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High Energy Physics complexes are large users of energy. The HEP community has long been cognizant 

of this energy usage. In the early development of the Fermilab Tevatron, it was recognized that 

superconducting magnets could provide a reduction in energy usage of the Main Ring and Energy Saver 

from 65 MW to 17 MW, depending on operating parameters [1]. This awareness continues as evidenced 

by the recent PIP-II Sustainability Workshop [2]. In this light, we should continue to exploit all possible 

developments that can increase the efficiency of the energy that we use. 

Other than the energy used to power and cool magnet systems, the RF power used to accelerate beams 

is a very large consumer of energy. While solid state RF power sources offer many advantages, they are 

inherently poor performers with regard to efficiency, with maximum values typically less than 60% in 

terms of wall plug to RF power. 

Magnetrons are inherently high efficiency devices. Recent advances allow them to be used as RF sources 

for accelerating cavities. We propose that the HEP community embark on a development program to 

complete this work in order to capitalize on the many benefits that magnetrons can provide in 

efficiency, size, and power. Since the magnetron’s efficiency is almost constant from 30% to 100% of the 

design power, the power can be tuned close to that required for a particular accelerator cavity, with 

phase modulation producing fast corrections in the amplitude. This differs from a klystron, where 

operation at significantly less than the optimum power results in decreased efficiency. 

 

A thorough analysis of the efficiency of accelerator systems has been performed [3]. As an example, this 

analysis has been updated in Figure 1 to illustrate the gains that could be achieved in the PIP-II complex 

by the use of magnetron RF sources. As shown by the arrows, present solid-state RF supplies are 

approximately 45% efficient, compared to 85% for magnetrons. However, magnetron sources suitable 

for HEP are not yet ready. While phase and amplitude locking [4] now makes it possible to link the free 

running, self-excited magnetrons to RF cavities, a number of parameters, such as magnetron 

performance, unit-to-unit central frequency, mean lifetime, and various supporting power supplies need 

to be improved to meet HEP reliability needs. 



 

Figure 1 Using PIP-II as an example, comparison of accelerator system efficiency with solid-state and magnetron RF sources. 

Improving the performance of high-power magnetrons will allow us to be responsible environmental 

stewards in our pursuit of discovery science. A frequently cited benefit of basic science is spin-offs of 

technology. These improved magnetron sources will then be available as efficient sources for many 

industrial accelerator systems that presently rely on less efficient sources. For instance, two recent 

design studies of industrial high-power SRF e-beam industrial accelerators have shown their cost and 

energy efficiency to be limited by the RF source [5,6]. These would greatly benefit from the availability 

of high-efficiency magnetron RF sources.  

Solid State Amplifiers 

Historically, vacuum electron tubes have been used for medium and high-power applications with solid 

state amplifiers used as driver stages. These driver stages had limitations on the maximum frequency at 

which they could operate. Developments in MOSFET and CMOS technology now covers all frequencies 

presently of interest to HEP (Figure 2). 
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Figure 2 Power range and frequency capabilities of present solid-state RF sources. 

Vacuum tube technology can produce individual components with peak powers in the 5 – 12 MW range 

while supporting duty factors of a few percent. The output of these amplifiers can be fed directly into 

large accelerating cavities such as drift tube or side-coupled linacs. 

Solid state power amplifiers rely on a large number of low power modules whose output must be 

combined to achieve high power. The individual solid-state modules have efficiencies of approximately 

55%. The need for a large number of combiners or circulators further reduces the efficiency of the 

system. Overall system efficiencies therefore are less than 50%. This large number of contributing 

components results in large devices as seen in Figure 3 of a 2 MW solid state system. These solid-state 

systems are also expensive at over $10/Watt. 



 

Magnetrons 

High-power magnetrons are commercially available and are used by the process heating industry. These 

devices offer power of 100 kW at 915 MHz. They are inexpensive at less than $10,000 each or $0.10/Watt. 

