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Abstract

The Vera C. Rubin Observatory will begin the Legacy Survey of Space and Time

(LSST) in 2024, spanning an area of 18,000 deg2 in six bands, with more than 800

observations of each field over ten years. The unprecedented data set will enable great

advances in the study of the formation and evolution of structure and exploration of

physics of the dark universe. The observations will hold clues about the cause for the

accelerated expansion of the universe and possibly the nature of dark matter. During

the next decade, LSST will be able to confirm or dispute if tensions seen today in

cosmological data are due to new physics. New and unexpected phenomena could

confirm or disrupt our current understanding of the universe. Findings from LSST

will guide the path forward post-LSST. The Rubin Observatory will still be a uniquely

powerful facility even then, capable of revealing further insights into the physics of

the dark universe. These could be obtained via innovative observing strategies, e.g.,

targeting new probes at shorter timescales than with LSST, or via modest instrumental

changes, e.g., new filters, or through an entirely new instrument for the focal plane.

This White Paper highlights some of the opportunities in each scenario from Rubin

observations after LSST.
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1 Introduction

The Vera C. Rubin Observatory1, currently under construction on the Cerro Pachón ridge in

north-central Chile, will embark on the 10-year Legacy Survey of Space and Time (LSST)

in 2024. The survey will enable a rich set of scientific investigations, including studies

of the nature of dark energy and dark matter, mapping of the solar system, exploring the

transient optical sky, and surveying the Milky Way [1]. Rubin will enable groundbreaking

studies of fundamental cosmology, with precision measurements of the growth of structure

as parametrized in the ΩM − σ8 plane, the nature of dark energy in the w0 −wa plane, and

cosmic expansion via the value of the Hubble parameter. LSST studies of the dark universe

are of key importance to the Snowmass discussion. This portfolio includes investigations

of dark matter in the cosmic context as presented in detail in Ref. [2], including a number

of probes of the particle nature of the dark matter [3].

While the exact LSST survey strategy is still being optimized, the basic plan has been in

place for many years. In short, LSST will consist of 1) a deep wide-field survey of roughly

18,000 deg2 in the Galactic caps with repeated images taken on each part of the available

sky every three or four nights, leading to at least 825 visits of every portion of the survey

area in ugrizy filter bands, 2) a set of four or five deep-drilling fields of 10 square degrees

each with images taken approximately nightly, and 3) additional special surveys to cover

the Galactic plane, Northern spur of the ecliptic plane, and the South celestial pole region,

with fewer images collected. Of course, Rubin Observatory is capable of other modes

of operation, with either shorter or longer exposures than the currently planned pair of

15 second images per visit taken on each field, and either more or less repeated viewing,

and a limited target of opportunity observing mode is being developed.

The next decade and beyond promises to be very exciting for the field of cosmology.

Stage IV dark energy surveys, including those undertaken by Dark Energy Survey Instru-

ment (DESI), Rubin, the Nancy Grace Roman Space Telescope and the Euclid mission, will

deliver unprecedented measurements of the growth of structure, and independently, the

expansion rate of the universe. These measurements will shed light on the cause of the

accelerated expansion of the universe and will be crucial for understanding inconsistencies

already evident today. Currently, the so-called H0 tension, now at the 5σ level [4, 5], points

to a gap in our observational understanding of the universe or of the connection between

the early and late-time epochs. Another developing tension in the ΩM − σ8 plane [5, 6],

could present a similar puzzle if it endures in late-time measurements with higher preci-

sion soon to come from both DESI and Rubin.

Clearly the state of our understanding of cosmology in 2034 will inform what questions

are of the greatest interest. We can look to the current state of cosmology for some guid-

ance. Should the present tensions persist, a next-generation project would very likely be

focused on shedding additional light on the source of these discrepancies. Another future

scientific driver is the level of precision in the w0 − wa plane, along the lines of the Dark

Energy Task Force [7] figure-of-merit. Stage IV projects DESI and Rubin are expected to

improve the precision of constraints considerably over the current Stage III experiments.

Certainly if a deviation is observed from ΛCDM in the equation of state, more precise or

1https://www.lsst.org/
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incisive measurements will be a high priority for understanding the nature of dark energy.

Furthermore, ΛCDM remains a parametric description of our universe lacking deep un-

derlying physical motivation. Over the next decade, experimental tests (including those

performed by cosmic surveys) may provide insights into the fundamental constituents of

this model (i.e., dark energy, dark matter, modifications to gravity, etc.), which will need

to be interpreted in the context of the observed universe.

