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Abstract: We present a summary of recent progress and remaining challenges in applying the

methods and ideas of quantum information theory to the study of quantum field theory and quantum

gravity. Important topics and themes include: entanglement entropy in QFTs and what it reveals

about RG flows, symmetries, and phases; scrambling, information spreading, and chaos; state prepa-

ration and complexity; classical and quantum simulation of QFTs; and the role of information in

holographic dualities. We also highlight the ways in which quantum information science benefits from

the synergy between the fields.
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0 Executive summary

Quantum information provides a powerful new perspective on the framework of quantum field theory

which is agnostic about energy scale, field content, duality frame, and so on, and therefore cuts through

the space of physical phenomena in a fundamentally different way from traditional quantities such as

correlation functions and scattering amplitudes. Concepts such as entanglement and complexity yield

valuable new insights into many aspects of quantum field theories, including correlations, symmetries,

RG flows, phases, transport, and thermalization. Moreover, though it is often said that our theory of

spacetime and gravity is in tension with quantum theory, recent developments suggest that spacetime

and gravity actually emerge from complex patterns of quantum information. This new quantum infor-

mation perspective also brings with it new approaches to classical simulation, the novel possibility of

quantum simulation, and many connections to many-body physics and beyond. Conversely, quantum
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information science also continues to benefit from the synergy between the two fields, with numerous

new conceptual insights and calculational tools arising out of questions framed in the study of quantum

field theory and quantum gravity.

1 Introduction and themes

Quantum field theory (QFT) is the lingua franca of the high-energy world, and is anchored on principles

of quantum mechanics, locality, and relativistic invariance. It is the canonical framework to explain

the fundamental laws of nature and has led to the standard models of particle physics and inflationary

cosmology. In its (non-relativistic) many-body avatar, it plays a central role in understanding myriad

phases of matter and their properties.

However, QFT, as formulated in its standard usage, does not leverage the full gamut of quan-

tumness inherent in quantum mechanics. Traditionally, one is focused on observables that can be

computed using correlation functions of local operators, which can be translated thence into physical

quantities such as scattering cross-sections and dynamical response functions. The Wilsonian effective

field theory paradigm is also primarily geared towards identifying relevant operators and understanding

their correlation functions below some cut-off scale. Furthermore, techniques such as path integrals,

the renormalization group, effective theories, symmetries, and dualities are all primarily geared in

textbook treatments towards computing such correlation functions.

There is, however, more information to be mined by generalizing the framework to one more

cognizant of the underlying quantum mechanical structure. Such a perspective, in particular, has to

account for the fact that composite quantum mechanical systems exist in tensor product superpositions,

which leads to the essential concept of entanglement. Focusing on these aspects can help us to better

understand the field theory framework, and it appears more suited to addressing questions in the

quantum gravitational setting. This quantum information perspective on QFT, a subject that has

seen remarkable progress in the past decade and a half, is the central focus of our white paper. Much

of the progress is thanks to connections to classical and quantum gravity, another theme of this white

paper.

A main advantage of applying the quantum information lens to QFT is that it eschews specific

field content and observables, and studies rather the information content of the QFT wavefunctionals.

Correlation functions are replaced by entropic quantities that quantify total correlations, of all fields,

in different spatial regions. This latter statement exploits the inherent locality of interactions in QFT.

The resulting description is (in principle) manifestly invariant under field redefinitions and choice of

duality frame, and it is suitable for studying a large array of phenomena in QFT, from static to

dynamic and weak to strong coupling.

The general themes that have been explored in this broad area include refinement of conventional

field-theoretic tools (e.g. path integral methods) to quantify spatially-ordered entanglement in QFTs,

quantifying measures of entanglement in mixed states, and the revival of operator algebraic formu-

lations of QFT. In a parallel development, the geometrization of information theoretic measures in

the context of the holographic AdS/CFT correspondence has played an important role in furthering

our understanding of the holographic dictionary. Additionally, progress has been made on questions

relating to the complexity of state preparation, which is important for quantum simulations, and it

has furthermore been argued that these ideas have a physics role to play in QFT and quantum gravity.

Many of these developments have been accompanied by novel insights on the quantum information

side, showing that the synergy between the fields benefits both sides.
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In this white paper, we will give a broad-brush overview of what we view as the most important

recent developments and open problems in these areas. In §2, we outline some of the basic definitions,

properties, and methods for quantifying quantum information. In §3 we describe how these ideas have

played a role in understanding the structure of the vacuum and the renormalization group in QFTs.

In §4 we turn to the implications of quantum information for QFT dynamics. In §5 we outline the

prospects for simulating QFT dynamics using both classical and quantum methods. In each of these

sections, we emphasize, in italics, what, we believe, are some of the most important open questions

in the subject. In §6, we conclude with an overview of the major themes that we believe will drive

progress over the next decade or so in better comprehending the nature of quantum information in

QFT and gravity.

Of course, in such a short review of such a broad and rapidly developing field, we cannot be

comprehensive. Among many topics left out are those touching on the black hole information problem,

as these are addressed in another white paper [1]. Other white papers on related topics include [2–

4]. Some useful pedagogical resources on the subject include [5, 6] for an introduction to quantum

information in quantum mechanics, [7, 8] for algebraic treatment of QFTs, [9] for computation of

entanglement in conformally invariant QFTs, and [10–13] for reviews of developments in the context

of holography.

2 Defining and characterizing quantum information

Much progress has been made in the last 10 years on the problem of defining and characterizing

entanglement in QFT and gravity. One central goal is to quantify the amount of entanglement and

extract universal contributions that are independent of the chosen regulator. Another central goal

is to understand the organization of entanglement in the state, in terms of how it is structured in

space and between scales, and how it can be prepared. In this section, we will summarize some of the

approaches to these problems.

2.1 Entanglement entropy: definition and basic properties

Consider a QFT on d-dimensional Minkowski spacetime. Its Hilbert space is defined on a Cauchy slice

Σ, which can be divided into two disjoint subregions, Σ = AtAc. The Hilbert space on Σ is assumed,

for now, to factorize HΣ = HA ⊗ HAc . This factorization requires a UV regulator with length scale

ε. A pure-state wavefunction on Σ, reduced to the region A, is described by a local density matrix ρA
that captures all correlation functions inside A. Such a density matrix is necessarily mixed, indicating

entanglement between the two regions. Its von Neumann entropy, the so-called entanglement entropy,

quantifies this entanglement:

S(A)ρ := SvN(ρA) = −Tr (ρA ln ρA) =
Area(∂A)

εd−2
+ · · · . (2.1)

Such a setup was first considered in [14, 15] in the context of black hole physics and then revisited in

[16, 17].

The entanglement entropy is UV divergent; it is regulated by a short-distance cutoff ε, with the

leading divergent term proportional to the area of the boundary of the region A, as indicated by

the last equality. The boundary of A is called the entangling surface (or entanglement cut). This

divergence is a universal consequence of the short-distance correlations present in any QFT [18]. In

two-dimensional conformal field theories (CFTs), the leading divergence becomes a log, and one finds

– 3 –



a particularly universal form for the vacuum entropy [17, 19]:

S(A)ρ =
c

3
log

L

ε
, (2.2)

for a region A of length L, with c the central charge of the CFT.

Over the last decade and a half, the structure of such divergent terms in QFT entanglement has

been intensively studied; see for example [20]. Our current understanding comes from a variety of

methods, including free-theory computations [21], path integral and heat kernel methods [22, 23],

CFT methods [24], and AdS/CFT [22, 25, 26]. In addition to the leading area divergence, sub-leading

terms can contain logs similar to (2.2). Logarithmic terms appear in even dimensional CFTs for smooth

regions and are related to the conformal anomaly of the CFT [19, 22, 27]. In odd dimensions, logs

can appear due to corners or other singularities in the shape of the region A [28–31]. While divergent

area terms are typically dependent on the cutoff procedure, the logarithmic terms are universal and

often related to vacuum correlation functions of the CFT. By connecting information quantities to

basic data in QFT, we might expect to be able to put new constraints on the QFT theory space, a

theme of many of the exciting results in this area discussed below.

Much of the more recent progress in studying entanglement entropy in QFT has been in studying

the terms hidden in the ellipses of (2.1). These terms can be finite, state-dependent [32], scale-

dependent [26, 33, 34], and shape-dependent [35–39]. By considering differences of quantities with the

same UV divergence, we can extract these terms. An example is the mutual information:

I(A : B) := S(A) + S(B)− S(AB) ≥ 0 , (2.3)

where A, B are disjoint regions on the same Cauchy slice and AB := A ∪ B. As long as A,B do

not share a common boundary, the mutual information is UV-finite. It quantifies the total amount of

correlation between regions, including both classical correlations and quantum entanglement. I(A : B)

can be used to extract universal data in CFTs, such as the OPE coefficients and operator dimensions

[40–44], thus providing another connection to more standard QFT data. Furthermore, it satisfies many

nice properties, including non-negativity (a consequence of subadditivity of entropy) and monotonicity

under deformations of either region (a consequence of strong subadditivity, SSA):

I(A : B) ≤ I(A : BC) (2.4)

Such quantum information bounds have far-reaching implications for QFT. For example, SSA plays a

key role in the proofs of the entropic C-theorems, as we will review in §3.2. Another divergence-free

entropic quantity is the tripartite information:

I3(A : B : C) := I(A : B) + I(A : C)− I(A : BC) (2.5)

which can be used to extract universal data in a topological QFT from the ground state wavefunction

with a judicious choice of regions A, B, C [45, 46].