However, reported lifetimes are 6,000 hours or less with some degree of variability. Also, the unit-to-unit 

variability of the central frequency can vary by a few MHz. This performance is not suitable for HEP needs. 

The low cost and high efficiency provide great motivation to improve these parameters for HEP. The cost 

advantage is so great that if the improvements noted below significantly increase their cost, there will still 

be a great savings over solid state. 

Significant work has been conducted that allows amplitude and phase control of magnetrons allowing 

them to be used as RF sources for accelerating cavities. [4,7-9] This work began utilizing a transmitter 

consisting of two 2-cascade injection-locked magnetrons whose outputs were combined in a 3-dB 

hybrid. The wideband dynamic management of the output power of the transmitter model was first 

experimentally demonstrated using ‘combined in power’ magnetrons, injection-locked by the phase-

modulated signals. Experiments with the injection-locked magnetrons adequately emulated the 

wideband dynamic control with a feedback control system, which would allow the suppression of all 

known parasitic modulation of the accelerating field in the SRF cavities. 

 

This concept was experimentally demonstrated using a 100 kW, 1300 MHz magnetron. [4] The system 

produced 100 kW at 1.3 GHz with 1.5-ms pulses. The duty factor was limited only by the availability of 

ancillary power supplies. 

 

Figure 3 



Between 2012 and 2021 Fermilab APS-TD in collaboration with Muons, Inc. has conducted additional 

research to apply magnetrons to SRF linacs. This work has had the following results: 

▪ Development and testing of: 

o A cascade scheme to improve the gain of a magnetron-based RF system. 

o A para-phasing amplitude and phase modulation scheme. 

o magnetron operation below critical voltage at high locking signal. 

▪ Experimental work has been conducted that allowed understanding mechanisms of the 

magnetron operation in injection-locked regime below critical voltage. 

▪ Based on this, it has been shown experimentally that it is possible to operate a magnetron 

below critical voltage with a high locking signal, which in turn, gives the following possibilities: 

• Operation of the magnetron at different output power with very high efficiency, >80%. It 

is essential for proton/ion SRF linacs, where the cavity input power varies along the linac; 

• Magnetron operation in this regime provides very narrow spectrum of the output signal, 

which is very important for SRF linac application. 

• Precise phase and amplitude control of the output power, which is essential for the linac, 

especially if the accelerated beam is injected to the ring for accumulation or further 

acceleration.  

• It is shown experimentally that operation below critical energy at high locking system 

provides higher efficiency.  

• Moreover, there are experimental evidence of a magnetron longevity improvement in 

this operation regime. 

▪ Different mechanisms of the considerably short magnetron life span have been analyzed and 

the ways to improve longevity has been suggested  

- external pumping,  

- RF circuit improvements. 

▪ Different schemes to get high locking signal have been suggested:  

- cascade scheme for multi-cavity accelerators (tested) 

- reflector for single-cavity industrial accelerators (to be tested). 

These results confirm that the magnetron is an excellent candidate as an RF source for SRF linacs due to 

their low cost and simplicity.  

 

It should be noted that recent funding announcements for the DOE’s Accelerator Stewardship Program 

have included in its topics a call for High Efficiency High Average Power RF sources with the goal of 

devices with efficiency greater than 80% and average power of at least 250 kW. The funding available, 

and the goals of the Stewardship Program (with regard to target TRL levels) are mainly suitable for initial 

design work and specifically, cost estimates. However, to be fully realized, a complete roadmap needs to 

be developed, including target frequency choices and power milestones. 

 

Magnetron Development Program 

As noted, a major issue that inhibits the use of magnetrons is their low, and variable life span. 

Magnetron tubes are inexpensive, so the cost of replacement is not a concern for the process heating 

industry (drying wallboard and lumber) which is a major user of magnetrons. For HEP, the concern 



would be process interruption on a frequent or irregular basis. Longer lifetime and a more dependable 

mean-time-to-failure is necessary for adoption of this power source. The main reasons for the present 

state of tube lifetime are: 

• Anode sputtering of the cathode material. 

