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Guilherme Guedes7, Brian Quinn Henning8, Teppei Kitahara9,
Hao-Lin Li10, Xiaochuan Lu11, Camila S. Machado12, Adam Martin13,

Tom Melia14∗, Emanuele Mereghetti15, Hitoshi Murayama16, Christopher
W. Murphy, Jasper Roosmale Nepveu17, Sridip Pal18, Frank Petriello19†,

Yael Shadmi20, Jing Shu21, Yaniv Weiss22, Ming-Lei Xiao19, Jiang-Hao Yu21

1 Dipartimento di Fisica, Universita’ degli Studi di Milano-Bicocca, Milan, Italy;Istituto
Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Milan, Italy

2 High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA;

3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of
Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan;
Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo

113-0033, Japan
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Abstract

In this contribution to the Snowmass 2021 process we review theoretical develop-
ments in the Standard Model Effective Field Theory (SMEFT) with a focus on effects
at the dimension-8 level and beyond. We review the theoretical advances that led to
the complete construction of the operator bases for the dimension-8 and dimension-
9 SMEFT Lagrangians. We discuss the possibility of obtaining all-orders results in
the 1/Λ expansion for certain SMEFT observables as well as the current status of
renormalization group running and implications for positivity, and briefly present the
on-shell approach to constructing SMEFT amplitudes. Finally we present several new
phenomenological effects that first arise at dimension-8 and discuss the impact of these
terms on experimental analyses.

1 Introduction

The Standard Model (SM) has so far been remarkably successful in describing all data
coming from both low-energy experiments and high-energy colliders. Although the search for
new particles is continuing, it is becoming increasingly important to search for potentially
small and subtle indirect signatures of new physics. A convenient theoretical framework
for performing such searches when only the SM particles are known is the SM effective
field theory (SMEFT) which contains higher-dimensional operators formed from SM fields.
The SMEFT is an expansion in an energy scale Λ at which the effective theory breaks
down and new fields must be added to the Lagrangian. The leading dimension-6 operators
characterizing lepton-number conserving deviations from the SM have been classified for
some time now [1–3].

A complete list of the independent dimension-7 SMEFT operators has been worked out
[4]. Less is known about terms at dimension-8 and beyond. The number of operators
at each order in the expansion has been determined [5–7], and ideas and tools have been
developed towards systematically constructing these operators [8–11]. Recently the complete
dimension-8 SMEFT basis was constructed via brute force in [12] and was systematically
generated in [13] and the complete dimension-9 SMEFT basis was constructed as well [14, 15].
More recently a general procedure, implemented in a Mathematica package ABC4EFT [16],
has been proposed to construct the independent and complete SMEFT operator bases up to
any mass dimension.

It is our goal in this contribution to review the status of the SMEFT at dimension-8
and beyond, and motivate future studies on this topic. We will discuss the advances that
have led to a complete construction of the operator basis at dimension-8, and the counting
of operators to all orders in 1/Λ. We will present examples where all-orders results in the
1/Λ expansion have been obtained. In several cases novel phenomenological consequences
appear first at dimension-8 or beyond. We will review such examples in this article.
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2 Operator counting and basis structure beyond dimension-6

The Hilbert series approach has been established to systematically enumerate operators
in phenomenological EFTs that are subject to redundancies (symmetry group, integration
by parts, equation of motion) [17–22], and was applied to the SMEFT in [5–7]. Hilbert series
are akin to partition or generating functions, containing detailed information about both the
number of operators and the structure of the operator basis with a given field content. A
breakdown of operators into those that are parity (P ) even and P -odd can be systematically
accounted for using Hilbert series methods [8]. In the white paper we will review these
techniques and how to further account for charge conjugation (C) [23], so as e.g. to enable
systematic identification of CP -odd operators at dimension-8 and above, which could have
particularly striking signatures.

The concept of a Hilbert series for EFTs is very straightforward: it is defined to be an
object which counts the number of independent operators. For example, we may wish to
count the number of operators of a given mass dimension, in which case the Hilbert series is

H =
∑
k

ckq
k, (1)

where ck is defined to be the number of independent operators of mass dimension k, while
q ∈ C is just a complex number (often called a “spurion”). For example, in the SMEFT
c5 = 2 (the Weinberg operator (LH)2 and its Hermitian conjugate) while c6 = 84 (again,
Hermitian conjugate operators are counted separately). It is often very helpful to refine
the definition of the Hilbert series to include detailed information about composition of
operators,

H =
∑
r1...rn

∑
s

crsφ
r1
1 φ

r2
2 · · ·φrnn Ds, (2)

where crs ≡ cr1...rns is defined to be the number of independent operators composed of r1

fields of type φ1, r2 fields of type φ2, . . . , and s (covariant) derivatives, while φi,D ∈ C are
spurions for the field content and derivatives. For example, in the SMEFT there are two
independent operators composed of two H fields, two H† fields, and two derivatives (e.g.

(∂µ|H|2)2 and (H†
↔
DµH)2) and hence cH2H†2D2 = 2.

Hilbert series techniques provide a way of computing the coefficients crs, i.e. of com-
puting the number of independent operators. Here “independent” means that the operators
give distinct physical contributions to scattering amplitudes, and hence the rules for “inde-
pendent” derive directly from the S-matrix. In particular, scattering amplitudes have all
particles on-shell and obey momentum conservation, as well as being Lorentz invariant and
invariant under potential internal and/or gauge symmetries. Operators in a Lagrangian are
in position space, O(x), in which case the position space avatars of “on-shell” and “momen-
tum conservation” are respectively equations of motion and integration by parts [22, 8].

A series of works [5, 6, 22, 7, 8] determined how to systematically enumerate operators
(equivalently, contact terms in amplitudes [8]) accounting for redundancies associated with
symmetries, equations of motion, and integration by parts. A summary of this calculation
is provided at the end of this section. Applying these tools to the SMEFT, Fig. 1 plots the
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number of independent operators evaluated for one and three generations of fermions up to
dimension 15.1
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Figure 1: The number of independent SMEFT operators up to dimension 15 [7]. Points
joined by the lower (upper) solid line are for one (three) generations of fermions. Dashed
lines are to guide the eye to the growth of the even and odd dimension operators.

As well as systematically enumerating EFT operators (with field content information),
Hilbert series contain important information about the structure of the operator basis, and
thus the structure of EFT. This is also relevant to operator construction at dimension-8 and
beyond, which we review briefly.

Ref [8] established the connection between S-matrices (i.e. amplitudes, or more specif-
ically contact interaction contributions to amplitudes), operator bases and partition func-

1Asymptotic formulae for these curves (that agree well even at low mass dimension) have been obtained
using the analytic techniques in [24]. The growth of the number of operators in the SMEFT, ρ(∆), is, for
Ng generations of fermions,

ρ(∆) ∼
∆→∞

N exp

2π
√

2

3
4

√
7Ng +

112

15
∆3/4 − π (5Ng + 32)

4
√

2 4

√
7Ng + 112

15

∆1/4 + 28ζ ′(−2)

 ,

where N is given by

N =
27783

(
7
5

)3/8
35/8π10 (15Ng + 16) 27/8

1024000 4
√

2∆55/8 (Ng + 3) 4 (2Ng + 5) 3/2
√

10Ng + 3
.

2



tions, and how the Hilbert series acts to tie together these ideas. Algorithms were given to
obtain basis functions (composed of kinematic scattering variables); these were used to ob-
tain results at all-orders in the EFT expansion for four- and five-point EFT amplitudes (or,
equivalently, all-order operator basis construction).2 The (all-order) Hilbert series functions
are an important input to this; in this sense, as laid out in [8], Hilbert series can be seen as
containing analytic information on scattering amplitudes in EFT.

Another key idea introduced in [8] was the use of conformal representation theory in
organizing the operator bases for a class of EFTs that includes the SMEFT (relativistic
EFTs, with linearly realized symmetry groups). This is not surprising, as an EFT in this
case is a small deformation of the free theory, which enjoys conformal symmetry. The Hilbert
series, properly weighted, is simply the partition function of the free theory. Under certain
assumptions (of weak coupling), this partition function can even capture asymptotic (high
temperature) behavior of the interacting theory [25]. Asymptotic (i.e. dimension → ∞)
analytic behavior of the SMEFT has been studied in [24].

A deeper structure of the operator bases for theories such as the SMEFT can be seen in
spinor-helicity variables; Refs. [10, 11] elucidated an underlying SL(2, C) × U(N) action—
dubbed ‘conformal-helicity duality’3—that governs EFT operator bases. This action can be
leveraged to systematically construct amplitudes/operators using the representation theory
(e.g. Young tableau) of the U(N) [11].

Another manifestation of the above mentioned role that conformal symmetry plays in
the structure of EFT operator bases can be seen through the appearance of selection rules
in the anomalous dimension matrix of the theory: certain entries are zero only for operator
bases consisting of conformal primary operators [26].

