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1 Introduction

This white paper summarizes the discussion from a dedicated Snowmass workshop on

Software and Computing for Small High Energy Physics (HEP) Experiments (https://

indico.physics.lbl.gov/event/1756). The mandate for the workshop was:

• Identify unique computational challenges of the ‘small’ experiment community.

• Gather input about what is needed in terms of computation for these experiments to

be successful.

• Connect members of the ‘small’ experiment community to the computational frontier

in Snowmass and encourage participation in topical groups.

• Foster the development and re-use of open-source software, building on the work

of the HEP Software Foundation (HSF) and other collaborative efforts within the

community.

In order to be inclusive, we did not impose a definition of ‘small’ and have asked experiments

to self-select. The workshop was organized into two days: a first day for perspectives from

representative experiments and a second day about computational tools. In particular,

on the first day, we heard from CERN-based experiment FASER [1], Fermilab-based ex-

periments MicroBooNE [2] and g-2 [3], and non-CERN/FNAL experiments LUX-ZEPLIN

(LZ) [4], COHERENT [5], and DESI [6]. These experiments covered all of the HEP fron-

tiers. On the second day, there were speakers covering the HSF, High Performance Com-

puting (HPC), event processing frameworks, reconstruction frameworks, event generators,
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detector simulations, and machine learning. The slides contain a wealth of information

about each of these topics and are preserved at the indico link above. The goal of this

white paper is to describe some of the key takeaway points from the presentations and

discussions. If the entire workshop had to be summarized in one phrase, it would be1

small experiment 6= small data volume or small computing problem!

2 Key Observations and Recommendations

Below is a summary of important points discussed at the workshop; key recommendations

are offset in bold. The four subsections below are in no particular order.

2.1 High Performance Computing Centers

Increasingly, small experiments need to rely on HPC resources for a significant fraction of

their computing budget. At the workshop, we heard about challenges by experiments in

porting to HPC resources and about challenges from HPC center staff about accommodat-

ing small experiment users.

From the perspective of an HPC center, ‘small’ experiments look very similar to ‘large’

experiments. They have similar scales in terms of compute hours, storage used and number

of users, and they all need peripheral services such as databases and workflow controls, as

well as allocations on the big systems. For an HPC center, this means both ‘small’ and

‘large’ experiments present the same demands on resources. What distinguishes ‘small’

experiments is that many of the common issues faced by all experiment teams working at

HPC centers are exacerbated by the lack of human resources available to work on these

issues. It is vital that science teams and HPC centers partner to address these challenges.

These issues fall into roughly three areas:

• Getting codes running on new architectures

• Adapting to HPC center policy

• Tools that are easy to stand up and maintain

2.1.1 Key challenge: Porting workflows to new architectures

The DOE Office of Advanced Scientific Computing Research (ASCR) operates three com-

puting and one networking user facilities. All have a joint mission to advance both science

and the state of the art in computing. ASCR facilities engage with vendors years in advance

of a system’s delivery, to ensure that production systems push the limits of existing tech-

nology. There are three key drivers in this advancement that pose a challenge to scientific

workflow design:

1Quoted from E. Snider’s presentation.
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• Energy efficiency. Scientific computing needs are ever-increasing, but there is a limit

to the amount of power and cooling we can safely bring into a building. Energy

efficient architectures are here to stay, including specialized devices that perform

specific calculations at ultra-high efficiency (e.g., for AI/ML).

• New storage technologies. Object stores are increasingly prevalent, and massively

parallel file systems do not always respond well to data-intensive workloads.

• Peripheral services. We are seeing an increasing use and reliance on containers,

scalable databases, and interfaces to other computing sites (e.g., local clusters, the

cloud).

A pressing question for both experiment teams and HPC center staff is how to optimize

the entire end-to-end workflow, not just individual applications. The NESAP program at

NERSC (the National Energy Science Research Computing center) partners with applica-

tion development teams and vendors to port and optimize codes to new architectures and

platforms. Lessons learned from this process are shared with the wider NERSC community

via documentation and training. NESAP is evolving with the types of systems we deploy,

and will need to support workflow optimisation in the future.