Another important quantity, the relative entropy, likewise removes the divergence in the entan-

glement entropy by considering two different states for a single region:

S(ρA|σA) := S(A)σ − S(A)ρ + 〈Kσ〉ρ − 〈Kσ〉σ (2.6)

where Kσ := − log σA is called the modular Hamiltonian. The relative entropy is a generalization of

the free energy difference in statistical mechanics, for which σ is some thermal density matrix and
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Kσ = βH with H the actual Hamiltonian. The relative entropy is a measure of the difference between

two states; it is non-negative and vanishes if and only if the states are the same. Like the mutual

information, the relative entropy has many nice properties, such as inclusion monotonicity, and as

such its study in QFT has many important applications [32, 47].

The universal divergence in (2.1) signals a fundamental issue in the study of quantum information

in QFT: it is not always possible to factorize the Hilbert space across some geometric cut, as was

naively suggested above. There are several approaches to address this. One approach is to consider

UV regularizations of the theory, such as a lattice regulator (with the UV cutoff ε being the lattice

spacing), for which a factorization can be made manifest [48]. However, for gauge theories, the

situation is more complicated. Even with a lattice regulator, the projection to the gauge-invariant

Hilbert space does not allow for a local tensor factorization [49–54].1 Instead, one can choose to work in

an extended Hilbert space [49, 50, 53], where charged degrees of freedom are included at the entangling

surface. Such degrees of freedom can be understood as edge modes in topological gauge theories [59].

Alternately, one can use an algebraic description at the level of the lattice theory, which relies on local

algebras that necessarily have non-trivial centers [52]. There are ambiguities in the choice of such

localized algebras. Entropies can be defined and computed in both cases. While different approaches

lead to similar physical conclusions, there have been notable issues with reproducing the same log

divergences [56, 60] (related to the a-type anomaly coefficient.) Proposed solutions can be found in

[61, 62].

Some QFTs, such as those with chiral fermions or with gravitational anomalies, may not admit a

lattice regularization in the first place [63]. Nevertheless, there is progress in studying entanglement

entropy in these theories [64–67].

Path integrals also provide a natural UV regulator, by smoothing out the singular spaces [68–

71] that are used to compute entanglement (see §2.2). This often comes at the expense of a direct

connection between the regularized quantity and a von Neumann entropy.

In the end, one might get the impression that there is too much ambiguity in the study of entan-

glement entropy in QFT. How can one extract meaningful results? In fact, it is likely that we should

not ascribe too much importance to the ambiguities in defining entanglement entropy at the UV cutoff

or lattice scale. Most of the important results on entanglement entropy in any case derive from the UV

finite quantities that were mentioned above. In general, as long as one computes quantities that are

UV-insensitive, the ambiguities and disparate approaches mentioned above lead to the same answers.

In particular, due to properties such as monotonicity (2.4), the continuum limit is often smooth for

quantities like mutual information, as any fluctuations from the lattice scale are absent for monotonic

quantities [52]. Thus, approaches based on quantities that are UV finite from the outset such as

mutual information [72] and reflected entropy [73] are the most promising. In fact, these quantities

can be given a definition directly in the continuum. We discuss this now.

The (Haag-Kastler) axiomatic framework of algebraic QFT [74, 75] provides another resolution

to the factorization issue directly in the continuum limit. In this case, issues of UV sensitivity are

removed from the beginning [18]. Moreover, in this approach, it is clear which quantities have a

continuum limit in the first place. The basic idea here is to replace the tensor factorization of the

Hilbert space with the algebras of operators associated to the region: A → AA and B → AB . In

finite dimension, one deals with the algebra of all operators on a Hilbert space; these are examples of

type I von Neumann algebras. However, in the continuum, a richer class of operator algebras arises,

and these make it impossible to describe the local physics by type I von Neumann algebras. The

1For various approaches to entanglement in gauge theories, with or without a lattice regulator, see [55–58].
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appropriate algebras are type III1 von Neumann algebras [18], as can be established by using basic

properties of short-distance correlations near ∂A. Such algebras do not admit pure states localized

inside A, or a factorized description. So, for example, all states have infinite von Neumann entropy as

signaled by the divergence in (2.1).

In this approach, the density matrix for a local region does not exist from the outset, so we need

a new way to characterize quantum information. The new method uses Tomita-Takesaki modular

theory. (For a review see [18] and for other discussions of modular theory in QFT see for example

[76–81].) For instance, while ρA does not exist in the continuum, ρA⊗ρ−1
B does exist, and is called the

modular operator ∆. A definition can be given for ∆, directly from the algebra and the state of interest.

Information quantities, such as relative entropy, can now be defined using the modular operator and

certain generalizations involving two states [82]. The entanglement entropy itself, however, fails to

exist. The modular operator generates an important automorphism of the algebra called modular

flow: O → ∆isO∆−is, with s the modular “time”. If the original state is thermal, then modular flow

is simply time evolution. For more general states, it is a powerful state-dependent evolution in an

emergent time direction. While many of these tools have been around for half a century, applications

to the study of quantum information issues have been limited and are only now being developed more

thoroughly [67, 83–85]. There is an interesting connection between analyticity in modular time and

causality in the QFT [86] as well as in a putative holographic dual [87]. Rigorous results for modular

flow are available for free theories [85, 88].

The mutual information similarly has an algebraic continuum definition. It relies on a notion called

the split property [75], whereby if two regions A, B do not share a common boundary (in other words

there is a third region C that lies between A and B on Σ), then the algebra associated to AB behaves

like a tensor product AA ⊗ AB . Quantum field theories with standard thermodynamic behavior are

expected to satisfy the split property. This property helps us define another continuum measure, the

reflected entropy SR [73]. Reflected entropy was first considered in the context of AdS/CFT, where

it was shown to be dual to twice the entanglement wedge cross-section (see §2.4). Since then, it has

been computed using a variety of methods [89–92]. Rigorous results computing mutual information

and reflected entropy are now available for free theories [67, 85].

Finally, quantifying entanglement can be thought of operationally, for example via the number of

distillable EPR pairs that can be extracted from the wavefunction. In QFT, for some region A and

its complement, this number is infinite; however, if we think about separated subregions A,B in the

QFT, it may be finite. Quantifying such entanglement is complicated by the fact that the AB system

is now a mixed state, and so we must confront mixed-state entanglement measures. This operational

approach has been successfully applied to QFT in [93]. These results are again UV insensitive. We

discuss mixed-state measures of entanglement further in §2.4.

2.2 Entanglement entropy: methods

A major area of progress in the past decade has been in the refinement of traditional techniques and

the development of new methods to compute entanglement entropy in QFT.

Path integral techniques have proven powerful for interacting CFTs. One computes first the Rényi

entropies,

Sn(A) =
1

1− n
ln TrρnA (2.7)

for integer n > 1. Analytically continuing in n and taking the limit n → 1 then give access to

the von Neumann entropy. For special states and regions, e.g. a (d − 1)-dimensional ball region for

the vacuum of a d-dimensional CFT, symmetries of the relativistic (or conformally invariant) QFT
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can be used to compute the path integral for TrρnA for all n. In [94] this was utilized to compute

entanglement in general CFTs, which was successfully compared to the AdS/CFT prediction. The

origin of these symmetry methods lies in the Unruh effect [95], and the abstract Bisagnono-Wichman

theorem [96], which were originally discussed for A being half of a Cauchy slice in Minkowski spacetime.

Generalizations of this theorem to ball regions have been known for some time [97], but applications to

entanglement entropy are relatively recent. Various supersymmetric techniques have been applied to

this problem, see for example [98]. The path integral approach also allows for simple generalizations,

such as perturbation theory for deformations of the state [24, 99, 100] and the shape [33, 36, 101], as

well as a much larger class of examples in 2d [102].

For more general shapes and states, one needs to compute the path integral for the QFT residing

on a singular manifold Mn. This technique, referred to as the replica trick, can be used to compute

integer n Renyi entropies. Powerful CFT techniques can be used to evaluate the functional integral.

For instance, in 2d CFTs, one can compute entanglement entropy for various states and regions, and

compare the results with holographic ones [103]. Alternately, the singular manifold can be dispensed

with in favor of correlation function of twist operators in an orbifold of n copies of the CFT. In 2d

these are pointlike operators, so CFT methods, including bootstrap ideas, can be applied [40, 104–107].

These methods apply to static and dynamical settings, and are particularly powerful for theories with

holographic duals [108, 109]. In higher dimensions, formulating the replica trick as a defect correlation

function, where the boundary of the entanglement region A contains a codimension-2 defect twist

operator, has proven useful [37, 38, 86, 110, 111]. Deformations of the state and shape can then be

computed using defect correlation functions and OPEs.

A particularly tricky issue with the replica trick is the continuation of n away from the integers

(so we can take n→ 1). There are several ways to approach this problem. One often applies Carlson’s

theorem to prove the existence of a unique analytic extension away from the integer values of n. The

methods of moments has also been applied [112]. Analytic continuation from n = 1/k for integer k

arises in stringy computations [113, 114]. In gravitational theories the analytic continuation is often

“obvious” [69], however the target level of rigor for a given paper drops often once the replica trick is

invoked. Indeed, there are some known exceptions where the “obvious” answer is wrong [115]. Some

alternative methods have been explored in [58, 116].

Finally, free theories have been analyzed in great detail, since the density matrix remains Gaussian

under the partial trace. These methods go under the name of the correlation-matrix technique [21, 48],

since the correlation function of the fundamental fields, say 〈φ(x)φ(y)〉, can be viewed as a matrix

whose indices are the positions x, y and whose spectrum determines the entanglement entropy. These

methods have been extended to compute the reflected entropy (see §2.4) [89], and work in both static

and dynamic settings [117].