Ref [26] also exemplified the use of Hilbert series in conjunction with off-shell techniques
to calculate quantum corrections in EFT. Indeed, state-of-the-art calculations of quantum
corrections (e.g. in terms of loop order) are often in practice achieved with traditional
off-shell methodology. It was shown how Hilbert series can also be utilized to analyze the
basis structure of off-shell correlation functions. This is one way in which Hilbert series and
operator basis structure is relevant to beyond-leading-order studies of the SMEFT.

Another way in which the above is pertinent to loop calculations is down to the fact that
the Hilbert series and operator construction technologies introduced in Ref [8] work in d
spacetime dimensions (where a spinor-helicity approach does not in general exist), which is
relevant to calculations that employ dimensional regularization. In this direction, evanescent
operators (that vanish in integer dimensions, but can nevertheless leave an imprint through
loop corrections) can be studied using the above techniques; systematic enumeration of a
particular class of evanescent operators using Hilbert series has been presented [26]. This
particular class of operators appears at very high mass dimension in the SMEFT; it would
be interesting to see if other classes of evanescent operators in the SMEFT, such as those

2See Sec 5 of [8]; it is interesting the extent to which the all-order five-point results are considerably
more involved owing to the more non-trivial amplitude kinematics.

3With the ‘conformal’ referring to the SL(2, C) ' SO(3, 1) ⊂ SU(2, 2) ' SO(4, 2) action and a gener-
alized ‘helicity’ referring to the U(N) action, the representation theory of which determine each other (the
‘duality’).
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that appear at mass dimension 6 and beyond, can be analyzed systematically with Hilbert
series.

We succinctly summarize how to compute the Hilbert series; see [8, 23] for detailed
elaborations. Up to corrections that only represent relevant operators (i.e. operators with
dimension less or equal to four), the Hilbert series H can be computed as

H(φ, p) =

∫
dµInternal(y)

∫
dµSpacetime(x)

1

P (p, x)
Z(φ, p, x, y) . (3)

Here the integrals
∫

dµInternal(y) and
∫

dµSpacetime(x) are Haar measure integrals respectively
over the internal gauge symmetry groups and the Lorentz symmetry group. The factor

1

P (p, x)
= (1− px1)

(
1− px−1

1

)
(1− px2)

(
1− px−1

2

)
accounts for the integration by parts redundancies. The integrand Z(φ, p, x, y) is a graded
character of the representation generated by all fields’ single particle modules, whose specific
expression is

Z(φ, p, x, y) = PE

[∑
i

φi χ
Spacetime
i (p, x)χInternal

i (y)

]
. (4)

Here PE stands for the plethystic exponential; χSpacetime
i (p, x) and χInternal

i (y) are the char-
acters of the spacetime and internal symmetry representations of the single particle module
formed by the field φi (and its descendants), where the equation of motion redundancies are
removed.

The discrete symmetry parity (or charge conjugation) is an outer automorphism of the
corresponding spacetime (or internal) symmetry group. It hence extends the symmetry
group into disconnected branches. Specifically, parity P extends SO(4) into O(4) = SO(4)o
P = {O+(4), O−(4)} and charge conjugation extends SU(N) into S̃U(N) ≡ SU(N) o C ={
S̃U+(N), S̃U−(N)

}
. When these discrete symmetries are involved, one could apply Eq. (3)

to compute the Hilbert series on each of the branches

HC+P+

(φ, p) ≡
∫

dµS̃U+(N) (y)

∫
dµO+(4) (x)

1

P+ (p, x)
ZC+P+

(φ, p, x, y) , (5a)

HC+P−(φ, p) ≡
∫

dµS̃U+(N) (y)

∫
dµO−(4) (x̃)

1

P− (p, x̃)
ZC+P− (φ, p, x̃, y) , (5b)

HC−P+

(φ, p) ≡
∫

dµS̃U−(N) (ỹ)

∫
dµO+(4) (x)

1

P+ (p, x)
ZC−P+

(φ, p, x, ỹ) , (5c)

HC−P−(φ, p) ≡
∫

dµS̃U−(N) (ỹ)

∫
dµO−(4) (x̃)

1

P− (p, x̃)
ZC−P− (φ, p, x̃, ỹ) , (5d)
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and then combine them properly to obtain the following symmetric cases of the Hilbert series

Htotal = HC+P+

, (6a)

HC-even =
1

2

(
HC+P+

+HC−P+
)
, (6b)

HP -even =
1

2

(
HC+P+

+HC+P−
)
, (6c)

HC-evenP -even =
1

4

(
HC+P+

+HC+P− +HC−P+

+HC−P−
)
. (6d)

These Hilbert series tell us about the breakdown of operators into parity even and odd,
and/or charge conjugation even and odd cases.

3 Construction of the dimension-8 operator basis

A prerequisite to studying the phenomenology of dimension-8 operators in a consistent
fashion is the construction of a complete basis of dimension-8 operators. In this section we
will review the construction of the dimension-8 SMEFT basis with an emphasis on aspects
of the construction that are most germane to bases at d > 6. Historically, brute force was
the only method to construct an operator basis. This is the approach utilized in [12] and [15]
to generate bases of dimension-8 and -9 operators, respectively. The brute force approach is
reviewed in 3.1. A new development is the systematic approach of Refs. [13, 14, 16], which
can generate bases of operators to any mass dimension. This new, systematic approach
based on Young Tensors is reviewed in 3.2.

Note that these methodologies can be applied to other EFTs as well. For example,
Ref. [27] used brute force to construct a basis of dimension-8 operators in the Low En-
ergy Effective Field Theory below the Electroweak Scale (LEFT). Ref. [28] constructed
LEFT operators bases through dimension-9 using the Young Tensor approach of [13, 14, 16],
and Ref. [29] also used this systematic approach to construct bases of operators through
dimension-9 in the SMEFT extended with sterile neutrinos.

3.1 Brute Force Approach

Using brute force to construct an operator basis generally becomes increasingly difficult as
the mass dimension, d, increases. Firstly, as reviewed in Sec. 2, the number of operators grows
exponentially with d. Secondly, the most difficult cases are operators with derivatives and/or
repeated fields, and these entities become more common as d increases. In this subsection
we briefly sketch out how the aforementioned difficulties were overcome in Ref. [12].

The two complications arising in operators with derivatives are redundancies due to the
equations of motion (EOM) and integration by parts (IBP). The equations of motion can
neatly be accounted for by only retaining the highest weight Lorentz representations of

5



derivative operators [5, 6]. For example, two derivatives acting on the scalar Higgs field, H,
can be decomposed into four representations of the Lorentz group GL = SU(2)l × SU(2)r

D2H ∼ (0, 0)⊕ (0, 1)⊕ (1, 0)⊕ (1, 1). (7)

It is only the rightmost representation in (7) that needs to be retained in the basis. More
generally, for n derivatives acting on a scalar, φ, a fermion, ψ, or a field strength X we only
need to retain the following representations in the basis

Dnφ ∼ (DnH)(a1...an),(ȧ1...ȧn),

DnψL ∼ (DnψL)(a1...anan+1),(ȧ1...ȧn),

DnXR ∼ (DnXR)(a1...an),(ȧ1...ȧnȧn+1ȧn+2), (8)

where ai and ȧi are fundamental indices of the left and right components of the Lorentz group,
GL, and round brackets, (. . .), represent symmetrization of the indices. Redundancies due
to integration by parts can be handled using the method developed in Ref. [9]. It is perhaps
most easily illustrated with an example. Consider the field content l̄, e, H, BL along with
two derivatives where l and e are left- and right-handed leptons, respectively, and B is the
hypercharge field strength. There are four viable candidate dimension-8 operators with this
field content after eliminating operators that can be reduced via the equation of motion as
discussed above [12]

x1 = (Dl̄)a,(ȧċ)eḋ(DH)b,ḃB(cd)ε
acεbdεȧḋεċḃ,

x2 = l̄ċ(De)a,(ȧḋ)(DH)b,ḃB(cd)ε
acεbdεȧċεḋḃ,

x3 = (Dl̄)a,(ȧċ)(De)b,(ḃḋ)HB(cd)ε
acεbdεȧḃεċḋ,

x4 = l̄ċeḋ(D
2H)(ab),(ȧḃ)B(cd)ε

acεbdεȧċεḃḋ, (9)

To check for IBP redundancies we need to construct all the independent objects with the
same field content but one fewer derivative that transform as (1

2
, 1

2
) under the Lorentz group.