We discuss scientific opportunities for a range of possible additional surveys to further

our understanding of dark energy, dark matter and cosmic expansion that could be realized

with the considerable capabilities of Rubin Observatory after completion of the LSST.

Some of these have been discussed in Refs. [8–10]. We consider continued operation of

the observatory in three scenarios:

• Modifying only the observing strategy and possibly also observing entirely different

regions of the sky than the LSST;

• Installing a new complement of filters for the camera;

• Installing an entirely new focal plane instrument. This last scenario is obviously

the most expensive, but could be the most compelling scientifically and should be

investigated further.

2 Science Drivers

Regarding cosmic acceleration and the dark energy associated with it, as well as dark mat-

ter, we are in an era of physics where much is known about the distribution of the com-

ponents of the universe but very little is understood about their exact nature; moreover,

tensions between different cosmological probes exist, and the field is still in the process

of ensuring all relevant systematics are controlled at the necessary level. LSST will allow

the community to characterize with unprecedented precision the equation of state of dark

energy, the astrophysical properties of dark matter, and also shed light on the current ten-

sions. However, these results will only be the beginning rather the end of the quest to

understand the dark universe and will open several science-driving questions for Rubin

Observatory post-LSST:

• If LSST and other surveys demonstrate with high precision that the equation of state

of dark energy is different from a cosmological constant, i.e., w0 6= −1 and/or wa 6= 0

then a profound opportunity arises to further explore the origin of this dynamical

energy component. Targeted constraints could allow discrimination between various

contenders with equations of state different from a cosmological constant based on

new observational campaigns with Rubin.

• In another scenario, confirming that the dark energy equation of state is essentially

indistinguishable from w0 = −1 and wa = 0 will create the opportunity for post-

LSST observations to explore dark energy beyond the equation of state approach. An

example of such an approach is to pursue a sophisticated comparison between the

3
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expansion history and the growth rate of large-scale structure [11, 12] to distinguish

between vacuum energy or a modification to gravity that acts like dark energy.

• LSST will constrain to very high precision how light propagates in the universe using

weak lensing and will reveal any inconsistency with our current theory of gravity.

New observations after LSST would enable follow up on such results and provide

unprecedented precision on constraining gravity on cosmological scales and the un-

derstanding of the nature of space and time.

• Within the next decade, direct, indirect, and/or collider experiments may detect ev-

idence of particle dark matter. If so, astrophysical observations will be crucial to

interpret those experimental results in the context of the observed dark matter distri-

bution. Rubin observations after LSST will provide exceptional proper motion mea-

surements to constrain the local density and velocity distribution of dark matter. On

the other hand, if terrestrial experiments fail to detect dark matter, continued study

of astrophysical probes with Rubin after LSST may be the most promising avenue

for discovering and characterizing the fundamental properties of dark matter (e.g.,

through long-duration microlensing searches for primordial black holes).

• LSST has the potential to make the first statistically significant detection of dark

matter halos that are too small to host galaxies. The existence of these halos is a

definitive prediction of the ΛCDM model. Their detection would be a strong confir-

mation of ΛCDM, while a robust determination of the absence of such halos would

demonstrate that ΛCDM is not an adequate description of the universe on very small

scales. In either case, Rubin observations of stellar streams after LSST (e.g., with

additional narrow band filters or improved proper motion estimates) would reduce

contamination and strengthen conclusions about the existence of dark matter halos

below the threshold of galaxy formation.

• Last but not least, the apparent discrepancy of the amplitude of matter fluctuations,

σ8, between weak lensing surveys and cosmic microwave background (CMB) data,

and the well-established H0 tension, if they persist, are areas where the Rubin Obser-

vatory after LSST could play a major role in tracking down their origins regardless

whether they are due to systematic effects in the data or result from new physics.

In short, independent of what is found in the next decade from LSST and other surveys,

we will very likely not be done, in the sense of truly understanding the physics that un-

derlies the accelerated expansion of the universe and the origin of dark matter. However,

since the Rubin Observatory has not yet begun LSST survey operations, it is difficult to

predict exactly what scientific questions will be considered critical to address post-LSST.