In parallel with these developments, new methods have been found by the algebraic QFT com-

munity to compute entanglement-like quantities. Most progress has come in the setting of free QFTs

[83, 85], where these arguments can be understood as rigorous versions of the correlation-matrix tech-

nique. More general results beyond free theories are however possible, including results for general

superselection sectors [118] and an interesting class of states constructed using Connes cocycle flow

[79].

Complementing these analytic methods is a range of numerical ones, mainly explored by the

condensed-matter theory community. We will touch on some of these methods in §5.

As interesting physical problems arise, new techniques for computing quantum information quanti-

ties will likely need to be developed. For example, one-shot entropies related to information processing

tasks where only a single copy of a state is available (instead of many identical copies) have found
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applications in QFT and QG, e.g. [119, 120]. Can we develop general tools to compute one-shot en-

tropies and conditional entropies in QFT? It would also be interesting to develop, new methods for

extracting the entanglement entropies from integer Rényis. Is it possible to use one-shot entropies for

this purpose?

2.3 Entanglement in holography, gravity, and string theory

A major spur to understanding entanglement entropies in QFTs, and source of data about them, has

been the Ryu-Takayanagi (RT) formula [121, 122] and its various generalizations. The RT formula

applies to holographic theories, which involve a large number of strongly coupled fields. It may seem

paradoxical that we can relatively easily compute a difficult quantity like the entanglement entropy

in such complicated theories, but we have by now become accustomed to the idea that holography

simplifies the calculation of many quantities of physical interest.

Specifically, the von Neumann entropy of a region in a large N gauge theory, or large central

charge CFT, admits an asymptotic expansion, S =
∑∞
g=0 Sg(λ)N2−2g, with λ being the effective ’t

Hooft coupling parameter of the theory. At large N and large λ, the RT formula [121] posits that the

strong coupling result for the von Neumann entropy is geometrized in terms of the area of a minimal

surface homologous to A (and therefore anchored on the entangling surface ∂A):

lim
λ→∞

S0(λ) = minX
Area(EA)

4GN
, X = {EA : ∃ RA ⊆M s.t. ∂RA = EA ∪A} . (2.8)

The RT formula applies to static, or more generally time reversal-invariant, bulk spacetimes; in the

above formula,M refers to the bulk Cauchy slice invariant under the time reflection. The RT formula

can also be expressed in terms of so-called bit threads, Planck-scale bulk curves connecting A and its

complement and representing Bell pairs in a distillation of the state [123]. In the covariant Hubeny-

Rangamani-Takayanagi (HRT) formula [124], the minimization is over extremal spacelike codimension-

2 surfaces homologous to A. These prescriptions were justified using gravitational replicas in [69] and

[125], respectively. It can also be usefully reformulated as a maximin prescription, in which the area

is minimized within a Cauchy slice and then maximized over the choice of Cauchy slice [126].

It was shown early on that the RT and HRT formulas obey the crucial SSA inequality (2.4) [126–

128]. This is necessary for the consistency of the formula; however, the proof is remarkably simple —

far simpler than the quantum proof of SSA — and it remains unknown what feature of holographic

states allows for such a simple proof. A slight generalization of the proof implies that the tripartite

information (2.5) is non-positive in holographic states [128, 129]; unlike SSA, this inequality (called

monogamy of mutual information, MMI, in the holographic literature) is not a general property of

quantum states. An understanding of this property in terms of bit threads and bulk locality was

proposed in [130]. A different explanation in terms of an ansatz for the entanglement structure of

holographic states was put forward in [131], but this explanation was contested in [132], and the

situation remains unclear. One implication of MMI is that the HRT formula obeys all members of

the infinite family of conditional entropy inequalities discovered by Cadney-Linden-Winter [133, 134],

establishing that it obeys all known general properties of the von Neumann entropy. It was shown

in [135] that the RT formula in fact obeys an infinite set of further inequalities that, like MMI,

are not obeyed by general quantum states. The so-called holographic entropy cone defined by these

inequalities has been extensively studied [130, 131, 136–139]. Despite some evidence in the affirmative

[140–142], the question of whether these inequalities are also obeyed by the HRT formula, as well as

their significance in terms of the structure of holographic states, remains open.
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The proof that the HRT formula obeys SSA makes use of the Einstein equation and null energy

condition, an illustration of the remarkable relationship between spacetime geometry and quantum

information theory brought to light by holographic dualities. This relationship also works in the

other direction: it is possible to derive the Einstein equation (perturbatively about AdS) from the

HRT formula and properties of entanglement entropies (specifically, the first law of entanglement)

[99, 100, 143, 144].

The classical gravity answer (2.8) has two sources of corrections: quantum gravitational effects,

which are both perturbative and non-perturbative in 1/N ; and string corrections, which are both

perturbative and non-perturbative in 1/λ. In 1/λ perturbation theory, classical string corrections

are understood. For this purpose, it suffices to write down the higher derivative modifications to

the Einstein-Hilbert dynamics that arise from the worldsheet string corrections [145]. Within this

effective field theory, modifications to the holographic entanglement entropy formulae can be analyzed

[146–150]. The resulting expressions can be viewed as generalizations of the Wald entropy for higher

derivative theories of gravity [151]. For stationary black holes with bifurcate Killing horizons, the

entropy is the integral of a local functional, the Noether charge, over the codimension-2 bifurcation

surface (whose extrinsic curvature tensor vanishes identically). In contrast, the generalization of the

extremal surface has non-vanishing extrinsic curvature and the resulting expression includes such

contributions. This higher curvature corrected entropy formula also has the correct structure to give

quasilocal entropy of dynamical horizons respecting the second law [152–154].

Finite λ corrections are, however, as yet poorly understood. Essentially, one seeks an expression

in closed string field theory that gives the genus zero contribution to the von Neumann entropy. The

prototype example is the thermofield double state, where we can ask how to derive the Bekenstein-

Hawking entropy for black holes directly from the string worldsheet. Early attempts to tackle this

question are [113, 155], while recent attempts motivated by entanglement include [156–158]. Thus far,

no clean derivation exists. The technical reason for this state of affairs owes to two issues. On the

one hand, the tree level (genus zero) partition function of the string naively vanishes by worldsheet

conformal invariance; on the other hand, the standard replica construction appears intractable from

the worldsheet perspective [114] (even for open strings). The first issue could potentially be overcome

using suitable analytic continuation tricks, such as those employed in the context of Liouville theory

to compute sphere and disk partition function or low-point correlators [159–162]. Attempts have been

made to understand this question in the context of quasi-topological field theories, e.g. 2d large N

Yang-Mills [163, 164], and within the topological open/closed string duality [165–167]. An analysis of

partition functions of weakly coupled CFT duals from the dual string perspective (in the AdS3/CFT2

context), appears to suggest that worldsheet does not preferentially pick out a particular target space

geometry in the semiclassical (large N) limit [168]. This is an important open question.

Quantum gravitational corrections at the leading semiclassical order were understood initially in

[169] as contributions from the entanglement of bulk degrees of freedom in the homology region RA.

This statement led to the quantum extremal surface proposal [170] (justified in [150]), which has played

an important role in recent developments in the black hole information problem. This prescription

can be shown to arise from the presence of replica wormhole saddles in the Euclidean quantum gravity

path integral [171, 172]. These derivations have worked in a regime where the quantum corrections

are amplified and made comparable to the tree level result, which enables one to discern the change

in the nature of saddle point configurations. A complete understanding, however, requires defining

the von Neumann entropy for subregions in theories with gravitational dynamics. Attempts in this

direction at the perturbative level, in particular dealing with the edge modes of the gravitational field,

include [173–178]. Much more about recent developments in the black hole information problem may
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be found in the white paper devoted to that topic [1].

2.4 Mixed-state entanglement and correlation

As noted above, the von Neumann entropy of a subsystem A is a measure of the amount of entan-

glement between A and the rest of the system Ac, assuming that the full system is in a pure state.

Often, however, one is interested in correlations and entanglement between two subsystems A and B

— for example two spatial regions in a field theory — that together do not make up the whole system,

or between A and Ac when the full system is in a mixed state, such as a thermal state. These two

scenarios are closely related, since, even if the full system is pure, if AB does not make up the full

system, then ρAB will typically be mixed; conversely, if ρAAc is mixed, it can be purified by adding a

third subsystem O, so that ρAAcO is pure, and in that point of view AAc is no longer the full system.

We have already mentioned one measure of correlation, namely the mutual information I(A : B).

This has many good properties: it is non-negative, is zero if and only if the state factorizes, and (by

SSA) is monotonic under inclusion of more subsystems. It also has the virtue of being calculable, to

the extent that one can calculate von Neumann entropies. In a field theory, if A and B are separate

regions (not sharing a common boundary) then I(A : B) is UV-finite and regulator-independent, and

bounds correlation functions of bounded operators [179]:(
〈OAOB〉conn

‖OA‖ ‖OB‖

)2

≤ 2I(A : B) . (2.9)

The mutual information quantifies the total amount of correlation, including both entanglement

and classical correlation. Often one is interested in knowing just the amount of entanglement between

A and B. Unless ρAB is pure, however, this is not a well-defined question: there is no single quantity

that captures the “amount of entanglement”. Rather, within a mixed state on AB there are several

different kinds of entanglement and correspondingly many distinct measures, which are useful for

different purposes; see [180] for a review. These measures are often defined in terms of an optimization

problem; for example, the entanglement of formation is the number of Bell pairs required to prepare

ρAB under LOCC (local operations and classical communication), while the entanglement of distillation

is the number of Bell pairs that can be produced from ρAB using LOCC. There are also correlation

measures that weight the entanglement and classical correlation differently and can therefore be used

to quantify the amount of entanglement; again, these will not agree with each other. While this is a

rich subject in quantum information theory, it is an unfortunate fact that very few of these measures

are calculable in practice in quantum field theories.