In this example, there are three such objects.

y1 = (Dl̄)a,(ȧċ)eḋHB(cd)ε
acεȧḋ,

y2 = l̄ċ(De)a,(ȧḋ)HB(cd)ε
acεȧċ,

y3 = l̄ċeḋ(DH)a,ȧB(cd)
1
2
εac(εȧċ + εȧḋ). (10)

Candidate IBP constraints are then given by Dyi = 0. However, some of these conditions
may be related, which can be determined after some linear algebra. In the example at hand,
it turns out all three equations, Dyi = 0, are linearly independent, and we therefore have
(Nx = 4) − (Ny = 3) = 1 operator with field content leBLHD

2. Accounting for flavor is
trivial in this example as the fermion fields are not repeated. In particular, for ng generations
of fermions we simply have n2

g operators in this example.
The process of counting operators is made non-trivial when there are repeated fields in

the operator. To handle these cases we use the method developed in Ref. [30]. Here, the
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Figure 2: Computing the flavor representations for the field content q3lBL. See the text for
details.

permutation group of n objects, Sn, plays a central role. This method is again perhaps
best highlighted with an example. Consider dimension-8 operators with field content q3lBL

where q is the left-handed quark doublet. Figure 2 summarizes the procedure pictorially,
and we proceed to describe it in detail in what follows. To start, for each field in the
operator, work out its representations under the gauge and Lorentz groups. This is trivial
for non-repeated fields. Here we only need to consider non-Abelian groups as invariance
under Abelian groups can be checked arithmetically. In Fig. 2 only the SU(2)l piece of GL is
considered as all the fields in the example are left-handed. Next multiply the rows together
to determine which representations of the repeated fields lead to gauge and Lorentz invariant
operators. Representations that fail this step are crossed out with green Xs in Fig. 2. It
is at this point that the permutation group, Sn, enters. Treat all the surviving gauge and
Lorentz representations as reps. of Sn. That is, the SU(3)c singlet becomes a {1, 1, 1} under
S3, the SU(2) doublets becomes {2, 1} under S3, and the quartet of SU(2)l becomes a {3}
under S3. The fourth row in Fig. 2, labeled Grassmanian, enforces the antisymmetry of
fermionic wavefunction or the symmetry of bosonic wavefunction. Then, to get the flavor
representations multiply the columns together. Fig. 2 is color coded such that the blue and
red flavor reps. have different Lorentz representations. The operators themselves are

Q
(1)

lq3B = εαβγεmnεjk(q
mα
p Cqjβr )(qkγs Cσ

µνlnt )Bµν ,

Q
(2)

lq3B = εαβγεmnεjk(q
mα
p Cσµνqjβr )(qkγs Cl

n
t )Bµν , (11)

where the color coding matches that of Fig. 2. The termsQ
(1)

lq3B andQ
(2)

lq3B contain 1
3
nlnq(2n

2
q+

1) and 1
3
nlnq(n

2
q − 1) operators, respectively. For three generations of fermions, nl = nq = 3,

this yields 57 and 24 operators, respectively.
There is an ambiguity in this example: given a contraction of Lorentz indices, how

should the SU(2)L gauge indices be contracted. The origin of the ambiguity is {2, 1} is

7



a two-dimensional rep. of S3, and its manifestation is a redundant operator. A priori,
Q

(3)

lq3B = εαβγεmjεkn(qmαp Cqjβr )(qkγs Cσ
µνlnt )Bµν is equally valid candidate to be the “blue”

term in Fig. 2. However, Q
(1)

lq3B and Q
(3)

lq3B are related [31]

−Q(3)

lq3B
prst

= Q
(1)

lq3B
prst

+Q
(1)

lq3B
rpst

. (12)

The p ↔ r symmetry of Q
(3)

lq3B does not allow for the antisymmetric {1, 1, 1} rep. of S3,

whereas all three of the blue flavor reps. in Fig. 2 are allowed by Q
(1)

lq3B indicating that it
should be included in the basis.

3.2 Young Tensor Approach

In Refs. [13, 32, 16, 14], a systematic approach based on the applications of Young
tableaux of symmetric groups and gauge groups is demonstrated for obtaining the explicit
forms of a complete operator basis including the detailed contraction patterns for gauge and
Lorentz indices, while the subtlety of the repeated fields is carefully tackled. The full results
therein for dimension 8 and 9 SMEFT are generated by an automated Mathematica package
ABC4EFT [16], which could also generate higher dimensional SMEFT operators basis up to
any mass dimension. Due to the advantage of the Young tensor approach, it is possible to
systematically convert any operator into this basis via the ABC4EFT code.

The i-th building block is the field with covariant derivatives DwiΨi which belongs to the
reducible representations of the SL(2,C) group and can be decomposed as a direct sum of
the following irreducible representations for Ψi of a irreducible representation (jl, jr),

DwiΨi ∈
(
jl +

wi
2
, jr +

wi
2

)
⊕ lower weights. (13)

It can be shown that the “lower weights” in the above decomposition must contain EOM of
the field or the covariant derivative commutator [D,D], and by convention we can eliminate
them in a type of operators with particular constituting fields Ψi and a fixed total number of
derivatives. These terms are always understood to be converted to other types and counted
therein. Since the algorithm enumerates operator bases type by type, it is sufficient to retain
only the highest weights in our building blocks with the spinor indices totally symmetrized
which can be expressed as:

(DwiΨi)
(α̇1

i ...α̇
2jr+wi
i )

(α1
i ...α

2jl+wi
i )

∼ (DwΨi)
(α̇i)

2jr+wi

(αi)
2jl+wi

. (14)

On the right-hand side, we abbreviate the indices α̇i and αi to a power form without specific
superscripts indicating their equivalence due to the symmetrization. These symmetrized
spinor indices make perfect correspondence with the helicity spinor variables in the on-shell
amplitudes, thus the building blocks actually make the operator basis one-to-one corresponds
to an on-shell amplitude basis [33, 34, 32]. At the same time, the field building blocks
are representations of gauge groups as well, and the gauge indices of the i-th field can be

8



collectively denoted as ai, thus invariant gauge tensors T a1,...,aN are needed to contract N
field building blocks DwiΨi,ai in the operator to form a gauge singlet. Therefore the operator
involving N fields at a certain dimension d can be formally expressed as,

O(d)
N = T a1,...,aN εnε̃ñ

N∏
i=1

DwiΨi,ai , (15)

where n (ñ) number of ε (ε̃) are used to contract all the undotted (dotted) spinor indices of the
building blocks in Eq. (14). For a massless field Ψi, the helicity hi of the in-coming particle
states that Ψi annihilates indicates that Ψi transforms as the (−hi, 0) or (0, hi) irreducible
representation of SL(2,C) for hi < 0 and hi > 0 respectively. Under this assumptions, we
have the following relations between n, ñ, N , d, wi and hi:

ñ+ n ≡ r =
∑

i (ωi + |hi|) , ñ− n =
∑

i hi ≡ h, d = ñ+ n+N, (16)

which can be used to derive a number of inequalities to enumerate all the Lorentz classes
for a given dimension d.

With the operator-amplitude correspondence introduced in Ref. [13, 32, 16], one can
easily relate the T a1,...,aN and ε (ε̃) to the group factor and brackets of the local on-shell
amplitudes generated by these operators in the spinor-helicity formalism. Therefore the
powerful Young tableaux technique developed for the Lorentz and gauge structures of am-
plitudes can be used for constructing operator basis, which is the reason why we name it
as the y-basis. The procedure for finding the complete and independent Lorentz and gauge
structures with the Young tensor method is briefly summarized as follows.

• The Lorentz sector is represented by a Young tensor component of the product group
SL(2, C) × SU(N), introduced in Ref. [11, 13, 32, 14, 16], where N is the number of
external particles in the on-shell amplitude. All irreducible representations denoted
by Young diagrams in the reduction vanish due to the momentum conservation and
Schouten identity except the primary Young diagram

(17)

YN,n,ñ =

N
−

2


. . .

n︷ ︸︸ ︷
. . .

...
...

︸ ︷︷ ︸
ñ

. . .

.

Given a set of labels {1, · · · , N} corresponding to each particle in the local on-shell
amplitude or equivalently to each fields in the operator type, the number of labels to
be filled in the primary Young diagram is given by:

#i = ñ− 2hi, i = 1, · · · , N. (18)
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All the Semi-Standard Young Tableau (SSYT) obtained by filling the labels

{
#1︷ ︸︸ ︷

1, . . . , 1,

#2︷ ︸︸ ︷
2, . . . , 2, . . . ,

#N︷ ︸︸ ︷
N, . . . , N}

in the primary Young diagram span the space of all amplitudes for the operator type,
and each SSYT is a basis vector of this space and can be translated to a on-shell
local amplitude and via amplitude-operator correspondence corresponds to a Lorentz
structure of the operators, which we collectively denote as {B(y)

i }.