The possibilities are numerous for how Rubin Observatory could enable science aligned

with (potential future) DOE HEP priorities, and they will be refined by the results in the

coming years. Exploring these options more deeply around year 5 of the 10-year survey,

when the scientific landscape is clearer with initial results from LSST and DESI, would be

valuable to identify how specifically this powerful facility can advance DOE HEP scientific

interests in the post-LSST era.
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3 Opportunities

3.1 Continuing Operations

The extremely large etendue provided by the Simonyi Survey Telescope and the LSST Cam-

era will remain a uniquely powerful combination after the completion of the LSST survey,

and will continue to enable highly productive science, even without any modification to

the hardware. The depth and uniformity that will be achieved for LSST will be difficult

to significantly improve upon with continued survey operations. However, strong science

cases for continued operation of Rubin relate to time domain studies that would rely on

modified observing cadence, exposure time, or filter selections relative to the LSST survey

for greatly enhanced efficiency and target-of-opportunity observations of rare phenomena.

The prospects for precision measurement of H0 via strong lensing cosmography are

starting to be realized and efficient strategies for modeling strong lensing systems have

been developed that make the method feasible for the relatively large numbers (hundreds)

of strongly lensed quasars to be detected by LSST [13]. The detection efficiency of the sur-

vey depends on fundamental aspects of the survey cadence, such as the coverage of the

extragalactic sky, season length, and filter selection. The actual cadence for LSST will be

a complicated optimization over all LSST science cases, and significant optimizations to

increase the yield of “golden” lensed quasars are possible [14] and could be employed to

further enlarge the sample of well-characterized systems post-LSST. The statistical preci-

sion of strong lensing cosmography will improve with the characterization of more sys-

tems, at least down to a precision of ∼0.2 km Mpc−1 s−1 [13] – potentially addressing the

H0 tensions more effectively.

Gravitational wave (GW) observatories are estimated to detect strongly gravitationally

lensed neutron star-neutron star mergers at the rate of about 0.1 yr−1 from the mid-2020s

[15]. The kilonova optical counterpart will likely be too faint to be detected in the LSST

survey cadence. Because detection of such a rare event would be a major advance, and be-

cause identification of the kilonova counterpart would be essential to establish its strongly

lensed nature [16], a target-of-opportunity program has been proposed for follow-up ob-

servations with LSST that would require repeated observations in multiple filters of ∼100

deg2 fields defined by GW localization regions [15]. Such a program could be accommo-

dated with greater flexibility and more observing time post-LSST, and would be able to

use well established reference templates from the survey. It would address several of the

scientific priorities in Section 2, such as tests of cosmic acceleration at high redshift, and

new tests of gravity.

A number of other scientific cases for continued operation of the observatory relate to

follow-up observations of discoveries with LSST. These include extending proper motion

studies of the stellar populations of dwarf galaxies in the Milky Way halo, and character-

ization of their dark matter content, which would advance the goal of understanding the

fundamental nature of dark matter. Microlensing searches for astrophysical and primor-

dial black holes would also benefit from the increased time baseline and observations of

regions of high stellar density (i.e., the Galactic Bulge and/or the Magellanic Clouds).

Another general science case for continuing LSST survey operations may be to obtain

better overlap with other large-area deep optical surveys in support of joint cosmology
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analyses. In particular, the planned 2000 deg2 High Latitude Survey with the Nancy Grace

Roman Observatory would be a prime example. The specific region of the sky has not been

defined yet, but the Roman observations will include near-infrared bands, and have angu-

lar resolution superior to LSST. The science case for joint processing, including refinement

of photometric redshift estimates and improved measurement of weak lensing shear, has

been thoroughly explored (e.g., [17]), and aligns with several of the priorities mentioned

in Section 2.

We note that it is the post-LSST time period that aligns best with the anticipated access

to Extremely Large Telescopes (ELTs), either the E-ELT in Europe or the US ELT Program.

Follow-up observations of the faint objects discovered at Rubin, either during the LSST

survey, or “live” during post-LSST operations, with ELTs is a key opportunity to capitalize

on the investments made in Rubin. All of the above dark energy and dark matter science

cases (and many more) would benefit from this synergy, whether through full exploitation

of the LSST time delay lens and Milky Way dwarf satellite samples (improving the detailed

modeling of these objects), higher-fidelity measurements of GW source kilonova proper-

ties, or the pinning down of the faint tail of the photometric redshift training set (which is

needed for Roman as well as Rubin).

