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Abstract

The LHC experiments will achieve percent level precision measurements of processes
key to some of the most pressing questions of contemporary particle physics: What
is the nature of the Higgs boson? Can we successfully describe the interaction of
fundamental particles at high energies? Is there physics beyond the Standard Model
at the LHC? The capability to predict and describe such observables at next-to-next-
to-next-to-leading order (N3LO) in QCD perturbation theory is paramount to fully
exploit these experimental measurements. We describe the current status of N3LO
predictions and highlight their importance in the upcoming precision phase of the LHC.
Furthermore, we identify key conceptual and mathematical developments necessary to
see wide-spread N3LO phenomenology come to fruition.
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1 Introduction

In this article, we outline the status and progress of theoretical developments making
percent level precision phenomenology at the LHC a reality. The particular advancement
discussed here is the ability to describe scattering processes of high interest at the LHC to
next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory.

Percent level phenomenology with LHC measurements is highly motivated. First and
foremost, this level of precision represents the frontier of what can be realized experimen-
tally. Universal limitations to precision are imposed experimentally by our ability to de-
termine how many particle collisions occur at the LHC, i.e. by the determination of the
interaction luminosity. Recent studies by ATLAS [1] and CMS [2] confirm remarkably that
levels of precision of about one percent are achievable. Similarly, another dominant leading
uncertainty, the experimental resolution on the observed energy of particles and hadronic
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jets in the detectors, is at comparable levels [3,4]. Statistical limitations of measurement will
be overcome for a plethora of observables by the upcoming High Luminosity phase of the
LHC (HL-LHC), during which roughly twenty times as much data will be recorded compared
to the accumulated amount to date [5].

Percent level LHC phenomenology represents the opportunity to study some of the most
pressing questions of high energy physics. The LHC is our first and currently only window
to glimpse directly at interactions of all fundamental particles in the Standard Model oc-
curring at the electroweak energy scale of several hundred GeV. As such, current and future
measurements will allow us to pin down the properties and the nature of the Higgs bo-
son in great detail [5]. Precision LHC measurements allow us to determine the fundamental
masses and coupling strengths of electroweak particles. Specifically, the LHC will allow us to
study a large variety of observables involving Higgs bosons, electroweak bosons, top quarks
and hadronic jets to astounding precision. As a consequence, we can directly probe our
understanding of fundamental interactions at high energies and explore the nature of elec-
troweak symmetry breaking. In particular, in the absence of the discovery of new particles,
the precision exploration of LHC physics is of paramount importance. Small deviations of
measurements from our Standard Model (SM) expectation would lead to the most profound
implications on our understanding of nature. As a result, precision phenomenology will play
a crucial role in the search for physics beyond the Standard Model.

The successful execution of a percent level phenomenology program relies on our abil-
ity to interpret and predict the outcome LHC measurements. The theoretical foundation
for predictions of high energy particle collision experiments is perturbative Quantum Field
Theory (QFT). However, achieving percent level precision is a formidable task and requires
substantive developments and a concerted effort of the theoretical physics community. One
particular key aspect that will be necessary is technology and understanding to perform
computations of LHC observables at N3LO in QCD perturbation theory. In this article, we
focus on the current status of N3LO computations and discuss what future developments
are necessary in order to have predictions readily available and easy to use for key LHC
observables.

At this point N3LO QCD predictions are available for a selected number of inclusive LHC
cross sections for the production of colorless final state particles [6–16]. Furthermore, some
early results for more differential predictions became available [9,17–24]. While these results
cover only a limited set of processes, often in an idealized description, a general picture can
be already deduced: 1) N3LO corrections are typically at the order of several percent. 2)
Residual uncertainties due to the truncation of the perturbative expansion after the inclusion
of these corrections are at the percent level. 3) Overall, the inclusion of N3LO corrections
leads to a significanlty improved description of collider physics observables. Consequently,
the inclusion of N3LO corrections becomes mandatory for a successful percent level precision
phenomenology program at the LHC. We present a brief overview of some current N3LO
computations in sec. 2.