• As for the gauge factor T , an algorithm [13, 32, 14, 16] is proposed to find all the inde-

pendent gauge Young tensor {T (y)
i } expressed in terms of products of Mth-rank Levi-

Civita tensors of the SU(M) group given that all the fields are expressed with funda-
mental indices only. The algorithm is to apply the generalized Littlewood-Richardson
rules to construct the singlet Young tableaux from the set of Young tableaux corre-
sponding to each field.

The direct product of the Lorentz Young tensor {B(y)
i } and gauge Young tensor {T (y)

i }
results in the complete and independent operator basis if no repeated fields are encountered,
or equivalently if all the particles in corresponding amplitude are distinguishable. These are
referred to as flavor-blind operators as flavor indices are treated as labels that distinguish
the fields rather than indices that may take equal values. One necessary comment is that the
y-basis operators may not be monomials if converted to a form with Lorentz indices rather
than spinor indices in the Lorentz sector, or adjoint (or higher representation) indices rather
than fundamental indices in the gauge sector. However, since we provide a subroutine to find
coordinates of any operators, including the monomial ones, under the complete flavor-blind
y-basis, it is easy to select an independent and complete set of monomial operators O(m),
which we call the m-basis.

In the presence of repeated fields, the flavor-blind operators get more redundancies from
the permutation symmetries among them, which are referred to as flavor relations when
they have flavor indices like the SM fermions. When these redundancies are considered, the
operator is said to be flavor-specified. The complete basis of flavor-specified operators can be
most easily obtained by organizing the flavor-blind operators into irreducible representations
of the permutation group among the repeated fields, which we call the p-basis. The corre-
sponding Young diagrams for the irreducible representations become Young tableau when
filled with the flavor indices4, which constitute irreducible tensor representations, namely
the Young Tensor, of the corresponding (auxiliary) flavor SU(nf ) group. As a result, the
SSYTs of the Young Tensor represent the independent flavor-specified operators. By the
observation from the following

π ◦ O{fk,...}︸ ︷︷ ︸
permute flavor

=
(
π ◦ T {gk,...}G1

)(
π ◦ T {hk,...}G2

)
· · ·︸ ︷︷ ︸

permute gauge

(
π ◦ B{fk,...}{gk,...},{hk,...}

)
︸ ︷︷ ︸

permute Lorentz

, (19)

4When there is no flavor or nf = 1, like the repeated bosons in the SM, an auxiliary flavor index is
understood in the flavor-blind operator so that they can be distinguished. At the flavor-specified level, these
auxiliary flavor indices can take only one value when the flavor Young tensors are counted.
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we can construct symmetrizers of the flavor indices by applying the permutations to the gauge
and Lorentz indices of the building blocks. A matrix representation of the symmetrizer can
be obtained by using the subroutine of finding coordinates of the permuted operators under
the y-basis or m-basis, while the p-basis can be selected as the independent rows. The
operator obtained in this way is thus in the following form

O(p)
prst = Y [ p r s

t ] ◦ O(m)
prst (20)

where Y [ p r s
t ] is the Young symmetrizer for the flavor symmetry , and the flavor indices

taking values that satisfy the SSYT condition serve as an independent operator basis for this
Young Tensor. Note that in practice the Young symmetrizer may not be actually applied
to the operator rendering a polynomial, but can be understood as acting on the Wilson
coefficient tensor Cprst so that flavor relations are obtained.

The above algorithm not only provides a systematical way to obtain the complete and
independent operator on-shell basis of the SMEFT at any mass dimension, but can also be
applied to generic EFTs with arbitrary scalar, fermion and gauge extensions, such as the
left-right symmetric model, grand unification, etc. Various bases of operators for different
purposes are defined, and the conversions among them are made easy using the reduction
algorithm implemented in the Mathematica package ABC4EFT 5.

4 All-orders results in the 1/Λ expansion

In this white paper, we review the construction of the ‘geometric’ basis [35, 36] and how
it can be used to study 1→ 2 process at O(1/Λ4). These processes serve as a laboratory to
explore truncation error from higher orders (in 1/Λ) terms, a necessary ingredient in SMEFT
global fits.

When considering higher dimensional operators in SMEFT, operators that contribute (in
the broken phase) to 2- and 3-particle vertices are particularly important because they feed
into how SM fields are defined and how the parameters of the SM are related to experimental
observables.

While the number of operators at d > 6 grows rapidly, the number of operators that
contribute to 2- and 3-point vertices is small and is approximately constant at each mass
dimension. This may seem counter intuitive, as one may think it’s always possible to staple
on more derivatives or powers of the Higgs field onto an operator of dimension d to generate
an even higher dimensional term. However, the kinematics for 2- and 3-point vertices is
trivial, meaning all dot products of momenta are related to masses of the particles involved,
so e.g. adding two more derivatives to an operator with dimension d does not result in a
new operator structure with dimension d+ 2. Second, with only two or three fields around,
there are limited electroweak structures possible, and therefore limited ways to dress up the
operator with Higgses.

As a consequence, one can determine the operators that contribute to 2- and 3-point

5https://abc4eft.hepforge.org
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vertices to all orders in vT/Λ
6. For example, the operators that feed into the kinetic term

for electroweak gauge bosons are limited to

Q
(6+2n)
HB = (H†H)n+1Bµν Bµν , (21)

Q
(6+2n)
HW = (H†H)n+1W µν

a W a
µν , (22)

Q
(6+2n)
HWB = (H†H)n(H†σaH)W µν

a Bµν , (23)

Q
(8+2n)
HW,2 = (H†H)n(H†σaH)(H†σbH)W µν

a Wb,µν , (24)

Re-expressing the operators in terms of the four real degrees of freedom φI in the Higgs and
combining them with the SM terms, we can lump all of the SMEFT effects into a ‘metric’
gAB(φ)WA

µνW
B,µν . Explicitly

gAB(φI) =

[
1− 4

∞∑
n=0

(
C

(6+2n)
HW (1− δA4) + C

(6+2n)
HB δA4

)(φ2

2

)n+1
]
δAB

+
∞∑
n=0

C
(8+2n)
HW,2

(
φ2

2

)n (
φIΓ

I
A,Jφ

J
) (
φLΓLB,Kφ

K
)

(1− δA4)(1− δB4)

+

[
∞∑
n=0

C
(6+2n)
HWB

(
φ2

2

)n]
(φIΓ

I
A,Jφ

J) (1− δA4)δB4, (25)

where ΓA are the SU(2) generators as 4 by 4 matrices (see for definition).
Carrying out this process for all other possible 2- and 3- point vertices using SM fields,

we arrive at a set of metrics:

hIJ(φ)(Dµφ)I(Dµφ)J , gAB(φ)WA
µνW

B,µν , kAIJ(φ)(Dµφ)I(Dνφ)JW µν
A , fABC(φ)WA

µνW
B,νρWC,ρµ,

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µτAψ2(Dµφ)I , dA(φ)ψ̄1σ

µνψ2W
A
µν ,

(plus analogous forms for gluons and with dual field strengths). Each possesses an expansion
similar to those found in [9] in terms of a small number of easily identifiable operators at
each mass dimension.

Working with the metric forms, canonically normalizing the gauge bosons and changing
to the mass eigenstate basis, we can identify the couplings of matter to W/Z in the presence
of higher dimensional operators.

〈Z|ψ̄pψr〉 =
ḡZ
2
ψ̄p /εZ

[
(2s2

θZ
Qψ − σ3)δpr + σ3v̄T 〈Lψ,pr3,3 〉+ v̄T 〈Lψ,pr3,4 〉

]
ψr, (26)

〈W±|ψ̄pψr〉 = − ḡ2√
2
ψ̄p(/εW±)T±

[
δpr − v̄T 〈Lψ,pr1,1 〉 ± iv̄T 〈L

ψ,pr
1,2 〉

]
ψr. (27)

6Here vT is the minimum of the full Higgs potential including higher order terms, and is distinct from
the SM Lagrangian parameter v0. It is possible to express the former in terms of the latter, though this
is only necessary in processes where multiple Higgses are produced, as the parameter that enters the W/Z
masses – and is therefore linked to GF – is vT .
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Here the 〈〉 indicates taking the vacuum expectation value and p, r are flavor labels. The
couplings and mixing angles are now defined to all orders in terms of the metrics

ḡ2 = g2
√
g11 = g2

√
g22,

ḡZ =
g2

c2
θZ

(
cθ̄
√
g33 − sθ̄

√
g34
)

=
g1

s2
θZ

(
sθ̄
√
g44 − cθ̄

√
g34
)
,

ē = g2

(
sθ̄
√
g33 + cθ̄

√
g34
)

= g1

(
cθ̄
√
g44 + sθ̄

√
g34
)
,

s2
θZ

=
g1(
√
g44sθ̄ −

√
g34cθ̄)

g2(
√
g33cθ̄ −

√
g34sθ̄) + g1(

√
g44sθ̄ −

√
g34cθ̄)

,

s2
θ̄ =

(g1
√
g44 − g2

√
g34)2

g2
1[(
√
g34)2 + (

√
g44)2] + g2

2[(
√
g33)2 + (

√
g34)2]− 2g1g2

√
g34(
√
g33 +

√
g44)

. (28)

where we have used the notation
√
g11 = 〈

√
g−1〉11, etc.

