
Deploying in-network caches in support of distributed scientific
data sharing

Alex Sim
Lawrence Berkeley National Laboratory

Berkeley, California, USA
asim@lbl.gov

Ezra Kissel and Chin Guok
Energy Sciences Network
Berkeley, California, USA

{kissel,chin}@es.net

ABSTRACT
The importance of intelligent data placement, management, and
analysis has become apparent as scientific data volumes across the
network continue to increase. To that end, we describe the use of
in-network caching service deployments as a means to improve
application performance and preserve available network bandwidth
in a high energy physics data distribution environment. Details
of the software and hardware deployments, performance consid-
erations, and cache usage analysis will be described. We include
thoughts on possible future deployment models involving caching
node installations at the edge along with methods to scale our
approach.

1 INTRODUCTION
With advances in instruments and computing hardwares, scientific
experiments and simulations generate an increasing amount of data,
and share the data among geographically distributed users. Existing
datasets and the cost of the storage hardware and its maintenance
limit the number of data sources, and data distribution requires
higher network bandwidth for timely data delivery. Some datasets
are popular among the users and transferred multiple times to the
same institution or institutions in the same region for the different
users as well as for the same user for various reasons. Also, users
move the data from the data sources to multiple computing loca-
tions depending on when the computing jobs run for the user. Some
type of content delivery network or hierarchical data distribution
infrastructure can accommodate sharing data among geographi-
cally distributed users by pre-staging popular datasets that many
users might use in the same region or same institution.

In-network caching provides a different type of content delivery
network for scientific data infrastructure, supporting on-demand
temporary caching service. It also enables for a network provider
to design data hotspots into the network topology, and to manage
traffic movement and congestion by data-driven traffic engineering.
Regional in-network caching strategy would also reduce the data
access latency for the users and increase the overall computing
application performance. For the network providers, in-network
caching service would decrease traffic bandwidth demands on busy
links. This is especially relevant to the High Energy Physics (HEP)
community with the LHC instrument at CERN and Tier-1 sites for
the ATLAS at Brookhaven National Laboratory and CMS experi-
ments at Fermi National Accelerator Laboratory.

For example, Southern California Petabyte Scale Cache (SoCal
Repo) [7] based on XCache [1, 2, 8, 16] consists of 24 data cache
nodes with approximately 2.5PB of storage space, supporting client
computing jobs for High-Luminosity Large Hadron Collider (HL-
LHC) analysis in Southern California. The SoCal Repo has cache

nodes at the ESnet junction in Sunnyvale, at Caltech, and at UCSD.
The system has been used by the CMS collaboration for real CMS
data analysis as part of the Caltech and UCSD Tier-2 center pro-
duction infrastructure. We observed that by sharing dataset in the
regional data cache, the network traffic demand was reduced by
a factor of 2 on the average over the observed period. Studying
the characteristics of the data access patterns [5] has enabled new
strategies for how the needed resources such as compute, storage,
and network can be allocated.

In this paper, we build upon our prior analysis work [5] by pro-
viding an update on the existing caching infrastructure, and we
include sample analysis results from HEP jobs using the SoCal
Repo since our most recent node deployments have not yet pro-
duced any data. We introduce DTN-as-a-Service (DTNasS) as our
approach for hosting in-network caching and storage services for
scientific datasets within ESnet, and we describe our methodology
and experiences in deploying new caching hardware within ESnet
points-of-presence. Finally, we discuss future deployment opportu-
nities driven by our data-driven analysis and flexible provisioning
framework.

