 0.036
at 95% confidence [374]. In the future, CMB-S4 will continuously seek to measure the pri-
mordial SGWB from inflation [9, 138]. For further details, we refer to the [343].
PTA observations measure the times of arrival (“ToAs”) of radio pulses from millisecond

pulsars. Those ToAs can be modulated by an SGWB permeating the spacetime between the
pulsar and the earth. Recently, NANOGrav reported strong evidence for a stochastic common-
spectrum process around 𝑓yr = 1 yr−1 in their 12.5 yr pulsar-timing data set [375], and such
a process was also identified in the PPTA data later [376]. Though it has not been confirmed
as an SGWB detection due to a possible misspecification of the model and the lack of spatial
correlations in the signal, many interpretations in this direction have flourished since then,
including the primordial SGWB with a large initial blue tilt from non-standard inflation [377,
378] and the GWs from a first-order phase transition [379, 380]. On the other hand, the
primordial SGWB from standard inflation cannot account for such a common spectrum process
even with stiff amplification [349].
Laser interferometers like the Advanced LIGO-Virgo network can directly detect SGWBs

by cross-correlating data from different detectors (e.g., [381]). Recently, the LIGO Scientific
Collaboration and Virgo Collaboration published results of a search for an isotropic SGWB
using data from their first three observing runs (O1, O2 and O3) [382]. While the cross-
correlation spectrum from data does not show evidence for an SGWB signal, a new upper
limit is placed on the present-day SGWB energy spectrum, modeled as a power law around
𝑓ref = 25 Hz. This upper limit is expected to be continually improved by future upgrades
of LIGO, e.g., [383]. In the meantime, other commissioned interferometer experiments like
the LISA-Taiji network and TianQin will provide detection channels of cosmological SGWB
at different frequency bands, and future GW detectors are proposed to fill the gaps in the
frequency spectrum [340, 384].

8 Conclusion
New light species arise in many well-motivated extensions of the Standard Model. Any new
light states produced in the early universe will leave observable imprints through their grav-
itational influence on the expansion history and evolution of density fluctuations. Upcoming
cosmological observations will greatly improve the precision with which we measure the en-
ergy density and properties of light relics, providing broad insights into physics beyond the
Standard Model.
Light relics that were in thermal equilibrium with the Standard Model plasma in the early

universe make a contribution to the light relic density that can be calculated from their spin
and freeze-out temperature. Each species of light thermal relic contributes Δ𝑁eff ≥ 0.027,
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thereby establishing clear thresholds that help to elucidate the value of precise measurements
of the cosmological radiation density. Late thermalization of light species can produce even
larger contributions to 𝑁eff , and upper bounds on Δ𝑁eff could be used to rule out various types
of DM-baryon interactions.
Free-streaming light relics create a characteristic shift to the phase of acoustic oscillations

in the photon-baryon plasma. This effect is absent for light relics that do not free-stream due
to self-interactions or scattering with other species. Observations of the CMB and LSS can
therefore distinguish between free-streaming and fluid-like light relics.
Light relics need not be exactly massless, and non-zero masses can lead to additional signa-

tures in cosmological observables. Light species that become non-relativistic after decoupling
act as hot dark matter, suppressing the growth of structure on scales smaller than their free-
streaming scale, an effect that can be measured with CMB lensing and LSS surveys.
The dark sector may involve a rich set of particle types and interactions, much like the

visible sector described by the Standard Model. This richness may be motivated by models
aimed at addressing challenges in particle physics, like the hierarchy problem, or puzzles in
cosmology, like the Hubble tension. However, complexity in the dark sector often involves new
light states, and cosmological measurements of the light relic density thereby constrain the
range of allowed possibilities.
Anomalies in short baseline neutrino oscillation experiments have motivated models con-

taining new sterile neutrino states. Since sterile neutrinos contribute to the light relic density,
cosmological measurements of 𝑁eff place broad constraints on the range of viable sterile neu-
trino models.
Gravitational waves present in the early universe contribute to the light relic density. A

stochastic gravitational wave background that makes a significant contribution to the radiation
density may arise due to preheating, phase transitions, topological defects, or the amplification
of inflationary gravitational waves. Cosmological measurements of the light-relic density serve
as an integral constraint on the stochastic gravitational wave background, thereby placing
constraints on these scenarios.
Upcoming cosmological observations will either detect new contributions to the light relic

density, or place severe constraints on the extensions to the Standard Model that involve new
light species. In either case, this will have broad implications for models of physics beyond the
Standard Model.
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