Programs like NESAP are extremely valuable to small experiments and we

advocate for a continuation and/or expansion of this program. However, we also

heard about difficulties in recruiting NESAP postdocs. This is discussed in more detail in

Sec. 2.6.

2.1.2 Key challenge: Policy optimization

Some of the biggest challenges faced by users of HPC centers are due to security and policy

concerns, rather than technical barriers. Supporting the needs of experiment workflows has

pushed NERSC to change policies around (for example) near-realtime access to systems,

and support for federated ID.

In addition, NERSC has recognised that some workflows highly value continued access

to NERSC services - for example, if an experiment is operating 24/7. Through careful

planning and investment, we are now able to keep most infrastructure up during outages

using generators and new system software capabilities for rolling upgrades. We are also

supporting research in several projects to support more portable cross-facility workflows [7].

2.1.3 Key challenge: Scaling user support

NERSC is increasingly supporting more users and projects from experiment facilities (in-

cluding other DOE user facilities). HPC centers are facing a sea change in the number and

type of users they support - without any change in the number of staff available to support

them. This challenge requires a new approach to user support, to make it easier for users

to develop and adapt their workflows without direct support from NERSC staff. If done

successfully, this will also make it easier for ‘small’ experiments to adapt to HPC centers.

The LBNL Superfacility Project [8] was designed to leverage and integrate work being

done across NERSC, ESnet and research divisions at LBNL to provide a coordinated and
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coherent approach to supporting experimental science at DOE facilities. The principles

behind the project were to provide an integrated, scalable and sustainable framework for

experiment science, working closely with a range of science teams to get the design right

and using existing, industry standard and open source tools wherever possible. This 3-year

Project was completed at the end of 2021, having achieved its aim, although work continues

very actively on Superfacility topics. NERSC is now able to support automated pipelines

that analyze data from remote facilities at large scale, without routine human intervention,

using capabilities such as near-realtime computing, dynamic networking, API-driven au-

tomation, HPC-scale notebooks with Jupyter [9], state of the art data management tools,

federated ID and container-based peripheral services.

2.2 Requirements beyond FLOPS, bytes, and bandwidth

Classic high performance computing (HPC) centers have traditionally focused on maxi-

mizing the number of floating point operations per second (FLOPS) delivered to massively

parallel programs, coupled with large bandwidth to disk and tape storage. Small ex-

periments often have requirements that go beyond just FLOPS, bytes, and bandwidth,

e.g. databases, data access portals, I/O robustness, complex workflows with many inter-

dependent smaller jobs, collaboration accounts accessible by multiple users to coordinate

data processing, queue waittime, and jupyter notebook servers. High uptime, low mean

time to failure (MTTF), and access to realtime and interactive computing resources are

particularly important for the effective use of computing centers by smaller experiments.

Supporting these requirements takes tangible specific effort from the computing centers,

and tangible specific effort from the experiments to adapt. As such, HPC centers need

dedicated support for non-HPC workloads with appropriate metrics for evaluating success,

e.g. minimizing MTTF and providing interactive access, and not just FLOPS delivered.

Similarly, experiments need dedicated support to adapt and maintain their workflows to

take full advantage of the opportunities at HPC centers.

2.3 Software Challenges

High Energy Physics has a vast investment in software estimated to be greater than 50M

lines of C++ code. It is a critical part of our physics production pipeline, from triggering

and simulation all the way to analysis and final plots. This legacy represents a huge in-

vestment over the years. It requires ongoing support in human effort to adapt to changing

computing technologies. As shown in figure 1, improved single-threaded performance will

not come from the hardware. Computing gains come from increasing concurrency in the

code, especially at HPC centers. Concurrent programming skills must be learned and not

all experimenters want to invest in becoming proficient in concurrent programming. There

is no longer a large supply of graduate students and postdocs, the historical sources of

experiment software, that can write or even maintain codes for these complicated architec-

tures. This hits smaller experiments especially hard, because there may not be a critical

mass of people with the critical skills needed. See Sec. 2.6 for suggestions on how to ad-

dress personnel needs. Efforts to share code developed by the large experiments should

be funded to have broader impact for the community, and thereby maximize return on
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Figure 1. Microprocessors reach the power wall limit circa 2010

those investments. This means adding time for documentation, training, and outreach.