2 BACKGROUND
2.1 Energy Sciences Network (ESnet)
The Energy Sciences Network (ESnet) is the US Dept of Energy
(DOE) Office of Science’s high-performance network user facil-
ity, delivering highly-reliable data transport capabilities optimized
for the requirements of large-scale science. ESnet is stewarded by
the Advanced Scientific Computing Research Program (ASCR) and
managed and operated by the Scientific Networking Division at
Lawrence Berkeley National Laboratory (LBNL). ESnet acts as the
primary data circulatory system for science by interconnecting the
DOE’s national laboratory system, dozens of other DOE sites, and
150 research and commercial networks around the world. It allows
tens of thousands of scientists at DOE laboratories and academic
institutions across the country to transfer vast data streams and ac-
cess remote research resources in real-time. ESnet exists to provide
the specialized networking infrastructure and services required by
the national laboratories, large science collaborations, DOE user
facilities, and the DOE research community. All together, ESnet
provides a foundation for the nation’s scientists to collaborate on
some of the world’s most important scientific challenges, including
energy, biosciences, materials, and the origins of the universe. Sci-
ence data traffic across its network has grown at around 60% each
year, and traffic has exceeded an exabyte per year since 2019.
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2.2 High Energy Physics (HEP)
TheHEP experiments have been generating large volume of data [4],
especially from the LHC in Switzerland. Experiments such as AT-
LAS and CMS have thousands of globally geographically distributed
collaborations, and the efficient data distribution infrastructure has
been explored for a long time, delivering Petabytes of data. The
LHC community has been preparing the increase in annual data
volume, and one of the approaches is the data replication between
regional "Data Lakes" [6] and the mixture of remote access and
caching within those lakes. A regional data lake is expected to
serve multiple computing centers within that region.

2.3 DTN-as-a-Service (DTNaaS)
Both the Open Science Grid (OSG) [11] and broader HEP commu-
nity have embraced software containers as part of their data and
analysis pipelines where container deployment solutions such as
HELM+Kubernetes [14] and SLATE-CI [3] have become common-
place. As a result, a number of existing service container workflows
(often using Docker andDocker Hub) are beingmaintained in public
repositories and container registries. Open source software and tool-
ing around containers is also feature-rich and improving with time.
In contrast with virtual machines (VMs), containers are generally a
lighter-weight option that support the execution environment for
single services, and have benefits when ease of software packaging,
distribution, and upgrade cycles are considered.

The deployment we describe makes use of a platform known
as DTN-as-a-Service (DTNaaS) [10] being developed within ES-
net, which provides a tailored container orchestration framework
focused on the configuration and tuning options relevant to high-
performance data movement services. Underpinning the design
philosophy was a recognition that more general, feature-rich plat-
forms such as Kubernetes may not always provide an ideal interface
for single-service container instances where automated resource
scaling and migration are not primary concerns. The ability to
control specific features at the container level, such as attaching
multiple network interfaces (and interface types), and dual-stack
configurations for IPv4 and IPv6 at a fine granularity with minimal
setup cost, were primary design goals. While the initial focus has
been on traditional Data Transfer Node (DTN) software endpoints,
the framework has been designed to be flexible enough to accommo-
date many types of software containers that have high-throughput
and advanced networking configuration requirements. Thus, a DT-
NaaS solution that can support performance-oriented data mover
services with modest support overheads was an ideal fit for de-
ploying OSG XCache software containers from an "in-the-network"
perspective.

3 CACHE USAGE ANALYSIS
We collected data access measurements from the SoCal Repo be-
tween July 2021 and Dec. 2021, where HL-LHC analysis jobs re-
quested data files for users. The SoCal Repo has 24 cache nodes
regionally at Caltech, UCSD and ESnet, consisting of approximately
2.5PB of storage. We studied how much data is shared, how much
network traffic volume is consequently saved, and how much the
in-network data cache contributes to the resource management and
performance. Additionally, we analyzed data access patterns and

observed the impacts of new cache nodes to the regional data repos-
itory. The data access pattern study may show a few characteristics
of the data sharing, cache utilization, and network utilization where
shared data directly contributes to the network traffic savings.