A simple example of an entanglement measure that is calculable (again, assuming one can calculate

von Neumann entropies) is the conditional information, H(A|B) = S(AB)−S(B). This is non-negative

for separable states, so if it is negative then entanglement is present. (However, the converse does

not hold.) Over the past few years, there has been significant progress in finding other entanglement

and correlation measures that are calculable in field theories. The first of these was the logarithmic

negativity, defined as ln tr|ρ̃AB |, where ρ̃AB is the partial transpose of ρAB (i.e. ρAB transposed just on

the A indices) [181–187]. If this quantity is positive (or more generally if ρ̃AB has negative eigenvalues)

then entanglement is present. The logarithmic negativity can be calculated via a replica trick, and

has been calculated in a variety of spin systems and field theories [188–197]. In holography, negativity

can be computed for ball-shaped regions of a CFT [198], but there is no general prescription. Various

groups have attempted to study this using tensor network toy models [112, 199–201], but these have

not led to a clear geometric picture; despite some work on the problem (e.g. [202–204]), it remains

unclear whether any such picture exists.
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Two other correlation measures have received much attention, due in part to their conjectured

holographic dual: the entanglement of purification (EOP) and the reflected entropy. The EOP is

defined as the minimal value of S(AÃ) among purifications ρABÃB̃ of ρAB . Again, since this quantity

is defined via an optimization, it can be hard to compute except in simple systems, but it can be

estimated or bounded in various ways [205–210]. Like the mutual information, it is non-negative,

vanishes precisely on factorized states, and is monotonic under inclusion; in that sense it is a good

correlation measure. It takes account of both entanglement and classical correlation, but weights them

differently than the mutual information, so by comparing the two quantities one can learn about the

relative amounts of these two types of correlation in a given state.

The reflected entropy is similarly defined as S(AÃ) under a purification ρABÃB̃ of ρAB , but, in

contrast to the EOP, the purification is not optimized over but rather fixed to be the canonical one

(defined similarly to the thermofield double state vis-à-vis the thermal state) [73]. Like the EOP, the

reflected entropy can be used to study the relative amounts of entanglement and classical correlation

in a given bipartite system. The fact that its definition does not involve an optimization makes this

quantity much easier to calculate than the EOP; methods include the replica trick and correlation-

matrix technique. On the other hand, it is harder to investigate its general properties; for example, it

is not known whether the reflected entropy is monotonic under inclusion, and in that sense constitutes

a good correlation measure.

Using a replica construction, [73] argued that the reflected entropy is dual to the entanglement

wedge cross-section, defined as the minimal surface separating A and B within their joint entanglement

wedge [205, 206]. Interestingly, the EOP was also argued to share the same holographic dual [205, 206].

While currently there is better evidence for the reflected entropy to be dual to the entanglement wedge

cross-section, it may be that both proposals are correct, and in holographic states the two quantities

are simply equal — not an implausible idea, given that such states are already known to have a

very special entanglement structure. An important open problem is thus to determine whether the

entanglement wedge cross-section is equal to the EOP, the reflected entropy, both, or some other easily

characterized quantity in the field theory.

Even outside of holography, the reflected entropy is potentially a very useful correlation measure

in QFT and even in general quantum systems, thanks to its calculability. This is an example of

investigations in QFT and quantum gravity paying back dividends to quantum information science.

However, it is important to better understand the fundamental properties of reflected entropy. Key

questions include: Is the reflected entropy is monotonic under inclusion, thereby qualifying it as a

valid correlation measure? What is the exact connection between modular nuclearity [211], the split

property, and reflected entropy? And what are sufficient conditions for reflected entropy to be finite?

(See [212].)

2.5 Complexity

Thus far we have been discussing various aspects of the entanglement and correlation between sub-

systems, such as spatial regions in a QFT, as measured by entropies and related quantities. We can

get further information by asking how hard it is to generate a pattern of entanglement and what we

can do with it. For example, for an extended quantum system, such as a spin system or a lattice-

regularized QFT, one could ask how many operations of a given type are required to reach the ground

state starting from a completely unentangled state. If the operations in question are quasilocal — for

example, they act on at most two lattice sites at a time — then producing a highly entangled state

may require a large number of operations. Since we can think of the operations as gates in a quantum

circuit, the number of operations required is called the circuit complexity of the state. It is related
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to the tensor network description of states, to be discussed in section 5 below. Since it is defined

in terms of an optimization, the circuit complexity is an intrinsically difficult quantity to calculate.

Moreover, in addition to the usual dependence on the regulator for a QFT, it depends on the choice

of initial state and gate set, so there is no single well-defined quantity called the circuit complexity.

Despite these difficulties, there are reasons to believe that this notion captures interesting features of

field-theory states that are inaccessible to entropy-based measures.

Like so many applications of quantum information to QFT, the circuit complexity story was

initially motivated from holography. As we will review in §4.5, the circuit complexity of holographic

states has been conjectured to be related to either the volume of maximal slices or the action of

Wheeler-de Witt patches in the bulk anchored to a given time-slice [213–215]. Since then, however,

the notion has taken on a life of its own, and despite the difficulty in calculating it, has been studied

extensively in free and weakly-coupled field theories, spin chains, and so on [210, 216–225].

Various potentially useful notions of complexity are closely related to the circuit complexity of a

pure state. For example, one can define the circuit complexity of an operator as the minimum number

of gates required to build the operator [226–235]. One can also define the complexity of a state in

terms of a continuous distance function on the Hilbert space, which can for example be the geodesic

distance with respect to some metric [236, 237]. One can also define the complexity of a state in terms

of the number of sources required to prepare it using a path integral [238–243]. Finally, the notion of

state complexity can be expanded in various ways to include subsystem states or more generally mixed

states [220, 221]. All of these notions are under active investigation, and it remains an open problem to

define those that are most useful for classifying field theories and understanding their time evolution,

as well as to develop tractable methods for computing them. We can expect that the resulting new ideas

for defining and computing various kinds of complexity will be of interest beyond the QFT setting,

providing another example of a dividend paid back to quantum information science from fundamental

physics.

3 Symmetry, topology, and renormalization group flows

We now turn to how quantum information ideas interplay with some key non-perturbative structures

in QFT. We first discuss symmetries in QFT and gravity. Then we consider renormalization group

(RG) flows, including how entropy inequalities constrain such flows, and how IR fixed points can be

classified by their patterns of entanglement. Finally, we highlight the special case of IR fixed points

corresponding to topological QFTs, where entanglement and topology become intertwined.

3.1 Symmetries, charges, and superselection sectors

Symmetries in quantum field theory can also be studied from a quantum information perspective. The

statistical properties of the charge fluctuations in localized regions can be extracted in various ways.

Symmetry resolved entanglement [244] studies the different charged sectors of the reduced density

matrix that arises for a theory with a local symmetry and a state that is invariant under that symmetry.

In the path integral formulation, such sectors can be studied by inserting flux at the twist operator,

or equivalently by turning on a chemical potential for the charge. Correspondingly, the holographic

description (at least for highly symmetric regions) is determined by a charged hyperbolic black hole.

This was studied in [245, 246]. There is an interesting application of symmetry resolved entanglement

to black hole physics in [247]. In particular, it provides an interesting probe of the non-existence of

global symmetries in quantum gravity.

– 12 –



In the algebraic approach, superselection sectors govern the global charges of a quantum field

theory [75]. These charges leave their imprint on algebras associated to disjoint regions, via non-local

operators that violate additivity or Haag duality of these algebras [248]. Such properties of local

algebras are not necessarily required by causality and consistency under restriction to smaller regions.

Order parameters based on the relative entropy have been developed to probe these superselection

sectors [249, 250]; see also [251, 252]. Generalized global symmetries can also be studied from this

perspective [253].

From the algebraic perspective, the short-distance fluctuations of charges for disconnected regions

that approach each other have a universal form for the various charged sectors [248]. This universal

form is in turn related to the form of the high temperature density of states of the theory defined

on a compact space. This form was conjecture in [254] and proven in [255]. It is also related to the

equipartition property [256] for symmetry resolved entanglement.

3.2 RG flows and c-theorems

Our understanding of effective field theories, pioneered by Wilson [257, 258] and made precise by

Polchinski [259], relies on the fact that dynamics below some cut-off scale is only sensitive to a handful

of relevant parameters. From a microscopic viewpoint, attaining this low energy effective description,

relies on tracing out high energy degrees of freedom, an intrinsically lossy process. Intuitively, therefore,

one anticipates the existence of a measure of the number of degrees of freedom that is monotone under

the renormalization group.

In two dimensions, exploiting details of energy-momentum tensor correlations, Zamolodchikov

[260] proved a c-theorem, exhibiting a function of the couplings C(gi) that is monotonically decreasing

as a function of scale and attains a stationary value equal to the central charge at fixed points. The

search for analogous statements in higher dimensions led to two interesting statements: an F -theorem

for three-dimensional theories [261] (see [25, 262]) and a-theorem in four dimensions [263]. The latter

was proven with the understanding of an effective description of softly broken conformal symmetry,

while the former was motivated by the understanding of supersymmetric RG flows and localization.