Other trilinear couplings, such as the coupling between the Higgs and two photons, can
be obtained by extracting the linear h term from the gAB metric,

〈h|A(p1)A(p2)〉 = −〈hAµνAµν〉
√
h

44

4

[
〈δg33(φ)

δφ4

〉e
2

g2
2

+ 2〈δg34(φ)

δφ4

〉 e
2

g1g2

+ 〈δg44(φ)

δφ4

〉e
2

g2
1

]
,

The above compact formulae allow us to study a variety of phenomenologically interesting
processes at the next EFT order O(1/Λ4) with relative ease and without an explosion in the
number of coefficients. For example, h→ γγ production at O(1/Λ4) is [36]:

|〈h|γγ〉|2toO(v4/Λ4) = v̄2
T

∣∣∣∣AhγγSM

∣∣∣∣2 + 2v̄T Re(AhγγSM )(1 + 〈
√
h

44
〉O(v2/Λ2)) 〈h|γγ〉L(6) (29)

+ (1 + 4 v̄T Re(AhγγSM )) 〈h|γγ〉2L(6) + 4v̄T Re(AhγγSM ) (〈h|γγ〉L(8)) .

where AhγγSM is the SM loop level contribution and

〈
√
h

44
〉O(v2/Λ2) = C̃

(6)
H� −

1

4
C̃

(6)
HD,

〈h|γγ〉L(6) =

[
g2

2 C̃
(6)
HB + g2

1 C̃
(6)
HW − g1 g2 C̃

(6)
HWB

(gSM
Z )2

]
,

〈h|γγ〉L(8) =

[
g2

2 C̃
(8)
HB + g2

1 (C̃
(8)
HW + C̃

(8)
HW,2)− g1 g2 C̃

(8)
HWB

2(gSM
Z )2

]
. (30)

Here the tilded coefficients include powers of v2
T/Λ

2, i.e. C̃
(6)
i = C

(6)
i v2

T/Λ
2, C̃

(8)
i = C

(8)
i v4

T/Λ
4.

From this result, we see that only a handful, O(8) coefficients are involved and we can identify
the situations where naive power counting (dimension 8 less important that dimension 6)
breaks down, such as when dimension 6 operators are generated at loop level while dimension
8 operators are generated at tree level. See Ref. [36, 37] for explicit examples of this tree/loop
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generation and Ref. [2, 38] for a general classification of operators by the loop order they are
generated at in weakly coupled UV theories.

Further examples, such as h → Zγ, h → ZZ∗, Z → ψ̄ψ can be found in Ref. [36], and
the O(1/Λ4) results for h → γγ, h → gg, and gg → h have been combined with one loop
perturbative QCD corrections in Ref. [39, 40]. The main goal of this line of study is to
extend the list of processes known to O(1/Λ4), with the hope that a broader index of exact
results will improve how truncation uncertainties in EFT analyses are estimated.

5 Renormalization group running and implications for positivity

The renormalization group evolution (RGE) and mixing of all dimension-8 SMEFT op-
erators is not completely known yet, but substantial progress has been made in this regard
in recent years.

There exist two co-leading contributions to the RGEs of dimension-8 operators, namely
those arising from loops involving two dimension-6 interactions and those with only one
dimension-8 term. (While the dimension-6 RGEs have also two contributions, that with
two dimension-5 terms [41, 42] is most probably negligible due to the large lepton-number
violation scale.) In the usual approach to renormalization, based on the computation of 1-
particle-irreducible (1PI) Feynman diagrams off-shell, these loops generate divergences that
can not be absorbed by physical interactions alone (as those described in sections 2 and
3), but they require including operators that only later can be removed from the action
via field redefinitions. A basis of physically-independent interactions can be extended to a
basis of independent Green’s functions [43], the elements of which can not be related among
themselves by integration by parts, nor by Fierz, Bianchi or algebraic identities. Knowing
one such Green’s basis for the SMEFT can ease significantly the process of renormalization,
as well as the matching of UV models onto the SMEFT.

Thus, a SMEFT dimension-6 Green’s basis was worked out in Ref. [44]. It consists
of 81 independent interactions, that extend the 59 physical operators. The dimension-8
counterpart involves a much larger number of terms, and so far only a basis of bosonic
interactions is known [45]; it involves 86 new operators. The way to obtain this basis relies
on the observation that, given N effective operators {Oi}i=1,...N with Wilson coefficients ci,
their contribution to an off-shell 1PI amplitude A(a→ b) reads:

A(a→ b) =
∑
α∈I

cif
i
α(~g)κα , (31)

where I denotes a collection of indices, f iα is a matrix which is only function of the SM
couplings ~g = (g1, g2, g3, λ) and {κα}α∈I are independent kinematic invariants. If f iα has
rank N , then the operators are off-shell independent.

On the basis of these results, the first systematic computation of the SMEFT RGEs to
order v4/Λ4 was initiated in Ref. [46]. This includes the renormalization of both relevant
and marginal (to dimension-8) interactions as triggered by loops involving two insertions of
dimension-6 operators that can arise at tree-level in weakly-coupled UV completions of the
SMEFT; e.g. OH� = (H†H)�(H†H). (The effects of loops involving other type of operators,
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such as OHW = W I
µνW

Iµν(H†H), which can only arise at loop level [38], are formally two-
loop corrections.) Among the main results that can be highlighted from this computation,
we find:

1. No loop-generated operator is renormalized by pairs of tree-level dimension-6 interac-
tions. This result extends the previous findings at dimension-6 [47].

2. Certain anomalous dimensions vanish due to cancellations between different operators
that occur only on-shell. These zeros are not yet explained by non-renormalization
theorems such as those in Refs. [48]. Also, one of these zeros implies that the Peskin-
Takeuich parameters S and U [49] are not renormalized by tree-level dimension-6 terms
(to order v4/Λ4).

3. The indirect constraints on some Wilson coefficients derived from their effects on elec-
troweak observables are competitive with direct bounds from facilities such as the
LHC.

The RGEs ensuing from loops involving one insertion of dimension-8 operators have
been considered in Ref. [50]. The authors use an on-shell approach to the SMEFT (see
next section); restricting the calculation to linear order in the Higgs quartic coupling λ and
to quadratic order in the gauge couplings g, and neglecting corrections, proportional to the
Higgs mass mH , to the RGEs of lower-dimensional operators. These missing contributions in
Ref. [50] have been computed, within the SMEFT bosonic sector, in Ref. [51]. Among other
interesting aspects of this result, one can highlight the presence of loop-induced operators
(of both dimension-8 and dimension-6) that get renormalized by tree-level interactions. For
example:

16π2µ
d

dµ
c

(1)

W 2H2D2 =
g2

2

6
(2c

(1)

H4 + 3c
(2)

H4 + c
(3)

H4) , (32)

16π2µ
d

dµ
cHWB = m2

H

[g1g2

2
(c

(1)

H4 − 2c
(2)

H4 + c
(3)

H4) + 8c
(1)

WBH4 + · · ·
]
, (33)

where O(1)

W 2H2D2 = (DµH†DνH)W I
µρW

I ρ
ν and OWBH = W I

µνB
µν(H†σIH), whereas O(1)

WBH4 =

(H†H)(H†σIH)W I
µνB

µν , O(1)

H4 = (DµH
†DνH)(DνH†DµH), O(2)

H4 = (DµH
†DνH)(DµH†DνH)

and O(3)

H4 = (DµH†DµH)(DνH†DνH).
The knowledge of the dimension-8 RGEs has also important implications for the so-called

positivity bounds. These bounds are restrictions on the sign of (combinations of) Wilson
coefficients that ensue from the very basic principles of analiticity and unitarity of the S-
matrix [52]. These constraints are of paramount importance not only because experimental
evidence of the violation of positivity in the data would imply the potential breakdown of
either relativity or quantum mechanics, but more realistically because these restrictions can
modify substantially the “priors” in experimental fits aiming at constraining the SMEFT
parameter space [53, 54].