Table 1: Summary statistics for data accesses at the SoCal
Repo from July to Dec. 2021

# of accesses data transfer size (TB) shared data size (TB)
July 2021 1,182,717 385.78 519.25
Aug 2021 1,078,340 206.94 313.46
Sep 2021 1,089,292 206.96 257.18
Oct 2021 1,058,071 412.18 141.91
Nov 2021 878,703 649.30 82.67
Dec 2021 983,723 1,257.89 130.03
Total 6,270,846 3,119.07 1,444.51

Daily average 34,838.03 17.42 8.03

Table 1 shows the basic statistics on the data access activities
for all caching nodes during the study period (from July to Dec.
2021). The "data transfer size" column in Table 1 indicates the data
volume resulting from the "cache misses", when a data file was
transferred from the remote data source. For cache misses, any
caching nodes in the SoCal Repo did not have the data, resulting
in a data transfer from the remote site to one of the caching nodes.
The "shared data access size" column refers to the data volume from
the "cache hits", when the data file was shared from the cache. The
shared data accesses correspond to the network traffic savings. As
the new cache nodes were added every month since Sep 2021, the
percentage of shared data size decreases with time because the
requests would fill the new cache nodes first by the policy. The
percentage of the share size would be maintained at a certain level
after the cache nodes are full.

Figure 1: Daily total data access sizes and proportion of total
access sizes on each node in SoCal Repo

Figure 1 shows the daily total data access size (in TB) to the
SoCal Repo including both cache hit sizes and cache miss sizes, and
ratio among the cache nodes. It indicates that there are new nodes
added to the SoCal Repo since Sep. 2021 showing that the majority
of the activities, in particular data transfers occurred on new cache
nodes since Sep. 2021.

Figure 2 shows the daily data transfer sizes (in TB) from remote
sites to the SoCal Repo upon the user request for the data. Figure 3
shows the daily shared data sizes (in TB) which corresponds to the
network traffic savings by the repeated accesses to the same data
(cache hits). Both Figures 2 and 3 indicates a new trend since the
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Figure 2: Daily total cache miss sizes (data transfer volume)
and proportion of each node in SoCal Repo

Figure 3: Daily total cache hit sizes (shared data volume) and
proportion of each node in SoCal Repo

new cache nodes, which is 10 times larger in the storage space than
the existing nodes, have been added to the SoCal Repo in Sep. 2021,
and more data transfer activities are observed on new cache nodes.

Figure 4: Daily proportion of the cachemisses and cache hits
in SoCal Repo

Figure 4 shows the daily proportion of the cache misses and
cache hits, and also shows that there are a large portion of the
cache hits in the daily accesses indicating network traffic savings.

Figure 5 shows the daily traffic frequency reduction rates from
the data sources to the local cache, indicating the ratio of the number
of daily data transfers occurring regardless of the data transfer size.
The average traffic frequency reduction rate is 3.43 over the study
period. Some nodes indicate very high rates as the most of the
connections are the shared data in the local cache.

Figure 5: Daily network traffic frequency reduction rates in
SoCal Repo

Figure 6: Daily network traffic volume reduction rates in So-
Cal Repo

Figure 6 shows the daily network traffic volume reduction rates,
indicating the ratio of the daily total data volume being moved from
remote sites to the local cache. It also shows the effect of the new
cache nodes being added to the SoCal Repo since Sep. 2021 while
the existing cache nodes maintain higher rates of the shared data.
The red line on the bottom plot is for the moving average over a
week. The average traffic volume reduction rate is 1.47 during the
study period (1.68 until Nov 2021).

Figure 7: Cache miss size with 1-weekmoving average in So-
Cal Repo

Figure 8: Cache hit size with 1-week moving average in So-
Cal Repo
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Figure 9: US deployment of caches within ESnet. Two new
caching node deployed in Boston and Chicago with con-
tainer services managed by a DTNaaS controller instance lo-
cated at ESnet’s LBNL datacenter.

Figure 7 shows the data transfer sizes for cache misses with
1-week moving average. Figure 8 shows the shared data sizes for
cache hits with 1-week moving average.