While the conventional field theory methods rely on dimension-specific techniques, an interesting

overarching principle can be discerned by examining the entropic proofs of the statements. Specifically,

using the fact that the vacuum of a CFT is a Markov state, viz., the fact that SSA is saturated for a pair

of subregions with boundaries lying on the light-cone, one finds a universal proof for the irreversibility of

the RG flow [264]. Historically, the two-dimensional c-theorem was proved by Casini-Huerta using SSA

in [265] (reviewed in [266]). A clever adaptation of this technique, with inspiration from holographic

explorations [26], led these authors to the first proof of the F -theorem in three dimensions [267]. The

a-theorem was understood more recently, building on the understanding of operator algebras and the

structure of the modular Hamiltonian on null planes [264, 268].

An interesting avenue for further developments is to ascertain whether analogous monotone func-

tions exist for higher-dimensional field theories (at least in five and six dimensions where superconfor-

mal critical points exist) and how one can understand them in terms of information-theoretic data.

The discussion of RG is typically anchored to the vacuum dynamics. Inspired by holography, it

is interesting to enquire about state-dependent features of renormalization. For instance, one would

anticipate that the process of integrating out high-energy degrees of freedom leads to a quantum

channel for the low-energy density operator. While there is no general statement to this effect to

date, there have been recent efforts to understand real-space RG in terms of quantum error correction

[269, 270] which may provide a pathway to this question. A related issue is the nature of effective field

theories for open quantum systems; see §4.4.
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3.3 Classification of phases

Entanglement and complexity also play an important role in the classification of IR fixed points of

RG flows. In the context of many-body physics, both in condensed matter examples and engineered

systems built from atoms, molecules, and photons, such fixed points describe distinct phases of mat-

ter. Classification of these phases is a major challenge in many-body physics, intimately tied to the

classification of QFTs.

Systems with one spatial dimension (d = 2) provide a wealth of instructive examples. In the

absence of any symmetry and assuming a mass gap, it is believed that there is a unique IR fixed point

— the empty theory. There is no analog of the topological field theories (discussed below) in d ≥ 3

dimensions, which can have a degenerate space of vacuum states. However, when the system has a

symmetry, distinct gapped IR fixed points are sometimes possible [271–273]. These are labelled by

projective representations of the group and correspond to the physical possibility of protected edge

states when the theory is defined on an interval. Remarkably, this structure was first discovered using

entanglement and tensor network ideas: such 2d gapped IR fixed points should have a matrix product

state representation, and these can be classified via projective representations of the symmetry acting

on the virtual indices.

This classification has now been greatly extended, with many new and deep connections uncovered

between anomalies, symmetries, and patterns of entanglement (e.g. [274–281]). The result is a rich

zoo of IR fixed points (in the field theory language) and corresponding set of phases of matter (in

the many-body physics language). One interesting manifestation of this classification is in terms of

quantum state preparation. Consider a lattice-regulated field theory, and suppose we want to prepare

the ground state of this theory. When the IR fixed point describing the continuum limit is the trivial

theory, all excitations in the system are heavy and there is no interesting IR structure in the quantum

state. In this case, a finite-depth quantum circuit suffices to give a good approximation to the ground

state. On the other hand, when the IR fixed point corresponds to a non-trivial symmetry-protected

phase, then the corresponding state preparation circuit cannot have finite depth if it is also required

to be symmetric [282]. Such theories are known as invertible QFTs (see e.g. [283]).

An even richer setting occurs when we consider non-invertible QFTs, which correspond to topo-

logical field theories with degenerate ground states on a spatial manifold of non-trivial topology.

Chern-Simons theory in three dimensions, which is an exactly solvable topological field theory [284],

is a useful playground for analyzing this physics, including topological entanglement entropy [45, 285].

One can use the replica method to obtain spatially ordered entanglement in this theory [286]. The

result is an entanglement spectrum determined by the quantum dimension [45] and the number of

connected components of the entangling surface. For example, for Chern-Simons on S3, the entan-

glement entropy for a spatial bipartitioning gives all Rényi and von Neumann entropies simply equal

to logZCS(S3). One can extract more interesting information by considering states involving Wilson

lines along various knots and links as discussed in [286–289], while [290] considered negativity in these

theories. One can understand the edge modes in these systems quite cleanly [291–293]. Relations

between this topological entanglement and BTZ black hole entropy have also been proposed [294], and

as noted in §2.3 one can also relate Chern-Simons entanglement to topological string theory. Finally,

such theories must also have high state complexity, since one can show that the topological S-matrix

is invariant under finite-depth unitary transformations [295].

Chern-Simons theories with dynamical matter [296–298] have interesting applications. They nat-

urally appear as theories on M2-branes [299, 300] and exhibit Bose-Fermi duality [301, 302]. Fur-

thermore, they have an interesting phase structure at large N [303, 304], providing examples that
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interpolate between vector- and matrix-like models [305]. The former are dual to higher spin gravity

at large N , while the latter lead to more familiar gravitational duals. The fractional statistics of these

theories is manifested by a deformation of the thermal distribution functions [306, 307]. Information-

theoretic properties of these theories have not been explored thus far; such studies could provide useful

insights both into field theory dynamics and into the holographic map.

A more exotic example is provided by so-called fracton phases of matter [308–310]. These are novel

phases realized in solvable many-body models which do not correspond to any conventional IR fixed

point of a quantum field theory. A prototypical example is a higher spin gauge theory (without Lorentz

symmetry) where conservation of dipole moment reduces the mobility of charged excitations [310]. The

exotic physics of such systems, which host novel kinds of ground state entanglement and excitations

with restricted mobility, has prompted the search for extended kinds of field theories that can describe

these unusual phases of matter, e.g. [311, 312]. Continued development of such fractonic field theories

is certainly needed, as well as work connecting the broad idea of generalized global symmetries to

entanglement and complexity.

There are many other open questions. For example, the classification of gapless phases is poorly

understood. RG monotones, including many motivated by entanglement considerations, help to con-

strain the space of RG fixed points. However, a direct classification of these fixed points, e.g. via

something like topological entanglement entropy, is still lacking. In the case of systems at finite den-

sity, the situation is even more interesting, since qualitatively new kinds of finite terms appear in the

entanglement [313].

4 Dynamics

In this section, we describe recent progress arising from the study of quantum information dynamics.

First, we discuss the physics of information spreading and scrambling in QFT and quantum gravity,

and the new connections being established with the field of many-body quantum chaos. Next, we

discuss how entropic constraints have been used to prove very general energy inequalities in quantum

field theory. Then we discuss open system dynamics of field theories. Finally, we return to the subject

of complexity and discuss the conjectured relationship between complexity growth and the growth of

black hole interiors.

4.1 The spreading of information

Under time evolution, quantum information tends to spread across many degrees of freedom. It spreads

both spatially, as signals propagate locally through the system, and internally, among the degrees of

freedom at each site. A remarkable discovery that has precursors in the 1970s but has come into focus

over the last decade is that the spreading of quantum information obeys universal laws. In a wide

variety of complex systems, including condensed matter, strongly interacting QFTs, and black holes,

information spreads according to general principles and subject to fundamental bounds imposed by

locality and by information-theoretic inequalities. These bounds play a key role in questions such as

how locality emerges in quantum gravity and how to characterize the dynamics of strongly correlated

materials.

The spread of quantum information can be characterized in several ways, and various types of

information spread at different rates. In relativistic systems, of course, no signal can travel faster

than the speed of light c. Lieb-Robinson proved that non-relativistic systems with a local Hamiltonian

also obey a fundamental speed limit, vLR, whose value depends on the microscopic details of the

Hamiltonian [314].
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Recently, several new measures of information spreading have been developed. The entanglement

velocity vE is defined by a time derivative of the entanglement entropy, and interpreted as a rate at

which entanglement spreads across space [108, 315]; the butterfly velocity vB was originally defined

by the spread of quantum chaos [316], but often it also behaves as a state-dependent Lieb-Robinson

velocity that constrains other dynamics [317]; the information velocity vI [318–320] measures the

growing size of the region needed to recover the entanglement of a physical system with a reference

system. All of these recent measures of information speed have been developed by combining the

toolkits of quantum information theory, condensed matter theory, and high-energy theory, with many

of the insights originating in the physics of black holes.

Calabrese-Cardy were the first to systematically study the spread of entanglement in quantum

field theory [321], using the model of a quantum quench from a gapped to an ungapped Hamiltonian.

They found that in 1+1-dimensional rational CFTs, entanglement spreads ballistically at the speed

of light; thus vE = c in these systems. In fact, the ballistic spread of entanglement is nearly universal

(see for example [322] for a review), and it has been observed experimentally in cold atoms [323]. In

the AdS/CFT correspondence, quantum quenches are holographically dual to black holes far from

equilibrium [108, 124, 315], so the dynamics of black holes can be used to study the spread of entan-

glement in interacting quantum field theories in higher dimensions, and in non-rational CFTs in two

dimensions [109]. In higher dimensions, entanglement spreads more slowly; it satisfies the inequalities

[318–320, 324–326]

vE ≤ c, vE ≤ vB , vE ≥ vI . (4.1)

These bounds follow from the monotonicity of relative entropy, applied to nested regions in spacetime.

They can also be understood from a membrane model of entanglement propagation that has been

developed through a combination of condensed matter methods [327] and holography [328]. Inequalities

such as these also appear to be an important ingredient in understanding the microscopic origin of

locality in quantum gravity, as manifested in the principle of entanglement wedge nesting in AdS/CFT

[126, 329].

There are many important unanswered questions that we expect to drive progress on this topic

in the next decade. What are the other fundamental bounds on the spreading of quantum informa-

tion? Can locality in quantum gravity be placed more firmly into the context of quantum information

theory, and, in particular, quantum Shannon theory? Does this provide insight into the profound prob-

lem of understanding causality in non-perturbative quantum gravity, which underlies the black hole

information paradox? For recent ideas in each of these directions, see for example [264, 265, 330, 331].