Achieving N3LO precision for a large range of LHC observables is an ambitious goal with a
multitude of challenges ahead. Such computations rely on the availability of multi-loop scat-
tering amplitudes. Associated with the computation of such amplitudes are a multitude of
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technical and conceptual challenges. First, the sheer increase of complexity of computations
at higher and higher loop orders stretches our analytic and numerical capabilities, continues
to challenge us to develop new techniques and improved understanding of QFT. Second,
the mathematical functions that amplitudes are comprised of are often beyond established
domains of mathematics. Such functions include multiple polylogarithms, elliptic polylog-
arithms and generalizations beyond that, which are an active field of theoretical research.
Efficient numerical and analytic techniques for the computation of scattering amplitudes will
be a key ingredient to widespread N3LO phenomenology. We discuss the computation of
scattering amplitudes and its mathematical constituents in sec. 3.

The combination of scattering amplitudes to cross sections is another highly non-trivial
step in the computation of N3LO corrections. Infrared and collinear singularities in the
integration over final state particle momenta yield this process highly non-trivial conceptually
and practically. While so far mainly analytic techniques were used for the computation of
N3LO inclusive cross sections, extension to more realistic observables will require a shift
in the approach. Techniques for the computation of fully differential cross sections were
established at NNLO in QCD perturbation theory, but their extension to one order higher is
highly non-trivial and will be part of substantial research. Such techniques include so-called
slicing and subtraction algorithms that are each associated with a range of particular features
and advantages. We present an overview of such techniques and discuss advancements needed
in the future in sec. 4.

Realizing N3LO phenomenology on a larger scale is associated with many further chal-
lenges. First, The backbone of perturbative computations are parton distribution functions
(PDFs). Such PDFs are currently available at NNLO and increasing their perturbative order
by one will require a significant community effort. Furthermore, N3LO corrections should
be made readily available to wider theoretical and experimental community. Creating such
easy-to-use computer software is key to the successful application of these computations in
collider phenomenology, but it is also a very challenging task. Moreover, the perturbative
description of hadronic observables fails in so-called infrared sensitive regions of phase space
and perturbative computations need to be supplemented with all-order resummation. The
development of such resummation techniques in unison with N3LO predictions is vital. In
addition, the combination and integration of high order perturbative corrections into parton
shower frameworks is highly desirable to achieve not only improved predictions but also a
high degree of user friendliness and applicability. Another key conceptual development will
be the estimation of theoretical uncertainties of QFT predictions. Such estimates present an
increased conceptual and statistical challenge as we near the regime where theory uncertain-
ties pose the leading uncertainty on observables and need to be part of research. We outline
briefly a non-exclusive set of such challenges for the precision theory program in sec 5.

2 Example phenomenological results for 2 → 1 N3LO processes
and what they taught us

The first hadron-collider production process computed at N3LO accuracy was the in-
clusive cross section for the production of a Higgs boson in gluon-fusion (the dominant
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production channel at the LHC) in the limit where the top-quark is infinitely heavy and
can be integrated out [6–8]. Currently, also the inclusive bottom-quark fusion and vector
boson fusion (VBF) channels are known at this order (though in the case of VBF, the result
is only known in the factorizable approach, where color exchange in the t-channel is ne-
glected) [9–11]. N3LO results are also available for di-Higgs production in gluon-fusion and
VBF [12,13]. Very recently, also inclusive results for neutral- and charged-current Drell Yan
production have been completed [14–16]. So far, mainly fully-inclusive cross section have
been computed at N3LO, and only very few differential distributions are available, e.g., the
invariant-mass distribution of the color-singlet, or in some cases also its rapidity or trans-
verse momentum distribution [18–20,24,25]. While for precision collider phenomenology also
differential observables including fiducial phase space cuts are desirable, fully-inclusive cross
sections are an important theoretical and phenomenological tool to understand the structure
of the higher-order QCD perturbation theory, and they allow us to assess the quality of our
current predictions. In the following we will perform a comparison and a study of the sys-
tematics of N3LO corrections to hadron collider observables. This will allow us to assess the
phenomenological relevance of these corrections, and to devise a roadmap for theory compu-
tations needed to match the experimental and theoretical predictions at current and future
collider experiments. We will focus on fully-inclusive cross section predictions for 2 → 1
processes at the LHC with a center-of-mass energy

√
S = 13 TeV, because these processes

have the same topology and essentially only differ by the quantum numbers of the partons
in the initial state. As such, they form an ideal set of observables to study the systematics
of higher-order corrections at this order in perturbation theory.