Whenever possible the code should be open sourced.

2.4 Support for Common Tools

A reoccurring theme in nearly all of the experiment vignettes was the need for common

tools. A distinguishing feature of small experiments compared to large ones is that they

often do not have many, many or, in some cases, any dedicated software and computing

experts. This means that there is limited/no resources to develop new data acquisition,

simulation and reconstruction tools from scratch as large experiments are often able to do.

Some small experiments benefit from shared expertise with large experiments, especially

those located at CERN and FNAL. Yet many small experiments do not have such natural

overlap, and they are left with few avenues to obtain the resources necessary to develop

their required suite of tools.

In some cases, larger experiments have (at least partially) abstracted and open-sourced

their software in a way that it can be re-used by small experiments. Two great examples

of this are the software packages ACTS [10] and LArSoft [11] (https://larsoft.org)

as well as the event processing frameworks Gaudi [12], Art [13] and Stitched (https://

github.com/cms-sw/Stitched), an abstraction of the CMSSW framework[14–18]). ACTS

(A Common Tracking Software) is a package for tracking at collider experiments, initially

based on ATLAS code. It provides experiment-independent implementations of track and
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vertex reconstruction algorithms which are available for usage by any experiment once their

geometry and material description is implemented in ACTS. Successful examples include

ATLAS, FASER, sPHENIX, Belle-II. LArSoft is a shared base of simulation, reconstruc-

tion, and analysis software across liquid argon time projection chamber (LArTPC) neutrino

experiments. LArSoft is currently used by all Fermilab-based LArTPC experiments, in-

cluding DUNE and smaller-scale experiments (SBN, MicroBooNE, LArIAT, ArgoNeuT).

Both ACTS and LArSoft provide ready-to-use software solutions as well as a platform for

R&D work spanning usage of AI methods, algorithm parallelization, and deployment at

HPC, which can significantly reduce the required workload for smaller experiments.

However, some open source tools still require significant adaptation or development

and thus require experiment-independent support. The best example of this is the widely-

used detector simulation software Geant4 [19–21]. Even for large experiments, significant

resources are required to integrate Geant4 into the detector-specific setup. Many small

experiments have physics needs beyond those covered by large experiments and additional

development is necessary. Some of this is happening organically (e.g. NEST [22] for direct

dark matter detection), but this is not always the case. To strengthen the partnership

between the Geant4 Collaboration and the experiments, Geant4 has recently introduced a

“Geant4 contributor” status, which should facilitate a faster inclusion of codes developed

by the experiments, benefiting the entire community.

In the US, the HEP support for Geant4 comes from the computing operations budgets

of large experiments and intensity frontier operations at Fermilab. This leads to a stove-

piping of Geant4 support such that issues specific to those experiments are addressed

because they are needed for the operation of the experiment. Other experiments that use

Geant4 are left out in the cold. In addition, Geant4’s common software, such as physics

models, no longer receives any US maintenance funding. The physics Generators used in

the field (eg. Pythia, GENIE, Madgraph, Sherpa) also suffer from lack of stable funding

in a similar way. This is not sustainable for the long term viability of small experiments.

Long term, experiment-agnostic Geant4 support is critical for the success of

small experiments. At the workshop, we also heard that many small experiments do not

update Geant4 versions frequently (or ever!), and so they are unable to take advantage of

new developments, whereas maintaining many old versions by the Geant4 collaboration is

unsustainable. This means that small experiments often use no longer supported Geant4

versions and miss out on recent physics developments and computational innovations, such

as multi-threading or the ongoing integration with Graphical Processing Units (GPUs).