15



Bounds of this type have been derived both at tree level (assuming that the only relevant
singularities of the S-matrix are single poles) as well as at one-loop (i.e. in the presence of
branch cuts). It has been shown [55] though, that these bounds are in general not scale-
invariant. In other words, even if they hold at some scale µ = Λ, they can be broken by the
RGEs at scales µ� Λ. For example, the following inequalities hold at tree level [54, 56]:

c
(2)

H4 > 0 , (34)

c
(1)

H4 + c
(2)

H4 > 0 , (35)

c
(1)

H4 + c
(2)

H4 + c
(3)

H4 > 0 . (36)

However, the RGEs of these Wilson coefficients can take them out of the positivity region.
For example, assuming c

(2)

H4(Λ) = 0, we obtain [50, 55, 51]:

c
(2)

H4(µ) =
1

96π2

[
28c

(1)

H4(Λ) + 15c
(3)

H4(Λ)
]
g2

2 log
µ

Λ
+O(g2

1, λ) , (37)

which can be clearly negative even for values of the Wilson coefficients satisfying Eqs. (34)–
(36) at µ = Λ at which they arise at tree level.

The story is significantly different for other anomalous-gauge-quartic-coupling operators.
For example, Ref. [54] shows that:

− 2fM,1 + fM,7 > 0 ; (38)

see the reference above for the definition of these Wilson coefficients. In the basis of Ref. [12],

this expression reads c
(1)

W 2H2D2 < 0 [51]. It holds at all scales within one-loop accuracy,
given that this operator is not renormalized by pairs of dimension-6 interactions [46] and
because [51]:

c
(1)

W 2H2D2(µ) = c
(1)

W 2H2D2(Λ)− g2
2

96π2

[
2c

(1)

H4(Λ) + 3c
(2)

H4(Λ) + c
(3)

H4(Λ)
]

log
Λ

µ
, (39)

where the first term vanishes (because c
(1)

W 2H2D2 arises only at one loop [38]) and the second
term is negative because Eqs. (34)–(36) do hold at tree level. The same is valid for all other
inequalities obtained in Ref. [54] involving fM,i, i = 1, ..., 5, 7 [51]. This result demonstrates

that, contrary to the constraints on the c
(i)

H4 couplings, those on fM,i can be consistently
enforced as Bayesian “priors” in experimental fits aiming at measuring these parameters.

6 On-shell approach to the SMEFT

On-shell amplitude techniques provide an alternative approach to the SMEFT, notably
avoiding the gauge and field-redefinition redundancies inherent in the Lagrangian treatment.
This is particularly useful to explore patterns and properties arising from scattering ampli-
tudes in the presence of higher-dimensional operators.
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For example, the structure of the anomalous dimension matrix up to higher loop or-
ders and higher operator dimensions [48, 57–64, 50, 65], non-interference theorems [58, 66],
symmetry selection rules [58] as well as sum rules [67] are made manifest in this approach.
On the other hand, the direct construction of the non-factorizable on-shell amplitudes for
massless particles [34, 33, 68, 69, 32, 13, 14, 16] efficiently substitutes the enumeration of
operators. The approach adopted in [32, 13, 14, 16] is detailed in Sec. 3.2.

The recent development of a little-group-covariant formalism [70] allowed to apply on-
shell techniques to massive particles of arbitrary spin. The renormalizable SM amplitudes
were studied in [71–73] and the map between the massive three-point on-shell amplitudes
to dimension-6 operators in the Warsaw basis were presented in [74, 75]. A further step
was taken in [75], where the electroweak symmetry is not built-in but can be recovered by
imposing perturbative unitarity. Moreover, a systematic construction of three and four-point
non-factorizable amplitudes was presented in [76]. Systematic algorithms for the construction
of independent massive amplitudes were further in [77–79], while their derivation from the
Higgsing of massless amplitudes was studied in [80]. This approach also yields all-order
results in v/Λ, whose powers are all absorbed in constant amplitude coefficients. Tree-level
recursion relations for massive amplitudes have been investigated too [81, 82].

The development of this alternative approach to the SMEFT provides new insight and
allows for more efficient computations.

7 Novel phenomenological consequences at dimension-8

The naive expectation is that deviations from the SM induced by dimension-8 operators
are subdominant to dimension-6 deviations and can be safely ignored. While this is some-
times the case, the increasing precision of LHC data is beginning to require the inclusion of
even such subleading effects in global fits. There are additionally interesting cases where the
dimension-8 terms are sometimes the leading contributions to observables due to symmetry
considerations or the structure of the corresponding SM amplitudes. In such cases it is im-
portant to quantify their effects in order to guide experimental searches. Such probes may
also serve as smoking-gun signatures of dimension-8 extensions of the SM.

7.1 Impact of dimension-8 operators on Drell-Yan angular distributions

We discuss in this white paper both the impact of dimension-8 operators in SMEFT fits,
and examples where dimension-8 effects give qualitatively different results than dimension-
6, using the Drell-Yan process as an example. Drell-Yan is one of the best measured and
calculated processes at the LHC, with the residual uncertainties from experiment and un-
calculated theory approaching the percent level. It therefore serves as a test case for future
high-luminosity runs of the LHC where additional processes may reach a similar precision
benchmark. In this section we consider the angular distribution of leptons in the Drell-Yan
process following the recent study of Ref. [83], while in the next section we investigate the
impact of dimension-8 terms on global fits to SMEFT parameters.

The standard theoretical formalism was developed in seminal work several decades ago [84].
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The form of the angular distribution to all orders in the strong coupling constant follows
from the spin-1 nature of the photon and Z-boson which mediate the interaction:

dσ

dm2
lldydΩl

=
3

16π

dσ

dm2
lldy

{
(1 + c2

θ) +
A0

2
(1− 3c2

θ)

+A1s2θcφ +
A2

2
s2
θc2φ + A3sθcφ + A4cθ

+A5s
2
θs2φ + A6s2θsφ + A7sθsφ

}
. (40)

Here, mll is the invariant mass of the lepton system, y is the rapidity of the Z-boson that
produces the lepton pair, and Ωl is the solid angle of a final-state lepton. The lepton angles
are typically defined in the Collins-Soper frame [84] and we have used the notation sα and
cα to represent their sine and cosine, respectively. In the SM, the leptons are produced by
an s-channel spin-one current, so in the squared amplitude spherical harmonics up to l = 2
are allowed.

In the SMEFT, however, there is a class of two-derivative dimension-8 operators that
populate the l = 2 partial wave at the amplitude level, allowing for l = 3 spherical harmonics
in the angular expansion when interfered with the SM amplitude. Dimension-6 operators
cannot generate l = 2 partial waves at the amplitude level, making their appearance a
hallmark of the dimension-8 SMEFT. Following Ref. [83] we express these operators as

O8,lq∂3 = (l̄γµ
←→
D νl)(q̄γ

µ←→D νq),

O8,lq∂4 = (l̄τ Iγµ
←→
D νl)(q̄τ

Iγµ
←→
D νq),

O8,ed∂2 = (ēγµ
←→
D νe)(d̄γ

µ←→D νd),

O8,eu∂2 = (ēγµ
←→
D νe)(ūγ

µ←→D νu),

O8,ld∂2 = (l̄γµ
←→
D νl)(d̄γ

µ←→D νd),

O8,lu∂2 = (l̄γµ
←→
D νl)(ūγ

µ←→D νu),

O8,qe∂2 = (ēγµ
←→
D νe)(q̄γ

µ←→D νq). (41)

Here, q and l represent left-handed quark and lepton doublets respectively, u, d, e correspond

to right-handed singlets, and
←→
D µ =

−→
Dµ −

←−
Dµ. In order to demonstrate the effect of these

operators we calculate the contribution of O8,lq∂3 to the up-quark partonic matrix-element
squared:

∆|Muū|2 = −C8,lq∂3

Λ4
ĉθ(1 + ĉθ)

2 ŝ
2

6
×[

e2QuQe +
g2guLg

e
Lŝ

c2
W (ŝ−M2

Z)

]
. (42)

Here, ŝ denotes the usual partonic Mandelstam invariant ŝ = (p1 + p2)2, g is the SU(2) cou-
pling constant, cW is the cosine of the weak mixing angle, e is the U(1)EM coupling constant,
Qi is the charge of fermion i, giL are the left-handed couplings to the Z-boson following the
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notation of Ref. [85]. C8,lq∂3 is the Wilson coefficient associated with the operator under con-
sideration, and ĉθ is the angle between the beam direction and the outgoing lepton direction.
This contribution to the differential cross section contains a c3

θ dependence that cannot be
described by Eq. (40). The reason for this was given in the previous section when discussing
the operators of Eq. (41): the traditional formulation of the lepton angular distribution is
produced in the s-channel by a spin-one current, which is not the case for O8,lq∂3. Only
the seven dimension-8 operators identified above lead to an angular dependence not already
described by Eq. (40).