2.1 Systematics of inclusive 2 → 1 processes at hadron colliders

Since the only known way to obtain reliable predictions for collider observables is per-
turbation theory, an important phenomenological question is how well perturbative compu-
tations approximate the exact result, or equivalently, what is the size of the missing higher
orders. This question is closely connected to the residual dependence on the renormalization
scale µR and factorization scale µF introduced by the truncation of the perturbative series.
This dependence is unphysical, and it is canceled by the µF and µR dependence of the miss-
ing higher orders. The variation of a fixed-order computation with these scales is therefore
often taken as a measure of the size of the missing higher orders in perturbation theory.

There is no consensus on how to determine the value these unphysical scales, though
they must be chosen so that they correspond to a hard scale of the process, to avoid the
appearance of large logarithms that would spoil the convergence of the perturbative series.
For a 2 → 1 process the only relevant hard scale is the invariant mass Q of the produced
color singlet state, so it is natural pick µF and µR proportional to Q. The impact of the
missing higher orders is then conventionally estimated by varying µF and µR by a factor of
2 around the chosen central scales.

In figure 1 we show the dependence of the gluon-fusion and of the neutral-current Drell-
Yan (NCDY) cross sections on the perturbative scales. In the left panel, we show the Higgs
cross section as a function of the center-of-mass energy

√
S of a proton-proton collider at
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NkLO, for k = 0, .., 3. The bands are obtained by varying the perturbative scales by a factor
of 2 around the central scale µcent. = mH/2. We see that, as expected, the scale dependence
δ(scale) is reduced considerably as the perturbative order is increased, reaching a few percent
at N3LO. Moreover, we observe a nice convergence of the perturbative series, with the scale
variation band at N3LO strictly contained within the NNLO band. We stress, however, that
this convergent behaviour depends on the choice of the hard scale [6, 7].

In the right panel of figure 1 we show the NCDY cross section at different orders normal-
ized to the N3LO prediction as a function of the invariant mass Q of the produced lepton
pair. Similar to the case of Higgs production, we observe a considerable reduction of the
dependence on the perturbative scales as the order is increased. At the same time, we find
that the bands obtained from scale variation at NNLO and N3LO do not overlap for invariant
masses 60 GeV . Q . 400 GeV, and this conclusion is independent of the choice of the cen-
tral scale. This clearly shows that care is needed when interpreting scale variation as a tool
to estimate the size of the missing higher orders, especially at high orders in perturbation
theory where we aim for precision predictions.

In order to investigate the relevance and the impact of N3LO computations, we summarize
in table 1 the results for the inclusive production cross section for various 2→ 1 processes.
All results are obtained for the LHC with

√
S = 13 TeV, and we fold partonic cross sections

with the pdf4lhc15_nnlo_mc set [26]. We show results for the K-factors from NNLO to
N3LO, and we observe that in all cases the N3LO corrections can change the value of the
predictions by a few percent, up to 5% depending on the invariant mass Q considered. We
also show the uncertainty δ(scale) on the cross section from varying the perturbative scales
by a factor of 2 up and down around the central scale µcent. = Q/2. We see that in all
cases the residual scale dependence at N3LO is of the order of a few percent. Based on these
results, we conclude that N3LO predictions for hadron collider observables are highly desired
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Figure 1: The left panel shows the Higgs boson production cross section in gluon fusion
as a function of the LHC energy through different orders in perturbation theory. The right
panel shows the invariant-mass distribution Σ(Q) of the Drell-Yan production process at the
LHC with

√
S = 13 TeV at different orders in perturbation theory.
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and needed if we want to achieve percent-level precision for hadron collider observables.