Constraints on the spread of chaos and quantum information are also intimately tied to the theory

of transport in strongly interacting systems. This is especially interesting because such bounds may

ultimately be responsible for the unexplained phenomenon that a wide class of high-temperature

superconductors exhibit T -linear resistivity in the “strange metal” regime above the superconducting

transition. There is a longstanding conjecture that this universality results from an upper bound on

the scattering rate of electrons, known as the Planckian bound [332–334],

τ &
~

kBT
. (4.2)

This famously leads to the conjecture of Kovtun-Son-Starinets that the ratio of viscosity to entropy

density is bounded by η/s & ~/4πkB and saturated by black holes [335]. At present, there is no

definitive link between information-theoretic bounds such as (4.1) and the Planckian bound, but there

are several hints. For example, the viscosity bound can be formulated more generally as a bound on
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the diffusion constant D [336], and in many examples, it takes the form D . ~v2
B/kBT , where vB

is the butterfly velocity [337]. There are also a number of other recent bounds on transport derived

from causality [338, 339], the averaged null energy condition [340], and other information-theoretic

arguments. Can these ideas be developed into a more detailed theory of Planckian transport? What are

the consequences of information-theoretic bounds for other transport phenomena in condensed matter?

Such bounds are also interesting in disordered systems, since these systems often exhibit slow

transport dynamics. The extreme limit of this class of behaviors is many-body localization (see [341]

for a review), where transport is completely arrested, but interesting slow dynamics have been observed

even if full localization is not achieved (and its fate in the thermodynamic limit is still contested,

e.g. [342]). There are many questions here, including whether sub-ballistic operator growth (vanishing

vB) implies sub-diffusive transport (vanishing D) (e.g. [343, 344]).

4.2 Scrambling and chaos

Hayden-Preskill [345] formulated a circuit model of black hole dynamics in which the black hole

Hamiltonian rapidly randomizes the quantum state. Sekino-Susskind [346] conjectured that in any

quantum system, this scrambling process can occur no faster than ts ∼ β
2π logS, with S the entropy,

and that this bound is saturated by black holes. It is now understood that scrambling is ubiquitous

in chaotic quantum systems with many degrees of freedom, from the SYK model to black holes and

large-N CFTs.

A far-reaching new perspective on scrambling, developed over the last decade, reformulates it in

terms of out-of-time-order correlation functions (OTOCs) [316, 347–349]. Schematically, one considers

observables of the form

GOTO = 〈[A(0), B(t)]2〉 . (4.3)

OTOCs measure the effect of small perturbations at time t = 0 on the Heisenberg operators at time

t, and thereby probe the onset of quantum chaos. In large-N systems, they behave (after appropriate

normalization and regularization) as

GOTO ∼ 1− 1

N
eλt + · · · (4.4)

The second term is the harbinger of chaos, and λ is the Lyapunov exponent. Maldacena-Shenker-

Stanford proved that, under very general conditions [350],

λ .
2π

β
. (4.5)

Chaos therefore becomes appreciable at time ts & β
2π logN , in agreement with the fast scrambling

conjecture of Sekino-Susskind. In many cases, scrambling as diagnosed by OTOCs occurs on the same

timescale as scrambling defined by information-theoretic measures [318], and in general, sums over

OTOCs can be used to bound the mutual information [351]. These results are also tied to emergent

causality in the AdS/CFT correspondence [352] and to bounds on CFTs from the conformal bootstrap

[353–355].

These developments have begun to form the basis for a deeper understanding of quantum chaos,

and how it relates to the dynamics of quantum information, as well as more traditional observables in

quantum field theory. We expect this to continue providing new insights. Specific questions to pursue

in this area include: Can applications of random matrix theory to chaotic quantum systems, which have
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played a crucial role in AdS2/CFT1, be extended quantitatively to higher dimensions? What is the role

of eigenstate thermalization in the dynamics of higher-dimensional black holes and wormholes?

Another important question is whether qualitatively new features emerge at finite N in spatially

extended systems. This is in essence a different thermodynamic limit: large volume instead of large

N . In many-body models, including random circuits [356] and spin chains [357], it was found that

the OTOC expands ballistically in spacetime and the characteristic length scale of the wavefront

grows with time. To explain, consider an OTOC of the local operators of the form GOTO(x, t) =

〈[A(0, 0), B(x, t)]2〉 as a function of x. In one spatial dimension, the crossover of GOTO from zero to

maximal occurs around x = vBt and takes place over a length scale `. Large N models have ` ∼ const

whereas many-body models with finite N typically have ` ∼
√
t. It is sometimes useful to think in

terms of a velocity dependent Lyapunov exponent λ(v) where v = x/t [358], in which case the butterfly

velocity corresponds to λ(vB) = 0. Large N models have ∂vλ(vB) 6= 0, but in the many-body models

the “diffusive broadening” corresponds to ∂vλ(vB) = 0. This broadening appears to be universal in

one spatial dimension (d = 2) at finite N [359], but seeing this behavior in QFT and quantum gravity

at finite N is an outstanding challenge.

4.3 Energy and entropy bounds

Vacuum-subtracted energy density in quantum field theory can be negative due to quantum fluctua-

tions. This negative energy can potentially give rise to acausal, or otherwise pathological, gravitational

dynamics when coupling the QFT to gravity. For example, traversable wormholes might provide short-

cuts between distant points. The Hawking black hole area theorem and Penrose singularity theorems

rely on assumptions about non-existence of various forms of negative energy [360]. It is thus impor-

tant to find general constraints on such negative energy. Surprisingly, these constraints have been

shown to arise from quantum information considerations applied directly to the quantum field theory

without gravity [32, 361]. This story thus connects to the broader paradigm of gravity from quantum

information.

One example is the Bekenstein bound [362]:

S(A)ρ − S(A)|0〉 ≤ 〈K〉ρ − 〈K〉|0〉 , (4.6)

where A is a half-space in Minkowski space, ρ is an arbitrary state, |0〉 is the vacuum, and K is the

vacuum modular Hamiltonian. This bound follows from positivity of the relative entropy (2.6) [32].

Related inequalities were proven in [363, 364]. Another example is the averaged null energy condition

(ANEC)

E+ :=

∫ ∞
−∞

dx+ T++ ≥ 0 , (4.7)

derived from monotonicity of relative entropy [365]. (The ANEC was proven independently without

quantum information considerations in [354] and an argument was given in favor of the ANEC for

holographic theories [366].) Yet another case is the quantum null energy condition (QNEC),

〈Tkk〉 ≥
~

2πa
S′′[Σ] , (4.8)

where a is an infinitesimal area element on an entangling surface Σ and S′′[Σ] is the second derivative

of the entanglement entropy with respect to variations of Σ with area a in the direction k. The QNEC

was conjectured in [367], proven for free theories and AdS/CFT in [368, 369], and finally shown to

follow in general QFTs from the analyticity of modular flowed correlation functions [86]. Another
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argument for the QNEC is that it reduces to the ANEC in a special family of states constructed

using Connes co-cycle flow [79]. This proof of the QNEC can be formulated rigorously in the algebraic

approach to quantum information. Several extensions and applications of this co-cycle flow result have

been explored [370, 371]. The QNEC as stated in (4.8) is actually saturated in interacting theories, as

was argued for in AdS/CFT [372] and in general [111]. This distinction between free and interacting

theories is similar to the distinction between the form of the energy correlation functions of a free

theory versus an interacting theory [373].

Energy correlation functions, originally studied by Hofman-Maldacena, are related to correlation

functions of the ANEC operator E+ in Minkowski spacetime. Positivity of these correlation functions

puts important constraints on CFT and QFT data [373]. In this way, quantum information has been

used to constrain QFT theory space.

Traversable wormholes have been constructed [374, 375], exploiting violations of the ANEC that

are allowed for non-achronal null geodesics (null geodesics containing timelike-separated points). Ex-

amples were originally constructed in AdS/CFT using non-local double trace deformations [374, 376],

and quickly generalized to more realistic theories of gravity [377–379]. The specific form of null energy

comes from a Casimir-like energy, familiar from CFTs on a cylinder. Such traversable wormholes do

not provide shortcuts through spacetime, since the length of the wormhole is restricted to be larger

than the distance between the two throats in the ambient spacetime [380, 381].

Important open questions in this area include the following: Is there a proof of the improved

QNEC in 2d CFTs conjectured in [64]? Is there a connection between causality constraints leading to

the ANEC [354] and the quantum information argument mentioned here? What is the physical meaning

of the higher-spin QNEC proven in [111]? Is there a rigorous algebraic proof of the saturation of the

QNEC? Does the ANEC place bounds on the quark gluon plasma studied in heavy ion collisions? Can

these energy conditions, as applied to the standard model, be experimentally tested? Is there a proof

for general spacetimes of the self-consistent achronal ANEC [380], the generalized second law, and the

quantum focusing conjecture [367]?

4.4 Open quantum systems

A quantum system interacting with an external environment does not evolve unitarily. Rather, the

combined system and environment degrees of freedom together evolve unitarily, which upon tracing

out the environment indicates that the system by itself evolves as dictated by a quantum channel.

This is the characteristic of an open quantum system. The broad question of interest is to determine

the general rules to construct effective field theories for such open quantum systems.