2.5 Data Storage and Preservation

Data preservation is necessary for scientific repeatability, while helping maximize the “re-

turn on investment” of our experiments. Re-analysis of data is of particular interest, as

advances in analysis methods and physics models become available such as more detailed

simulations and new applications of machine learning. Well-understood datasets are often

the best source of training for young physicists, and open-access datasets support out-

reach efforts by targeting both data literacy and science skills. In addition, standardized,

trusted data repositories are critical for developing and testing new machine-learning algo-
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rithms [23]. Encouraging the experiments to make their data publicly available will lead to

a richer ecosystem of available datasets, and help with long-term preservation of data and

experimental knowledge. Most important is the publication of data following the end of

an experiment. One way of ensuring data are usable for post-experiment use is to periodi-

cally release data throughout the lifetime of the experiment. Another model is to internally

future-proof data formats and analysis software to always be able to analyze older datasets.

In both cases, person-power is required for an effective implementation.

Computing clusters do not typically guarantee hosting for significant lengths of time,

nor do they have mechanisms to easily share these data with the public. However, ser-

vices for long-term data and software preservation (https://heasarc.gsfc.nasa.gov and

https://lambda.gsfc.nasa.gov) have been used for decades in astronomy, and the HEP

community has become quite familiar with them. Ensuring data usability long after the

end of an experiment is not quite as simple as “dumping everything” in a publicly available

repository. Detailed detector information is needed, as well as access to metadata such as

slow-control and calibration databases. Moreover, community standards specifying data

format and interfaces must be agreed upon. Finally, prototype analysis codes must be pub-

lished with the datasets, further lowering the barrier to data access and ensuring that the

data is analyzed correctly. It has become more commonplace in our community to take ad-

vantage of general purpose data and code services like Zenodo (https://www.zenodo.org),

which provide most of the infrastructure required for effective data preservation.

2.6 Computing Personnel

The general challenge of maintaining software and computing talent is exacerbated in small

experiments by the lack of long term, permanent positions within the experiments. Many

of the software tasks are carried about by young collaborators and there is significant

turnover from year to year. A special case is an experiment that is both small and far from

data, for which it is common that the community of junior people working on software is

not large enough to be self-sustaining. This problem can be partly mitigated by increased

use of common tools but that does not address the task of developing experiment specific

configurations, customizations and glueware.

It is therefore essential that there is funding for permanent software and com-

puting experts. The careers of these researchers should be evaluated appropriately with

rewards to efficiency, stability, and robustness. A more transparent approach to software

development and data sharing would go a long way towards improving the career prospects

of software and computing experts, as it would allow individuals to claim credit for their

work and be evaluated appropriately. There is little funding for software maintenance, even

though this is critical. One possibility is the creation of research software engineer (RSE)

positions that have long term funding independent of experiments, but for the support of

existing and planned experiments. Another area of opportunity is the increase of joint par-

ticle physics and data science appointments at universities, which have become marginally

more common over the last decade. We also need to increase the community investment

in general software literacy of physicists, through (continuing) education initiatives and

collaborations with industry, national labs and academia.
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The diversity issues pervasive in HEP are exacerbated in the computing domain due

to the (perceived) technical nature of the work, and we must ensure that faculty, staff, and

trainee positions are viable career options for a diverse group of people. Our workforce

development efforts should explicitly include equity, and recognize that diversity is foun-

dational to our success, as it demonstrably increases the creativity of solutions and variety

of approaches. Diversifying the computational workforce will require efforts to diversify

physics in general, and to leverage our partnership with the astronomy and industry com-

munities, who have made substantial efforts in this direction over the last decade. This

remains a challenging problem, but not insurmountable, as STEM identity formation for

underrepresented minorities has become a priority in a variety of educational settings, from

early childhood to higher education [24].
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