Q [GeV] K-factor δ(scale) [%] δ(PDF + αS) δ(PDF-TH)

gg → Higgs mH 1.04 +0.21%
−2.37% ±3.2% ±1.2%

bb̄→ Higgs mH 0.978 +3.0%
−4.8% ±8.4% ±2.5%

NCDY
30 0.952 +1.53%

−2.54%
+3.7%
−3.8% ±2.8%

100 0.979 +0.66%
−0.79%

+1.8%
−1.9% ±2.5%

CCDY(W+)
30 0.953 +2.5%

−1.7% ±3.95% ±3.2%

150 0.985 +0.5%
−0.5% ±1.9% ±2.1%

CCDY(W−)
30 0.950 +2.6%

−1.6% ±3.7% ±3.2%

150 0.984 +0.6%
−0.5% ±2% ±2.13%

Table 1: Representative results for the K-factor for inclusive 2 → 1 processes at the LHC
with

√
S = 13 TeV, as well as for the main sources of uncertainty [6–8,10,14–16]. For details,

see the discussion in the main text.

Achieving precise predictions for hadron collider processes does not only rely on our
ability to perform high-order perturbative calculations, but it also requires the knowledge of
the structure of the proton at the same level of precision. The latter is described by parton
density functions (PDFs), which are non-perturbative quantities that need to be extracted
from experimental data. Consequently, PDFs come with their own sources of uncertainty,
which depend on the quality of the data and the fitting methodology used. Moreover, the
value of the strong coupling constant used in the perturbative computations can only be
measured from experiment or is extracted from Lattice QCD simulation. In table 1 we show
how the uncertainties on the PDFs and the strong coupling constant impact our theoretical
predictions at N3LO. The uncertainty δ(PDF + αS) quoted in table 1 was computed using
the recipe of [26]. We observe that δ(PDF +αS) is always of the order of a few percent, and
always significantly larger than the residual scale dependence. We also note that currently
there is no PDF set available that was extracted by comparing theory and experiment at
N3LO accuracy, which formally introduces a mismatch into our computation. In order to
assess the impact of this mismatch on our N3LO predictions, we investigate the effect of
evaluating the NNLO cross sections with NLO or NNLO PDFs following the recipe of [7]:

δ(PDF-TH) =
1

2

∣∣∣∣ΣNNLO,NNLO-PDFs(Q)− ΣNNLO,NLO-PDFs(Q)

ΣNNLO,NNLO-PDFs(Q)

∣∣∣∣ . (1)

We find that in all cases δ(PDF-TH) leads again to an uncertainty of a few percent, within
the same ballpark as the dependence on the perturbative scales. We conclude that in order
to achieve percent-level precision for hadron colliders, it is insufficient to just push to higher
orders in perturbations theory, including the third order in the strong coupling. Instead,
developments on the perturbative side must be accompanied by corresponding advances in
our understanding of the PDFs.
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The discussion of the previous subsection shows that, if we want to match the exper-
imental precision from the theory side, for the future it will be high priority to push our
theory predictions to include N3LO corrections in the strong coupling constant (we emphasise
that also electroweak and mixed-QCD electroweak corrections may be equally, and for some
observables even more, important). The inclusive cross sections discussed in the previous
section, however, are idealised observables. For the future, it will be important to achieve
N3LO precision also for differential observables with the possibility to impose arbitrary phase
space cuts and also with additional jets in the final state already at LO. Experience shows
that higher order corrections become often even more important in the presence of phase
space cuts. While the computation of inclusive N3LO corrections for color-singlet production
in 2 → 1 processes has recently achieved maturity, we have not yet reached the same level
of understanding for differential observables involving higher-multiplicity final states. In the
following sections we identify the most pressing challenges that need to be addressed in order
to achieve N3LO accuracy for a large range of key LHC processes.