The basic paradigm for such open quantum dynamics was laid out by long ago by Feynman-

Vernon [382]. Since one has to describe the operation of a quantum channel, one can work directly

with density matrices, or equivalently in terms of a doubled set of degrees of freedom for the system

corresponding to the state vectors and their conjugates. The novel feature is that there is a non-trivial

interaction between the two sets of degrees of freedom, the influence functionals. Heuristically, such

an effective field theory is characterized by the path integral (see [383–385] for an overview)∫
[DΨL ][DΨR ] exp

(
i Ss[ΨR ]− i Ss[ΨL ] + i SIF[ΨR ,ΨL ]

)
(4.9)

The quantum channel which maps density operators to density operators ought to be a completely pos-

itive trace preserving (CPTP) map on the system. In particular, the influence functional, SIF[Ψ
R
,Ψ

L
]

induced onto the system, owing to the coupling with the environment, should obey certain positivity

constraints. A general proof of this statement is, as far as we are aware, not available for generic open
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quantum systems. The Caldeira-Leggett description of quantum Brownian motion [386] exemplifies

this construction for Gaussian dynamics in quantum mechanics. Often, assuming a suitable Markovian

approximation for the environment, open quantum dynamics is modeled in terms of a Linbladian, see

[387] for an analysis in the SYK model. For finite systems, one can also obtain bounds for quantum

dissipation [388]. But the broad goal of constructing a local effective field theory runs into issues with

perturbative interactions; see e.g., [389] for early work on the subject and [390] for recent attempts in

this direction, in addition to [391–394] for technical issues regarding renormalization.

An important problem is to ascertain sufficient conditions for a local effective field theory to

emerge. For perturbative dynamics, this is difficult, since locality relies on the system losing mem-

ory of its interaction with the environment, but the relaxation timescale is long at weak coupling.

Consequently, there aren’t simple microscopic models from which a local non-unitary open quantum

effective field theory has been systematically derived. This question can, however, be tackled directly

in holographic systems, where the dynamics is intrinsically strongly coupled. Moreover, these holo-

graphic environments are fast scrambling and maximally ergodic in their dynamics, leading to a simple

dynamics of probe effective field theories, as argued in [395].

A prototype model of this is the aforementioned quantum Brownian motion, which as argued

in [396, 397] can be understood as the dynamics induced on a probe quark in a thermal plasma

of a strongly coupled holographic CFT. Building on progress in real-time AdS/CFT [241, 398–401],

especially [402], there has been renewed interest and progress in this subject. Salient results to date

include non-linear and non-Gaussian Langevin dynamics (including an effective field theory that probes

out-of-time-order observables) [403–405], a broad paradigm for discussing open quantum systems for

probes of thermal plasmas [395] and for studying systems at finite density [406, 407]. An interesting

outcome of these explorations is a systematic construction of a Wilsonian open effective field theory

for systems with Goldstone modes [408–410].

4.5 Holographic complexity

The future interior region of a two-sided black hole spacetime is a wormhole whose length grows with

time. More specifically, the wormhole connecting the boundaries of a two-sided asymptotically AdS

black hole grows linearly with boundary time at late times. The size of the wormhole can be quantified

in several ways. For example, we can take the volume of a maximal bulk Cauchy slice anchored to

the boundary at a given time (a codimension-1 analogue of the RT formula) [214, 411, 412], or the

spacetime action of a Wheeler-de Witt patch (the causal domain of a bulk slice that reaches almost to

the boundary) [215, 413, 414]. With either definition, at late times the wormhole size grows linearly

at late times with coefficient equal to the black hole’s entropy.

What quantity in the boundary field theory does this growth correspond to? Susskind and collabo-

rators proposed that it corresponds to the circuit complexity of the boundary state [214, 215, 411, 413].

This idea is supported by a tensor-network picture, in which the tensor network describing the state

grows with time by adding more and more legs [108]. A cartoon of the time evolution of the state by

a quantum circuit also shows that generically the complexity grows linearly, with coefficient given by

the entropy, for times that are doubly exponential in the entropy. More quantitative evidence for the

correspondence between wormhole size and complexity comes from considering shockwave geometries,

in which energy is injected into the spacetime at the boundary, causing the horizon to jump outwards

and the size of the wormhole therefore to increase by a discrete amount [214]. On the CFT side, such

injections add to the circuit necessary to prepare the state, thereby increasing its complexity.

A different set of ideas connecting holography to a notion of complexity is path-integral opti-

mization, in which the bulk spacetime emerges from minimizing the number of operations required to
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prepare the state using a Euclidean path integral [238, 415, 416].

While each of these proposals does seem to capture important qualitative features of holographic

dualities, it remains to be seen how they are related to each other and in what regime (if any) they

are correct. The idea that circuit complexity has a simple bulk dual in holographic theories has also

led to a large amount of work attempting to define and quantify this notion in general field theories,

including free ones, as well as in quantum mechanics. Some of these directions were mentioned in §2.5.

5 Simulation

Quantum information also plays a growing role in attempts to simulate the physics of quantum field

theories. In the past, such simulations were carried out with classical computers, and quantum infor-

mation has already provided a rich set of new ideas and algorithms for classical simulation. Moreover,

we now have the prospect of simulating quantum field theories and quantum gravity with quantum

computers. We discuss these two cases in turn, starting with classical simulation.

5.1 Classical simulation

Take the case of Monte Carlo methods, a widespread and powerful suite of tools for classical simulation

of field theories. These methods allow efficient non-perturbative access to Euclidean path integrals

when the path integral does not possess a sign problem. Yet sign problems are common, especially in

systems with fermions, in systems at finite density, and in the context of real-time dynamics (e.g. [417]).

Given the serious constraints on Monte Carlo methods imposed by the sign problem, it is crucial to ask

whether the sign problem has larger physical significance. For example, is the sign problem a signal that

a system necessarily requires a quantum simulation to efficiently deal with it? Remarkably, the answer

is no: there is no conservation of difficulty and alternate methods that leverage structure in the physics

can completely bypass the sign problem. In particular, tensor network methods for classical simulation

provide a key example where entanglement ideas have led to powerful new classical simulation tools.

Tensor networks rose to prominence in the many-body physics community, especially in the context

of systems with one spatial dimension. The simplest kinds of tensor networks in widespread use are

1d matrix product states (MPS), and MPS methods have now evolved to the point where they almost

provide black-box routines for 1d physics. This includes everything from low-temperature equilibrium

physics to high-temperature charge and energy transport, and the key is an in-depth understanding

of the entanglement structure of these systems. Given the many similarities between many-body

models and lattice regulated field theories (in the Hamiltonian formalism), it is quite plausible that

these methods will have a major impact on field theory problems as well. Promising early steps have

already been taken, and there remains much to understand (see [418] for a review).

One class of phenomena where tensor networks have been surprisingly effective is the description

of transport phenomena in strongly-coupled systems. For these problems, we typically know that the

IR effective theory should be hydrodynamics, but matching to the UV is difficult. This is because

computing the transport coefficients requires understanding the microscopic quantum dynamics out to

hydrodynamic timescales. Remarkably, by adapting the setup to reduce entanglement generation, ei-

ther with specially designed coarse-grainings of the dynamics [419–421] or by using open systems [422],

tensor networks have given new access to transport properties of strongly interacting 1d systems. A

major open question is how to extend these ideas to low temperatures [423] and to 2d and beyond.
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5.2 Quantum simulation

These developments in classical simulation are changing the landscape of what is possible, but it still

seems inevitable that quantum simulation will also be called for. Indeed, many physical processes

presumably require an inherently quantum computational approach to simulation. And even for

problems where we have a plausible route to classical simulation, there is usually significant overhead

associated with using a classical description, so that for systems in higher dimensions and with more

degrees of freedom, quantum simulation will be necessary.

When discussing quantum simulation, a standard framework is to think about so-called quench

experiments where one prepares an initial state, evolves it in time, and then makes a final measurement.

Of these components, initial state preparation is often the most challenging [424]. One reason is that,

while we are familiar with preparing field theory states using Euclidean path integrals, the associated

imaginary time dynamics is not natural on a quantum device.

For example, if one is interested in scattering, then the initial state could correspond to a ground

state perturbed by a small number of excitations [424–426]. Alternatively, Gibbs states can be used

to describe processes at non-zero temperature and density, such as might be relevant in the early

universe or in heavy-ion collisions. The notions of state complexity discussed in §2.5 and §4.5 are

particularly relevant here, since more complex states by definition require more resources to prepare.

It is important to find methods to prepare field theory states and to estimate the resources required.

Here again, tensor networks provide an interesting technology, for example, MERA and DMERA

tensor networks have been shown to be able to represent simple UV completions of field theories

and can be adapted to give explicit quantum circuit prescriptions for building these states, e.g. [427–

431]. However, much remains to be understood here, especially when dealing with gauge symmetry and

related ideas, e.g. [432–434].

In the context of resource estimates, the formal framework of resource theories is useful. En-

tanglement is one well-known example of a resource, but there are many others. One that has re-

ceived attention very recently is known as magic [435]. This is a resource for qubits analogous to

non-Gaussianity in field theory, with non-magical states corresponding to a special class known as sta-

bilizer states (very important in error correction) and with magic being a potentially relevant resource

for some fault tolerant quantum computation schemes. Preliminary studies of magic in many-body

systems and lattice-regulated field theories have been undertaken, with one result being that a simple

2d CFT was shown to be highly magical [436]. Here too, much remains to be explored, especially

in formulating more continuum-friendly notions of magic and other resources and in designing new

simulation methods, classical and quantum, that take advantage of the structure of magic in states of

interest. These methods should also connect to older ideas exploring the phase space representation

of QFT and the use of Wigner functions, e.g. [437], and more recent studies of negativity, e.g. [438].