In order to account for this new signature of dimension-8 effects we extend the parame-
terization of Eq. (40) to the following:

dσ

dm2
lldydΩl

=
3

16π

dσ

dm2
lldy

{
(1 + c2

θ) +
A0

2
(1− 3c2

θ)

+A1s2θcφ +
A2

2
s2
θc2φ + A3sθcφ + A4cθ

+A5s
2
θs2φ + A6s2θsφ + A7sθsφ

+Be
3s

3
θcφ +Bo

3s
3
θsφ +Be

2s
2
θcθc2φ

+Bo
2s

2
θcθs2φ +

Be
1

2
sθ(5c

2
θ − 1)cφ (43)

+
Bo

1

2
sθ(5c

2
θ − 1)sφ +

B0

2
(5c3

θ − 3cθ)

}
.

We have used the combinations of spherical harmonics

Y 0
3 , Y 1

3 ± Y −1
3 , Y 2

3 ± Y −2
3 , Y 3

3 ± Y −3
3 . (44)

in forming the basis for the new Be,o
i coefficients. The superscripts e, o on the new Bi

coefficients refer to either even or odd under T-reversal. The amplitude of Eq. (42) populates
the B0 coefficient. The Bo,e

i coefficients with i > 0 are first populated at O(αs).
We present here representative numerical results to assess the potential observation of

these effects. We assume
√
s = 14 TeV collisions. Our hadronic results use the NNPDF

3.1 parton distribution functions extracted to NLO precision [86], and assume an on-shell
electroweak scheme with Gµ, MW , and MZ taken as input parameters. We impose the
following cut on the invariant mass of the final-state system: mll > 100 GeV. We focus on
the B0 coefficient here. We set the renormalization and factorization scales to µ = mll. While
the Bi are not generated in the SM from perturbative QCD corrections, they can be obtained
from higher-order electroweak effects. The leading contributions to the B0 coefficient are the
angular-dependent next-to-leading logarithmic (NLL) electroweak Sudakov logarithms. The
leading logarithms depend only on the Mandelstam invariant ŝ, and therefore do not induce
any Bi coefficients. We study the leading one-loop NLL electroweak Sudakov logarithms in
the SM using the results of Ref. [87].

We show in Fig. 3 B0 as a function of the invariant mass mll for the seven contributing
operators. We set Λ = 2 TeV and each Wilson coefficient separately to Ci = 1 while setting
the others to zero to obtain these seven curves. The SM contribution is small since it grows
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Figure 3: B0 coefficient as a function of the dilepton invariant mass.

only logarithmically with invariant mass as log(mll/MZ). The dimension-8 contributions
grow polynomially as m4

ll, as can be seen from the example matrix element in Eq. (42)
upon setting ŝ = m2

ll. The SMEFT-induced corrections are clearly visible over the SM
contribution. We note that we have calculated the corrections quadratic in the dimension-8
coefficients. The total correction from dimension-8 operators is at most 30% of the SM. B0

receives corrections of similar size. We therefore conclude that the linear dimension-8 terms
contribute the dominant correction to both the cross section and the B0 angular coefficient
in the invariant mass region considered, and that the truncation of the EFT expansion to
the linear dimension-8 level is justified in our study.

We next estimate the sensitivity of the LHC to this effect by applying the optimal ob-
servable technique [88] as described in Ref. [83]. We show in Fig. 4 the statistical significance
of as a function of dilepton invariant mass for each of the dimension-8 coefficients assuming
300 fb−1 of integrated luminosity. The statistical significance for 3000 fb−1, the target of
the High Luminosity LHC (HL-LHC), is obtained by rescaling Fig. 4 by

√
10. We see that

the statistical significance per bin reaches 3 for the C8,lq∂4 coefficient at high invariant mass,
while for C8,lq∂3 and C8,eu∂2 it reaches 1.5. This indicates that the effects of C8,lq∂4 should be
significantly larger than statistical fluctuations in the data at the LHC Run 3. For Λ = 2
TeV, all three coefficients should be visible at the HL-LHC. The statistical significance is
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further increased by considering correlations between different invariant mass bins. If we
combine all bins between 650 and 1000 GeV, the significance with 300 fb−1 of integrated lu-
minosity reaches more than 6 for C8,lq∂4, more than 3.5 for C8,lq∂3 and C8,eu∂2, and more than
1.5 for C8,lu∂2. Searches for the B0 coefficient at the future LHC are therefore promising.
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Figure 4: Statistical significance of the B0 angular dependence as a function of the dilepton
invariant mass.

7.2 Bounds on dimension-6 Wilson coefficients including dimension-8 effects

We now address the interplay between dimension-6 and dimension-8 operators in fits to
LHC Drell-Yan data. As many fits to the available data consider only dimension-6 operators
it is important to determine the stability of this framework under the addition of higher-
dimension effects. We address this by considering the four-fermion sector of the SMEFT. As
shown in Ref. [89], other corrections at dimension-8 such as fermion-boson vertex corrections
cannot be probed with the current data precision. The following Lagrangian describes the
seven contributing dimension-6 operators:

Lψ4 =
1

Λ2

{
C

(1)
`q

¯̀
Lγ

µ`L q̄LγµqL + C
(3)
`q

¯̀
Lτ

Iγµ`L q̄Lτ
IγµqL

+Ceu ēRγ
µeR ūRγµuR + Ced ēRγ

µeR d̄RγµdR

+C`u ¯̀
Lγ

µ`L ūRγµuR + C`d ¯̀
Lγ

µ`L d̄RγµdR + Cqe ēRγ
µeR q̄LγµqL

}
. (45)
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In this analysis we study only vector four-fermion operators. More details on scalar and
tensor operators, which first contribute at O(1/Λ4), can be found in [89]. The relevant
dimension-8 operators contributing to inclusive observables such as the Drell-Yan invariant
mass or transverse momentum distributions are described by the following Lagrangian:

Lψ4D2 =
1

Λ4

{
C

(1)

`2 q2D2 ∂ν
(
¯̀
Lγ

µ`L
)
∂ν (q̄LγµqL) + C

(3)

`2 q2D2 Dν

(
¯̀
Lγ

µτ I`L
)
Dν
(
q̄Lγµτ

IqL
)

+C
(1)

e2 u2D2 ∂ν (ēRγ
µeR) ∂ν (ūRγµuR) + C

(1)

e2 d2D2 ∂ν (ēRγ
µeR) ∂ν

(
d̄RγµdR

)
+C

(1)

`2 u2D2 ∂ν
(
¯̀
Lγ

µ`L
)
∂ν (ūRγµuR) + C

(1)

`2 d2D2 ∂ν
(
¯̀
Lγ

µ`L
)
∂ν
(
d̄RγµdR

)
+ C

(1)

q2 e2D2 ∂ν (ēRγ
µeR) ∂ν (q̄LγµqL)

}
. (46)

These seven operators appear in exact analogy to the dimension-6 ones that appear in
Eq. (45), only with two additional derivatives. We note that the operators that affect
Drell-Yan angular distributions as discussed in the previous subsection can be arranged to
vanish upon integration over angles, and therefore do not contribute to the invariant mass
or transverse momentum distributions [89]. The operators listed above give rise to shifts of
the cross section that scale as O(ŝ2/Λ4) and become important in high invariant mass bins
being probed by current LHC data. We will see this clearly in the numerical analysis that
follows.

We now extract bounds on SMEFT coefficients from the results of Ref. [90], which
measured pp → `+`−, with ` = {e, µ} at 8 TeV with luminosity 20.3 fb−1. The data are
binned in twelve invariant mass bins with m`` varying between m`` = 116 GeV and m`` = 1.5
TeV. The experimental uncertainties go from 0.63% in the smallest invariant mass bin to
17.31% in the highest invariant mass bin. The uncertainty in the lower invariant mass bins is
an approximately equal split between statistical and systematic errors, while in the highest
bins it is dominated by statistics. One important feature of the data set of Ref. [90] is that
it was originally intended as a SM measurement, and a careful accounting of experimental
errors was performed and released publicly. This is an important point that can outweigh
the improvement in constraints expected from higher-energy LHC collisions if those are not
done with the same level of detail.

We choose the UV scale Λ = 4 TeV, which is above the highest invariant mass bin studied
in the experimental analysis. We calculate the SM cross section at next-to-next-to leading or-
der (N2LO) in QCD and include next-to-leading-logarithmic (NLL) electroweak corrections.
The SMEFT-induced corrections are calculated at NLO in the QCD coupling constant. We
have assumed no underlying hierarchy regarding the dimension-6 and dimension-8 coeffi-
cients, and rely instead upon the experimental data to determine their allowed ranges. For
more details on our calculational procedure we refer to Ref. [89].