3 Advances in amplitudes and new mathematical structures

3.1 Multi-loop scattering amplitudes

Multi-loop scattering amplitudes are essential building blocks for the computation of
perturbative scattering cross sections. To be able to perform computations for 2 → 2
processes at N3LO, three-loop 2→ 2 amplitudes and two-loop 2→ 3 amplitudes are required.
While first results are becoming available [27–45], a systematic approach to the computation
of the required multi-loop amplitudes is currently still missing, in part also due to a lack of
understanding of the relevant special functions, see section 3.2. State of the art computations
rely on impressive developments of efficient algorithms for the calculation of amplitudes
and a continued effort to deepen our understanding of QFT. Nevertheless, rapid growth
of complexity as the loop order is increased and as problems with more massive particles
are considered, renders cutting edge calculations of loop amplitudes highly non-trivial. To
facilitate a widespread N3LO and even NNLO phenomenology program a sizable amount of
scattering amplitudes that are yet unkown is required. Ultimately, it is necessary to find
representations of amplitudes that can be evaluated efficiently and yield numerically reliable
results. What’s more, the same scattering amplitudes can be useful in the computation of
different processes and in different settings. Therefor it is of great interest to the community
that scattering amplitudes are made publicly available and easily accessible.

3.2 Functions appearing in multi-loop integrals

The Standard Model involves several heavy particles: the Z- and W -bosons, the Higgs
boson and the top quark. Precision studies of these particles require on the theoretical
side quantum corrections at the two-loop order and beyond. It is a well-known fact that
starting from two-loops Feynman integrals can no longer be expressed exclusively in terms
of multiple polylogarithms. This occurs already in two-point functions, as soon as massive
particles are involved. A prominent example is the two-loop sunrise integral with non-zero
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Figure 2: The first three members of the family of banana graphs.

Figure 3: The first three members of the family of traintrack graphs.

internal masses [46–63]. The sunrise integral can be viewed as a member of the family of
banana graphs [64–73], shown in fig. 2. In exploring new functions associated to Feynman
integrals, we study in detail carefully chosen examples which present new complications in
the simplest possible way. Apart from the family of banana graphs, the family of traintrack
graphs [74–78] (with massless propagators) shown in fig. 3 is another well-studied example.
The two-loop members of these families are standard examples for elliptic Feynman integrals.

Multiple polylogarithms are associated with a complex algebraic curve of genus zero with
a certain number of marked points [79,80]. We note that we may view any complex algebraic
curve of genus g as a Riemann surface of genus g, as one complex dimension equals two real
dimensions. Configurations of marked points on a genus zero curve which can be obtained
from another configuration by a Möbius transformation are considered equivalent. The space
of inequivalent configurations is called the moduli spaceM0,n of n marked points on a curve
of genus 0. We may define multiple polylogarithms as iterated integrals on the moduli space
M0,n, where the integrands are given by the closed one-forms

ωij = d ln (zi − zj) . (2)

This definition may sound a little bit complicated at first sight. It boils down to the standard
definition of multiple polylogarithms in terms of iterated integrals (for zk 6= 0):

G(z1, ..., zk; y) =

y∫
0

dy1
y1 − z1

y1∫
0

dy2
y2 − z2

...

yk−1∫
0

dyk
yk − zk

. (3)

The definition given above has the advantage that it paves the way towards the extension
for genus one curves [81].

8



The dimension ofM0,n is (n− 3), as we may use the freedom of Möbius transformations
to fix three points at prescribed values (usually taken as 0, 1,∞). Standard coordinates on
M0,n are therefore

(z1, z2, . . . , zn−3) . (4)

Starting from two-loops we also encounter transcendental functions associated to a com-
plex algebraic curve of genus one with a certain number of marked points. An algebraic
curve of genus one with one marked point is by definition an elliptic curve. If we have more
marked points, we speak about an elliptic curve with (additional) marked points. We are
again interested in inequivalent configurations of marked points. The space of all inequiv-
alent configurations is the moduli space M1,n. The dimension of the moduli space M1,n is
n. (In general, the dimension of Mg,n is (3g + n− 3).) We need one coordinate to describe
the shape of the elliptic curve (or the shape of the torus or the shape of the fundamental
parallelogram). We may take the modular parameter τ for this. We may use translation
transformations to fix one marked point, say zn = 0. This gives