4 CACHE NODE DEPLOYMENTS
Two additional caching nodes have been deployed within ESnet to
supplement the existing Sunnyvale node within the broader SoCal
Repo (Fig. 9). These nodes were installed as physical servers at ESnet
points of presence (PoP) in Boston and Chicago. The specifications
of each node is as follows: dual-socket Intel Xeon Gold 5220S CPUs,
384GB RAM, 12x Micron 9300 PRO 15.36TB NVMe SSDs, and Mel-
lanox ConnectX-5 100G network interface cards (NICs). The node
storage was configured to provide an effective 165TB of available
capacity each while providing suitable performance to match the
expected XCache usage given 100G network connectivity. Figure
10 shows the results of using the elbencho1 storage benchmarking
tool on the caching filesystem exposed to a container.

Part of our strategy has been to explore the logistics of hosting
data movement services within an international science network
such as ESnet where networking services, not application services,
have been the traditional offering. The development of DTNaaS is
one ongoing effort to help bridge this technology gap, and below
we describe some of the architectural and technical decisions that
have been put into practice.

4.1 Network Connectivity
A typical DTNaaS deployment relies on a centralized controller
that contacts one or more nodes to provision and manage ser-
vice containers. The controller runs in a data center environment
while the DTNaaS service nodes are located at a wide-area network
point-of-presence. The low-bandwidth communication between
the controller and service nodes forms the management network
and is achieved using a secured, dedicated control interface as di-
agrammed in Figure 11. A number of agent processes are run in

1elbencho: https://github.com/breuner/elbencho

Figure 10: Storage subsystem performance across a range of
synthetic data sets.

containers to provide the DTNaaS management functionality over
this control connection, and their access is facilitated by using a
standard Docker bridge networkwith processes binding to localhost
([::1]). A reverse proxy provides encrypted external endpoints to
these locally bound processes via the host networking namespace.

The high-speed dataplane is realized through physical connec-
tions from the node’s Mellanox NIC ports directly to ESnet routers,
and flows originating from or terminating at the XCache service
container make use of these links. Key requirements for these con-
nections included effective network isolation from the baremetal
host OS and low virtualization overhead to achieve line rate perfor-
mance. To that end, macvlan container networks were configured
in 802.1q trunk bridge mode and attached to the parent VLAN-
tagged service interfaces instantiated in the host namespace. The
DTNaaS controller was then able to map the dataplane networks
to the XCache container configuration and automatically expose
the macvlan interfaces to each running container as appropriate.

Generally, the Linux macvlan sub-interface type provides iso-
lation from the host networking namespace at layer 2. From an
external ESnet switch or router perspective, a container with a
macvlan interface will appear as another unique host on the net-
work with a unique MAC and/or IP address. For the baremetal host
to communicate with the running container, another macvlan sub-
interface must be created on the host and local routing adjusted for
any configured layer 3 subnet(s). In a similar fashion, another con-
tainer may also communicate within themacvlan subnet if attached
to the same brdiged container network. In this manner DTNaaS
service containers provide separation between networks allocated
for each service container and reduce the complexity of a single
filtering rule set maintained alongside the host network namespace.

An additional complexity in our deployment involves the require-
ment that our XCache containers are running both in a dual-home
and dual-stack configuration. As shown in Figure 11, two sepa-
rate routing instances are exposed to the containers via macvlan
interfaces: 1) a global routing service to provide a default route
and support common networking tasks such as name resolution,
and 2) an LHCONE L3VPN service to provide connectivity to other
HEP data sources and peers. In each instance, both IPv4 and IPv6
addressing is configured in the container networks. To support this

https://github.com/breuner/elbencho
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connectivity model, the DTNaaS controller was extended so that
multiple networks (i.e. interfaces) could be mapped to service pro-
files and dual-stack addressing specified for each network instance,
allowing our multi-node deployment to be managed in a centralized
and automated manner.

4.2 Network Security
The DTNaaS management network is secured using a combination
of a reverse proxy service (as noted above) and host-based filtering
using standard iptables rules. In addition, our deploymentmakes use
of network ACLs that are implemented on the ESnet router platform
to provide ingress and egress filtering for both the control and
dataplane interfaces on each node. The routing instances exposed
to the XCache container via the macvlan networks have unique
ACLs applied; for example, only the XCache TCP port is allowed for
ingress in the LHCONE instance. This ability to rely on the network
infrastructure to provide packet filtering simplifies any otherwise
necessary host and container configuration considerably.