We first begin by discussing the bounds on dimension-6 four-fermion coefficients in Fig. 5.
We compare the results obtained by keeping only O(1/Λ2) corrections with those obtained
by keeping the square of dimension-6 operators that contributes O(1/Λ4) effects. In general
the fits to the data are good, with a χ2/dof below one for most operators, implying that the
data prefer a non-zero contribution from SMEFT operators, which interfere destructively
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Figure 5: 95% CL intervals for the dimension-6 four-fermion operators that interfere with
the SM. Both the limits obtained by considering only O(1/Λ2) effects, as well as those
including the O(1/Λ4) corrections, are shown.

with the SM. The impact of O(1/Λ4) corrections are significant for most operators, with the
upper and lower limits of the 95% CL ranges shifting by factors of 2 or 3 in most cases.

We next proceed to discuss the dimension-8 operator bounds in Fig. 6. Defining the effec-
tive scale as Λ/

4
√
Ci for these dimension-8 terms, UV scales ranging from 1.3 to 4.3 TeV are

reached for operators of the Lψ4D2 class. Given that these are pure dimension-8 effects that
appear first at O(1/Λ4) this is striking. Since these scales approach those of the dimension-6
effects, these operators cannot be safely neglected in fits to the data.

In this section we have focused on the phenomenlogical consequences of dimension-6 and
dimension-8 operators in the Drell-Yan process. By itself, the Drell-Yan process suffers from
degeneracies between Wilson coefficients due to the limited number of observables that can
be measured. Lifting these degeneracies requires the consideration of other experiments,
such as a future electron-ion collider [91]. A combination of low-energy observables with
Drell-Yan data can help remove ambiguities between dimension-6 and dimension-8 effects
that occur at high invariant masses in Drell-Yan [92].

7.3 Dimension-8 effects in low-energy precision experiments

Low-energy precision experiments can provide very strong bounds on SMEFT opera-
tors, competitive and complementary to high-energy colliders. This is true in particular
for observables sensitive to the violation of approximate SM symmetries. Constraints on
electric dipole moments of leptons, nucleons, atoms and molecules, on the neutrinoless dou-
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Figure 6: 95% CL intervals for the dimension-8 momentum-dependent four-fermion opera-
tors.

ble beta half-life of 76Ge, 130Te and 136Xe, and on µ → e transitions, probe flavor-diagonal
CP-violation, lepton-number violation and charged-lepton-flavor violation at levels that are
(naively) out of the LHC’s reach. A similar argument applies to flavor observables, including
meson-antimeson oscillations, rare B meson decays or direct CP-violation in kaon decays. In
other cases, low-energy experiments and colliders complement each other. This for example
applies to non-standard charged-current interactions, for which Drell-Yan experiments and
β decays probe similar parameter space [93–95], and Drell-Yan data can be used to falsify
explanations of low-energy anomalies [96].

Dimension-6 operators that induce semileptonic charged-current processes are probed by
tests of unitarity of the CKM matrix, by pion, kaon, neutron and nuclear β decay rates
and correlation coefficients, and by precise measurements of the β spectra. The bounds on
their coefficients are typically O(10−3), in units of the Fermi constant GF , which naively
corresponds to scales of 5 to 10 TeV. For comprehensive analyses of existing low-energy
constraints, we refer to Refs. [97, 95, 98]. To test the sensitivity of β decay experiments to

dimension-8 operators, we can consider the two derivative operators C
(3)

`2 q2D2 and C
(4)

`2 q2D2

L =
1

Λ4
C

(3)

`2 q2D2 Dν

(
¯̀
Lγ

µτ I`L
)
Dν
(
q̄Lγµτ

IqL
)

+
1

Λ4
C

(4)

`2 q2D2

(
¯̀
Lγ
{µ←→D ν}τ I`L

)
Dν
(
q̄Lγ{µ

←→
D ν}τ

IqL

)
, (47)

where {. , .} denotes the symmetric, traceless combination. We slightly redefined C
(4)

`2 q2D2

with respect to Section 7.1 to simplify its nucleon matrix element. Focusing on neutron
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decay, the matrix element of C
(3)

`2 q2D2 can be simply expressed in terms of the neutron axial

and vector current, while the matrix element of C
(4)

`2 q2D2 is related to moments of the parton
distributions

〈p|q̄τ+γµPLq|n〉 = ūp(vµ − 2gAS
µ)un (48)

〈p|q̄τ+γ{µ
←→
D ν}PLq|n〉 =

1

2
mN ū

p

{
〈x〉u−d

(
vµvν − 1

4
gµν
)

+ 2〈x〉∆u−∆dv
{µSν}

}
un,

(49)

where mN , vµ and Sµ are the nucleon mass, velocity and spin. 〈x〉u−d and 〈x〉∆u−∆d have
been computed in Lattice QCD, e.g. 〈x〉u−d = 0.173(14) and 〈x〉∆u−∆d = 0.225(22) [99], or
can be extracted from PDF fits.

Using the matrix elements in Eq. (48), we can derive the corrections to the neutron decay
rate, differential in the electron energy and in the angle between the momenta of electron
and neutrino θ:

dΓ

dEed cos θ
=

(GFVud)
2

4π3
Ee|~pe|(E0 − Ee)2(1 + 3g2

A)

{
1 + cθ

1− g2
A

1 + 3g2
A

−2v2

Λ4
C

(3)

`2 q2D2

(
2Ee(E0 − Ee) +m2

e

)(
1− 1 + 7g2

A

1 + 3g2
A

cθ −
1− 5g2

A

1 + 3g2
A

c2
θ +

1− g2
A

1 + 3g2
A

c3
θ

)
−2v2mN

Λ4
C

(4)

`2 q2D2mN
2Ee − E0

3g2
A + 1

(
(8gA〈x〉∆u−∆d − 〈x〉u−d) + cθ〈x〉u−d

)
+ . . .

}
, (50)

where cθ ≡ cos θ, E0 is the electron end-point energy, and . . . denotes terms proportional to
the electron mass, which we omitted for simplicity. The dimension-8 operators induce new
energy and angular dependencies, e.g. they induce terms proportional to c2

θ, which in the
SM only arise at O(Ee/mN). Still, the corrections to neutron correlation coefficients scale
at best as

cdim8

cSM

∼ m2
N

Λ2

v2

Λ2
, (51)

for those coefficients that are suppressed in the SM. Even if Λ ∼ v, these corrections are too
small to be observed in the next generation of β decay experiments. Differently from the LHC
analysis discussed in Section 7.2, low-energy experiments are more sensitive to dimension-8
operators with insertion of Higgs fields. In these cases, the corrections to neutron decay
scale as (v/Λ)4 and current low-energy charged-current data are sensitive to dimension-8
operators with Λ ∼ 1.5 TeV. A joint analysis of collider and low-energy probes of charged-
current interactions to dimension-8 would therefore be an important development.

Another interesting class of low-energy observables which can show sensitivity to dimension-
8 operators is electric dipole moments (EDMs). Also in this case, we can differentiate be-
tween dimension-8 operators that contain insertions of Higgs fields vs operators with addi-
tional derivatives or gauge fields. Even for dimension-6 operators, the evaluation of hadronic
EDMs is complicated by non-perturbative QCD and an open field of research [100]. Using
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only naive dimensional analysis (NDA), we can estimate the contribution to the neutron
EDM to scale as

dn ∼
e

(4π)2

{
Λχ

v2
,
Λ3
χ

v4

}
v4

Λ4
∼
{

10−8, 10−13
}( v

Λ

)4

e fm, (52)

with Λχ ∼ mN . The first estimate applies, for example, to four-quark two-Higgs operators,
while the second to operators with four quarks and one gluon field. Comparing the NDA
estimate with the current bound on the neutron EDM, dn < 1.8 · 10−13 e fm, we see that
EDMs can probe at least some classes of dimension-8 operators.

Finally, at dimension-8, a new class of flavor diagonal CP-odd operators that break time-
reversal, but not parity, arises. These generate new T -odd P -even effects at low energy,
including toroidal quadrupole moments of particles with angular momentum greater than
one (such as the deuteron or positronium) [101, 102] and T -violating asymmetries in proton-
deuteron scattering [103]. Working towards a global SMEFT fit, it will be important to
assess the required sensitivity for these experiments to provide competitive bounds on BSM
physics.

8 Conclusions

The search for physics beyond the Standard Model is increasingly pushing the allowed
scale for new particles beyond the energy reach of current colliders. The SMEFT is a
systematic framework for exploring the impact of such high-energy states in lower-energy
measurements. It relies on an expansion in inverse powers of a heavy scale Λ. Like most
other expansions in physics, reliable predictions require going beyond the first non-trivial
orderized by dimension-6 operators.

In this contribution we have reviewed the theoretical framework that has allowed predic-
tions at the dimension-8 level and beyond in the SMEFT. These advances have required a
wide variety of theoretical techniques, that in some cases have led to predictions to all or-
ders in the 1/Λ expansion. The phenomenological consequences of these higher-order terms
are significant in several benchmark processes. Further investigation of these effects will
be needed as we enter the high-luminosity stage of the LHC and prepare for future high
precision experiments.
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