(τ, z1, . . . , zn−1) (5)

as coordinates on M1,n. We then proceed as in the genus zero case: We consider iterated
integrals on M1,n of specific one-forms. The one-forms we would like to consider are either
of the form

ωmodular
k = 2πi fk (τ) dτ, (6)

where fk is a modular form of modular weight k [59], or of the form

ωKronecker
k = (2πi)2−k

[
g(k−1) (z − c, τ) dz + (k − 1) g(k) (z − c, τ)

dτ

2πi

]
, (7)

with c being a constant. The functions g(k)(z, τ) are obtained from the expansion of the
Kronecker function [82–84]

F (z, α, τ) = θ̄′1 (0, q)
θ̄1 (z + α, q)

θ̄1 (z, q) θ̄1 (α, q)
=

∞∑
k=0

g(k) (z, τ)αk−1, q = e2πiτ . (8)

The Jacobi theta function θ̄1 is defined here by

θ̄1 (z, q) = −i
∞∑

n=−∞

(−1)n q
1
2(n+ 1

2)
2

eiπ(2n+1)z. (9)

The one-forms ωmodular
k and ωKronecker

k are closed.
Very often we solve Feynman integrals by the method of differential equations. If we

integrate on M1,n in one of the z-variables we obtain elliptic multiple polylogarithms [85]:

Γ̃( n1 ... nr
c1 ... cr ; z; τ) =

(2πi)n1+···+nr−r Iγ

(
ωKronecker,z
n1+1 (c1, τ) , . . . , ωKronecker,z

nr+1 (cr, τ) ; z
)
, (10)

9



with

ωKronecker,z
k (c, τ) = (2πi)2−k g(k−1) (z − c, τ) dz (11)

being the part of ωKronecker
k proportional to dz and Iγ(ω1, ω2, . . . ; z) denotes the iterated

integral along the path γ with endpoint z.
In the literature there exist various definitions of elliptic multiple polylogarithms due to

the following problem: It is not possible that the differential one-forms ω entering the defini-
tion of elliptic multiple polylogarithms have at the same time the following three properties:
(i) ω is double-periodic, (ii) ω is meromorphic, (iii) ω has only simple poles. We can only re-

quire two of these three properties. The definition of the Γ̃-functions selects meromorphicity
and simple poles. Meromorphicity means that ω does not depend on the anti-holomorphic
variables. The differential one-forms are not double-periodic. This is spoiled by the quasi-
periodicity of g(k)(z, τ) with respect to z → z + τ . However, this is what physics (i.e.
the evaluation of Feynman integrals) dictates us to choose. The integrands are then either
multi-valued functions on M1,n or single-valued functions on a covering space. Of course,
in mathematics one might also consider alternative definitions, which prioritise other prop-
erties. A definition of elliptic multiple polylogarithms, which implements properties (i) and
(ii), but gives up property (iii) can be found in [86], a definition, which implements proper-
ties (i) and (iii), but gives up (ii) can be found in [83]. The reader is advised to carefully
check what is meant by the name “elliptic multiple polylogarithm”, this also concerns the
definitions in [87,88].

However, in many applications it is advantageous not to integrate in z but to integrate
the differential equation in τ with boundary point τ = i∞. We set q = exp(2πiτ). For the
integration along τ we consider in q-space iterated integrals with integrands given by

ωKronecker,τ
k =

(k − 1)

(2πi)k
g(k) (z − c, τ)

dq

q
or ωmodular

k = fk (τ)
dq

q
. (12)