The costs for continuing Rubin operations post-LSST survey would be well understood

and (by definition) would not involve instrument development or commissioning. The op-

erating cost of Rubin is dominated by the labor needed to operate and maintain the summit

and data facilities, with gradual efficiency gains being offset by natural escalation linked to

the cost of living, such that to zeroth order the planned flat $70M annual operating budget

would need to be maintained into the post-LSST era. (Note that Rubin Observatory oper-

ations are jointly funded by NSF and DOE, with the balance in support determined by the

science program. During the LSST survey, the operations costs are shared approximately

equally.) Some reduction in operating cost could be possible if annual reprocessing of the

LSST dataset is discontinued in favor of some less exhaustive approach (with knock-on

effects on the labor needed to evolve the pipelines and support the science community),

but this choice will be coupled to the science-driven but not-yet-known survey strategy.

With the variety of strong cases for continued operation, and the variety of observing

strategies that would be optimum for different cases, and in anticipation that the specific

post-LSST science cases will be influenced by the findings from LSST, the detailed case

for continued operation of Rubin, in terms of observing strategies, fields, and overall time

needed, should be considered by year 5 of the survey.

3.2 New Filters

The baseline Rubin Observatory filter complement consists of six filters, ugrizy, any five

of which are resident in the camera at any given time. The filters can be switched be-

tween individual observations with a changeout time of two minutes. The sixth filter can

be installed to replace any of the other five during daylight hours. The filters were pro-

duced using interference coatings on polished, curved glass substrates. The selection of

the bandpasses was chosen early in the construction effort to satisfy a number of science

requirements imposed by both astrophysical and cosmological science objectives.

6
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After the LSST is completed, a new or partially modified filter set could be incorporated.

Fabrication of new filters would cost about $2M per filter, although some cost savings could

possibly be achieved if some or all of the existing filter blanks were reused.

Possibilities for new filters could include:

• A complementary filter set to the original six might be fabricated to improve photo-

metric redshift estimates of the catalogued galaxy sample. This could involve filter

bands of comparable width, but shifted by half the band to eventually define twelve,

rather than six effective wavelength bands. A set of medium-band filters could also

serve the same purpose.

• A set of narrow-band filters could be fabricated to enable emission line surveys for

particular lines at redshift z = 0, or to select samples of galaxies at a set of discrete

redshifts. Preliminary analysis suggests that interference filters with passbands as

narrow as 5–10 nm are achievable.

• A set of patterned filters, which would enable multiple bandpasses to be sampled

simultaneously across the field. Multicolor photometry of individual variable sources

could then be obtained nearly contemporaneously by dithering the field between

exposures.

All of these options would require further study to evaluate their technical feasibility

and scientific rationale. In order for a new filter set to be available at the end of the

nominal 10-year LSST, fabrication would need to begin roughly 5–7 years into the survey.

3.3 A New Instrument

The last option we briefly discuss is the construction of an instrument that would transform

the Rubin Observatory into a truly new facility. A wide variety of reports [18–21] have

highlighted the broad science opportunities that a wide-field spectrograph would provide

to follow up the rich LSST imaging dataset; the value of such a capability for probes of

cosmology was presented in the recent Astro2020 Decadal Survey report [22]. In Ref. [8]

the idea is discussed to realize these exciting opportunities with the Rubin Observatory

itself by constructing a multi-fiber spectrograph. Such an instrument could possibly exploit

the large etendue of Rubin. However, as outlined in Ref. [8], this approach would have

many technological challenges to overcome. The report listed technical tasks that were

identified to either resolve some of the challenges or at least reduce the risks associated

with them. To fully evaluate the feasibility of building a new instrument for the Rubin

Observatory, a detailed design and technology study is required in the near future.

4 Summary

The next decade undoubtedly will be an exciting but also challenging period for cosmology.

The Stage IV dark energy experiments hold the promise to unravel some of the mysteries

of the dark universe. The findings in the next few years will guide the directions that the
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field will pursue in 2030 and beyond and the Rubin Observatory post-LSST can continue

to play a major role in these new endeavors. In this White Paper we outlined scientific op-

portunities with the Rubin Observatory to further explore the physics of the dark universe

post-LSST, when Rubin’s faint object capabilities will be well-matched to the Extremely

Large Telescopes that should then be online. We described three scenarios for how the

Rubin Observatory could be used after LSST: (i) modified observing strategy (only), (ii)

new filter complement, (iii) a new instrument. They will require different investments

and more detailed studies. These studies should be undertaken a few years into the LSST

survey so that they can be informed by the scientific findings.
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