In the absence of, or in addition to, networkACL support,macvlan
bridges can be secured using features available within the Linux
kernel’s nftables subsystem. To implement filtering when using
container macvlan networks, use of the netdev address family table
available in nftables may be employed. This mechanism allows for
inspecting packets as they arrive directly off of a specific interface,
before they hit any prerouting chains. Such an ingress hook can be
configured from the host network namespace since it accesses the
physical interface directly, and this approach affords more flexibility
and performance but at the cost of some stateful features. As the
Linux netfilter mechanisms continue to evolve [13, 15] we expect
to integrate additional capabilities into the DTNaaS framework to
support a variety of filtering and traffic management options for
managed containers.

4.3 Container Management
The CMS XCache container images managed by DTNaaS for this
deployment are sourced from the OSG Docker Hub Community
Organization2. The DTNaaS framework additionally makes use of
an internal container registry that performs security vulnerability
scanning using Trivy [9, 12] as part of a larger constant integration
(CI) pipeline for managed images. Automation ensures we pull the
latest OSG-maintained images from Docker Hub and have them
pass through our CI infrastructure before being instantiated on the
physical infrastructure nodes.

Finally, our DTNaaS approach includes tooling to allow for rapid
startup or shutdown of distributed caching instances as well as the
ability to maintain a history of image revisions for rollback to a
prior version if necessary. A command line interface exposes the
most sysadmin-friendly mechanisms for common operational tasks,
while a controller API is also available for more programmatic
integration.

As of this writing, the installation and verification of the two
caching nodes in Boston and Chicago has been completed and we
are awaiting final integration into the CMS workflow. The addi-
tional caching infrastructure will form the nucleus of Midwestern

2cms-xcache image: https://hub.docker.com/r/opensciencegrid/cms-xcache
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Figure 11: The DTNaaS networking configuration for cms-
xcache deployments. Each service container is dual-homed
and dual-stacked (IPv4, IPv6) using macvlan interfaces for
the high-speed dataplane. The control interface provides in-
frastructure and service management connectivity.

(Chicago) and Eastern (Boston) regional CMS Data Lakes to im-
prove the data accessibility of nearby computing facilities, and their
placement within the ESnet production network is anticipated to
aid in delivering data to peering sites with minimal friction.

5 CONCLUSION AND FUTUREWORK
In this paper, we described our design, deployment and experience
on DTN-as-a-Service (DTNasS) as our approach for supporting in-
network caching and storage services for scientific datasets within
ESnet. We also described observations on the data access trends
in the existing SoCal Repo for HEP analysis jobs at Caltech and
UCSD. In-network data cache enables reduction of the redundant
data transfers and consequently network traffic savings. During
the study period, 1.4PB of the network traffic volume savings was
observed in the SoCal Repo, and the study opens other leads to the
network engineering and caching policies. Data access trends such
as Figures 8 and 7 would be able to predict the trend of the network
traffic demand in the regional cache. Also, cache hits analysis such
as Figure 3 would enable different types of the caching policy based
on the dataset popularity. We plan to extend this analysis to observe
caching trends with the inclusion of the two new nodes as described,
and we plan to study data-driven network traffic engineering and
traffic volume forecasting as well as locally customized caching
policy in the future.
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Future directions for our DTNaaS approach include considering
the positioning and flexible service deployments in support of sci-
ence applications over the entirety of the ESnet footprint, where
geographic boundary considerations along with data locality re-
quirements will influence placement. The temporal dimension is
another consideration for DTNaaS feature development, where on-
demand, dynamic provisioning of data services may be suitable for
more ephemeral or time-bound acquisition pipelines. We also hope
to more generally package this framework as a means for other facil-
ities or end users to effectively manage and optimize containerized
data movement services within their own infrastructures.
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