There are two advantages: The boundary point τ = i∞ corresponds to q = 0. On the
hypersurface τ = i∞ the elliptic curve degenerates to a nodal curve and we may express the
boundary values in terms of multiple polylogarithms. The second advantage is that there will
be no poles along the integration path. There might be poles at the starting point (“trailing
zeros”) or at the end point (“leading one”), but there won’t be any poles inbetween. This
is in contrast to multiple polylogarithms and elliptic multiple polylogarithms, where there
might be poles along the integration path. The fact that for an integration along τ there
are no poles along the integration path together with the fact that with the help of modular
transformations [89,90] we may always ensure that

|q| ≤ e−π
√
3 ≈ 0.0043 (13)

allows for an efficient numerical evaluation of these iterated integrals [91].
Let’s look at an example: The two-loop sunrise integral evaluates to iterated integrals on

M1,3 (the closure ofM1,3). In the general unequal mass case this integral depends on three
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dimensionless variables, which we may choose originally as x = −p2/m2
3, y1 = m2

1/m
2
3, y2 =

m2
2/m

2
3. In this example the relation with algebraic geometry is simplest in the Feynman

parameter representation: The second graph polynomial defines an elliptic curve, which
intersects the domain of integration (a two-dimensional simplex) in three points. These
three points define three marked points on the elliptic curve, hence the relevant moduli
space is M1,3. The marked points on the curve as well as the shape of the curve vary
with the kinematic variables (x, y1, y2). We may therefore change variables from (x, y1, y2)
to (τ, z1, z2) as introduced above. In the differential equation we then find the one-forms
ωmodular
k and ωKronecker

k (and only those) [63].
Learning about new transcendental functions by studying well-chosen examples is just

the first step. In the end we are interested in physical observables. This requires in addition
efficient algorithms to express all occurring Feynman integrals in terms of our expected
function basis. This can already be seen by looking at the two-loop electron self-energy
in QED: In addition to the (equal mass) sunrise integral the calculation requires the kite
integral [92–94].

Expressing a given Feynman integral in terms of a given function basis is highly non-
trivial, already in the case of multiple polylogarithms: It might involve rationalisations of
square roots [95] or matching the symbol of the Feynman integral [96, 97].

Thus, in addition to understand better the more complicated members of the families
of banana and traintrack integrals, efficient methods which allow us to express all Feynman
integrals contributing to a particular physical observable at a given order in perturbation
theory in terms of a known class of functions are a direction for future research.

4 IR Subtraction Schemes and their Extension to N3LO

4.1 General Considerations

Even if all the relevant scattering amplitudes are known, obtaining physical predictions
for a given process is non trivial. This is because QCD corrections arise from both real
and virtual emissions, which are individually infrared (IR) divergent. The divergences need
to be properly extracted and canceled to obtain a physically meaningful results. In virtual
corrections, IR singularities are always manifest. In real contributions, however, they only
manifest themselves after integrating over QCD radiation. Typically one is interested in
fully exclusive results, so that such an integration cannot be performed, and a method to
extract the implicit IR singularities is required.

In general, there are at least two ways of dealing with this issue. The first goes under
the name of “slicing” and roughly amounts to the following. Since IR singularities can only
be generated in soft/collinear (SC) regions, one can separate the calculation of real-emission
contributions in two regions: a SC one and a hard one. In the SC region a) QCD factorizes
into a process-dependent part that lives in the Born phase space times universal factors and
b) QCD radiation by definition does not affect any IR-safe observable. This allows one to
integrate over extra radiation in a process- and observable-independent way, which generates
IR divergences that cancel against the ones from virtual corrections. In the hard region, no
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IR singularities can appear so this contribution does not pose any conceptual challenge.
To illustrate this approach, consider Higgs production in gluon fusion at NLO. Schemat-

ically, it can be split into virtual (V ) and real (R) corrections

∆σHNLO =

∫
[V dΦH +R dΦH+1] , (14)

where dΦ is the relevant phase space. An effective way of separating SC and hard regions is
to consider the Higgs transverse momentum pt,H : if it is small, QCD radiation is constrained
to be soft/collinear. One then writes

∆σHNLO =

∫
pt,H<pt,cut

[V dΦH +R dΦH+1] +

∫
pt,H>pt,cut

R dΦH+1. (15)

If pt,cut is small enough, one can approximate the first term on the r.h.s. of eq. (15) with
its pt,H → 0 limit, which is well-known from the study of small-pt resummation. The second
term is simply the LO Higgs transverse momentum spectrum. It is easy to see that a similar
construction generalises to arbitrary orders: the NkLO result can be written as a fully
unresolved contribution plus Nk−1LO corrections to Higgs production at finite transverse
momentum.