Looking broadly, all of these approaches to simulation stand to teach us a great deal about the

physics of strongly coupled field theories and quantum gravity. The value of simply understanding how

in principle to formulate such problems as tractable simulations should not be underestimated, similar

to the way Wilson’s deep insights into renormalization were catalyzed by asking how one could at least

in principle simulate QFT on a classical computer. In terms of particular applications, strongly coupled

dynamics is one area where simulations will plausibly have a major impact, especially as quantum and

hybrid classical-quantum methods give access to more complex systems. Another area where we

expect significant impact is simulations of quantum gravity. For example, holographic duality predicts

surprising phenomena from the point of view of QFT and quantum information, such as teleportation

via traversable wormholes, that might teach us more about the requirements for spacetime to emerge
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from microphysics [439–443]. One can also investigate similar holographic simulations of string theory,

e.g. [444].

We should also mention the very real prospect that better understanding of field theories may

feed back into quantum information science. For example, the toric code, which is a leading candidate

for error correction in various concrete fault-tolerant schemes, is in essence a Z2 gauge theory in the

extreme deconfined limit [445]. Other kinds of strongly coupled gauge theories, especially those of

relevance for quantum gravity [446], might bring additional insights and models for quantum error

correction.

6 Outlook

As we have described throughout this white paper, there has been remarkable progress in the past

decade or so in our understanding of quantum information in QFTs. Nonetheless, many important

questions remain to be addressed. Some of these we have noted in the context of our discussion in the

text. Here we outline some of the big-picture questions, where we hope progress will be made over the

next few years.

What is QFT?: Despite its wide success as a framework for understanding the fundamental prin-

ciples of nature, it is fair to say that we don’t yet fully understand the nature of QFT. In addition

to the growing role of information-theoretic methods applied to QFT reviewed in this white paper,

the past decade has also seen new geometric approaches to computing observables such as scattering

amplitudes, further development of non-perturbative bootstrap techniques, a better understanding

of symmetries and charges, and ever deeper connections to many areas of mathematics. All of these

developments have in different ways lent insights far transcending the standard textbook treatments of

QFT. One natural question is: Which of these ingredients is a defining feature of the theory? What is

the canonical toolkit of a future quantum field theorist, as presented in a textbook a couple of decades

hence? While these questions might be intangible at present, part of the progress will likely come

from asking questions about the interconnections among these developments. Some of these are easier

to fathom, being already somewhat developed, such as the connection between symmetry charges and

operator algebraic formulations of QFT. On the other hand, while we have several different proofs

of quantities that are RG monotones (c, F , and a theorems), as yet we still lack a unified picture.

Nevertheless, understanding how the information theoretic data in QFTs relates to other observables,

and developing further techniques to extract them, could provide valuable insight towards this goal.

Gauge invariance and information: In theories with gauge-invariant degrees of freedom, the

decomposition of algebras comes with non-trivial centers and related superselection sectors. Several

open questions remain in this context. What is the significance of algebraic centers for lattice gauge

theories in the continuum limit? What is the role of topological entanglement in gapless theories? How

do we describe gauge theory entanglement in the algebraic approach? What of interacting theories in

the algebraic approach? Does the change in the nature of the von Neumann algebras, noted in the case

of large N confinement-deconfinement transition [447, 448], lead to new insights into the dynamics of

confining gauge theories?

From fields to gravity and strings: In the gravitational context, we now understand, at the

semiclassical level, the relevance of the generalized entropy, an object that combines a Bekenstein-

Hawking-like classical term with a quantum von Neumann entropy. It has played a crucial role both

in the development of gravitational entropy bounds, and in the recent discussions of the black hole
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information paradox. An open problem is to better understand this quantity beyond the semiclassical

regime. How does one pick subregions and define their algebras in this setting in a relational manner,

maintaining diffeomorphism invariance? How does one define these quantities in string theory? Can

the information theory approach shed light on the question of which effective field theories can be con-

sistently completed into a quantum theory of gravity, and which lie in the swampland? In the context

of holography, it is interesting to ask about the information-theoretic nature of QFT wavefunctions.

In particular, which aspects of their entanglement structure are central for the holographic entropy

inequalities, and what does this tell us about quantum gravity? Is there a principled way to discern

which of the various conjectures relating to complexity are valid, and what they are telling us about

the nature of quantum gravitational wavefunctions?

Real-time dynamics and cosmology: QFT dynamics in cosmological spacetimes shares many

characteristics of open quantum systems. As outlined above, to date, there isn’t a clean description

of the effective dynamics of quantum fields in an open system, and many questions remain to be

addressed. Progress in these directions should help us better formulate the issues we need to confront

in the cosmological context, be it the nature of observables, the temporal evolution of information-

theoretic quantities such as von Neumann entropy, and so on. It would furthermore be interesting to

tie these to the study of cosmological correlators, which has been tackled using bootstrap methods.
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[437] S. Mrówczyński and B. Müller, Wigner functional approach to quantum field dynamics, Physical

Review D 50 (Dec, 1994) 7542–7552.

[438] N. Klco, D. H. Beck and M. J. Savage, Entanglement Structures in Quantum Field Theories:

Negativity Cores and Bound Entanglement in the Vacuum, arXiv e-prints (Oct., 2021)

arXiv:2110.10736, [2110.10736].

[439] P. Gao, D. L. Jafferis and A. C. Wall, Traversable wormholes via a double trace deformation, Journal

of High Energy Physics 2017 (Dec., 2017) 151, [1608.05687].

– 44 –

http://dx.doi.org/10.1088/1742-5468/2009/02/p02035
http://dx.doi.org/10.1103/physrevb.103.115148
http://dx.doi.org/10.1103/physrevb.103.115148
http://dx.doi.org/10.1126/science.1217069
http://dx.doi.org/10.1126/science.1217069
https://arxiv.org/abs/2012.07243
http://dx.doi.org/10.1103/PhysRevLett.127.212001
https://arxiv.org/abs/2102.05044
https://arxiv.org/abs/1109.5334
http://dx.doi.org/10.21468/SciPostPhys.10.6.143
https://arxiv.org/abs/2004.11952
https://arxiv.org/abs/1711.07500
https://arxiv.org/abs/2109.09787
http://dx.doi.org/10.1103/PhysRevLett.119.010603
https://arxiv.org/abs/1703.04798
http://dx.doi.org/10.1103/PhysRevD.104.074505
https://arxiv.org/abs/2009.11802
https://arxiv.org/abs/2011.06576
http://dx.doi.org/10.1103/PhysRevD.102.094501
https://arxiv.org/abs/2005.10271
http://dx.doi.org/10.1103/physreva.71.022316
http://dx.doi.org/10.1103/PhysRevB.103.075145
http://dx.doi.org/10.1103/PhysRevB.103.075145
https://arxiv.org/abs/2007.01303
http://dx.doi.org/10.1103/physrevd.50.7542
http://dx.doi.org/10.1103/physrevd.50.7542
https://arxiv.org/abs/2110.10736
http://dx.doi.org/10.1007/JHEP12(2017)151
http://dx.doi.org/10.1007/JHEP12(2017)151
https://arxiv.org/abs/1608.05687


[440] J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortschritte der Physik 65

(May, 2017) 1700034, [1704.05333].

[441] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv e-prints (Apr., 2018)

arXiv:1804.00491, [1804.00491].

[442] A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G. Salton et al., Quantum Gravity

in the Lab: Teleportation by Size and Traversable Wormholes, arXiv e-prints (Nov., 2019)

arXiv:1911.06314, [1911.06314].

[443] S. Nezami, H. W. Lin, A. R. Brown, H. Gharibyan, S. Leichenauer, G. Salton et al., Quantum Gravity

in the Lab: Teleportation by Size and Traversable Wormholes, Part II, arXiv e-prints (Feb., 2021)

arXiv:2102.01064, [2102.01064].

[444] H. Gharibyan, M. Hanada, M. Honda and J. Liu, Toward simulating superstring/M-theory on a

quantum computer, Journal of High Energy Physics 2021 (July, 2021) 140, [2011.06573].

[445] A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303 (Jan, 2003) 2–30.

[446] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT,

JHEP 04 (2015) 163, [1411.7041].

[447] S. Leutheusser and H. Liu, Emergent times in holographic duality, 2112.12156.

[448] E. Witten, Gravity and the Crossed Product, 2112.12828.

– 45 –

http://dx.doi.org/10.1002/prop.201700034
http://dx.doi.org/10.1002/prop.201700034
https://arxiv.org/abs/1704.05333
https://arxiv.org/abs/1804.00491
https://arxiv.org/abs/1911.06314
https://arxiv.org/abs/2102.01064
http://dx.doi.org/10.1007/JHEP07(2021)140
https://arxiv.org/abs/2011.06573
http://dx.doi.org/10.1016/s0003-4916(02)00018-0
http://dx.doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://arxiv.org/abs/2112.12156
https://arxiv.org/abs/2112.12828

	0 Executive summary
	1 Introduction and themes
	2 Defining and characterizing quantum information
	2.1 Entanglement entropy: definition and basic properties
	2.2 Entanglement entropy: methods
	2.3 Entanglement in holography, gravity, and string theory
	2.4 Mixed-state entanglement and correlation
	2.5 Complexity

	3 Symmetry, topology, and renormalization group flows
	3.1 Symmetries, charges, and superselection sectors
	3.2 RG flows and c-theorems
	3.3 Classification of phases

	4 Dynamics
	4.1 The spreading of information
	4.2 Scrambling and chaos
	4.3 Energy and entropy bounds
	4.4 Open quantum systems
	4.5 Holographic complexity

	5 Simulation
	5.1 Classical simulation
	5.2 Quantum simulation

	6 Outlook