• Cathode bombardment by backward electrons. 

General measures which may be taken to address these issues are: 

• Active vacuum pumping of the magnetron. 

• Electron dynamics optimization. 

Attention to electron dynamics may also improve the magnetron efficiency.  Recent investigations show 

[10, 11] that magnetron efficiency may be improved together with lifetime extension by operating in a 

sub-critical operation regime with a larger locking signal. 

IARC at Fermilab’s function is to transfer technology developed for the science projects, by Fermilab and 

DOE overall, to industrial applications. An important project for IARC is the development of a compact, 

super conducting RF (c-SRF) electron accelerator.  Fermilab’s strength in this area is its expertise in 

conduction cooled, superconducting, Nb3Sn coated cavities. IARC’s current efforts are in two areas (i) 

integrating conduction cooled superconducting cavities with commercially available technology and (ii) 

integrating conduction cooled superconducting cavities with new technology developments (i.e., 

integrated electron guns and a low heat loss coupler). For these efforts we are using solid state RF 

sources, as, we believe that this is the best choice at this time.  But we also believe that for the long 

term, five or ten years from now, magnetrons may be key for efficient, disruptive electron accelerators 

for industrial use. With these thoughts in mind, we have outlined a program to address these issues of 

magnetron lifetime and efficiency. 

The program: 

1. Use the 3D simulation code, MICHELLE [12], to understand in detail the beam dynamics of a 

magnetron. This will allow self-consistent beam modeling of the electron flow in a 

magnetron in 3D RF and DC magnetic field in presence of the space-charge limited current 

emission. The emission model will need to be modified to take into account tangential DC 

magnetic fields on the cathode.  These modifications to the emission model have been 

developed and tested for high-power electron guns for electron cooling [13] and should be 

implemented in MICHELLE.  The code should be modified also to simulate the transient 

processes of tube excitation and operation regimes – like it has been done for IOT modeling 

[14]. This effort would involve a partnership with Leidos (former SAIC), the developer of the 

MICHELLE code.  

2. Next, the code will need to be benchmarked with the collaboration of a company with 

experience in high-power magnetron development. The partner would need to provide 

drawings of an existing well-measured magnetron, which would be simulated using the 

modified MICHELLE code. This improved and benchmarked code will strengthen the national 

RF industry allowing better designs of the magnetron for different applications – scientific, 

industrial, civil, and military.  



3. Finally, it would be possible to optimize the magnetron design to improve its longevity and 

efficiency and optimize various operation regimes. Different options could be explored, like 

2D harmonic cavities, different types of cathodes including the newly developed 

Nanocomposite Scandate Tungsten cathodes [15]. 

The goal would be to achieve an efficiency of more than 85% with tube lifetime of ~50,000-80,000 

hours. 

System Development 

In addition to the development of better performing magnetrons themselves, further work on complete 

RF systems is needed. As noted in Reference 4, a 100-kW system has been assembled and operated at 

full power but at a low duty factor. Appropriate funding and focus is needed to better characterize this 

or similar systems. Other elements of the RF system also need development to support magnetron 

operation. For instance, DC power supplies are a large part of the ancillary components but have 

stringent regulation requirements. 

Summary 

High Energy Physics will always continue to grow in the energy and intensity of its accelerator systems. 

The RF power required will grow proportionally. While a number of facilities are turning to solid state RF 

power sources, the size and cost of these systems are burdensome. The inefficiency of solid-state 

sources should make them unacceptable in light of growing climate concerns. 

Magnetron RF sources can provide highly efficient, compact, high-power devices. By providing large 

amounts of power per device, they reduce losses due to combiners and circulators. A development 

program to further develop devices to match the performance parameters needed for HEP will have 

great benefit in the long run. 

The Snowmass community can create more reliable and more energy efficient accelerators. We believe 

we should embark on this endeavor now, before we are requested to do so by the circumstances. A goal 

of more reliable accelerators for science and industry is within Snowmass community goals, mission, and 

capabilities. 
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