This examples highlights the main strengths of the slicing approach: it allows to re-write
a generic NkLO calculation as the sum of a much simpler computation which at the end only
involves Born-like configurations and a Nk−1LO calculation with one extra emission. The
main drawback is that the SC and hard contributions both develop logarithmic sensitivity on
the small pt,cut parameter. In general, this leads to large cancellations between different con-
tributions to the final result, which requires an exquisite numerical control on the individual
terms. This is non trivial for the Nk−1LO contribution, and it comes with a heavy CPU cost.
Because of this slicing was abandoned at NLO. However, it has been revisited for NNLO
calculations [98–100]. The success of this program is due both to advances in computing and
to a progress in our ability to perform NLO calculations very efficiently. Currently, slicing
is the only technique that is mature enough to deal with fully differential N3LO computa-
tions, at least simple ones, without the need for any process-dependent N3LO input. Indeed,
it has been recently applied to the calculation of N3LO QCD corrections to color-singlet
production at colliders [20, 21, 23]. These computations, however, are very CPU-intensive,
so it is unlikely that slicing formalisms in their current incarnation would be able to cope
with more complex N3LO processes. This issue is discussed more in depth in sec. 4.2, where
more details on current slicing formalisms and on progress towards their improvement is
described. Recently, another slicing scheme for colourful final states has been proposed in
ref. [101] using jet algorithms.

Another approach to higher-order calculations is the so-called “subtraction” method.
Here one does not separate between SC and hard regions, but adds and subtracts to indivual
pieces of the computation carefully constructed counterterms that extract and regulate the
singular terms. Using the same example as before, one schematically writes

∆σHNLO =

∫
[V dΦH + SdΦH+1] +

∫
[R− S] dΦH+1. (16)
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If S reproduces R in all SC configurations, the second term of eq. (16) is regular in all IR
regions. Because of QCD factorisation properties, S can be chosen in such a way that the
emission of the extra parton (on top of the Born-like configuration) is described by universal
SC functions, multiplied by a process-dependent part that lives in the Born phase space. A
similar construction can be done for the dΦH+1 phase space. This allows one to integrate
the first bracket of eq. (16) over the extra radiation, to exposes IR singularities and cancel
them against virtual corrections.

The main advantage of the subtraction approach over slicing is that one does not need
to introduce a hard cut between SC and hard regions, which means that no parametrically-
enhanced large cancellations between individual terms occur. The main drawback is that it
is not straightforward to re-use existing Nk−1LO calculations for the more CPU-intensive and
tedious part of the computation.∗ Also, devising a suitable S countertem and integrating it
over the unresolved phase-space (see the first term of eq. (16)) are non-trivial endeavours,
both conceptually and technically.

Currently, subtractions are the standard for NLO calculations [103–105], and are also
used as NLO input for all the NNLO slicing results. Different subtraction formalisms have
been developed for NNLO calculations, and have been applied to several non-trivial cases.
Many frameworks can at least in principle deal with fully generic processes. Because of the
lack of large numerical cancellations, subtraction formalisms tend to perform better than
slicing, although original NNLO formalisms were far from optimal. This led to ongoing
efforts to devise better frameworks for NNLO calculations [102,106–114]. At present, this is
still work in progress and there is no universal subtraction framework for N3LO calculation.
However, several of the ingredients required for extending subtractions at N3LO has started
to appear [115–119] and the projection-to-born subtraction scheme [102] could be applied to
the Higgs boson production cross section in gluon fusion [22].

Both the slicing and subtraction approaches described above share the feature of clearly
separating real and virtual corrections, which are individually IR-sensitive. In the recent
past, efforts to avoid this separation [120–122] were revived, and encouraging results started
to appear [123–125].

4.2 N-Jettiness and qT slicing schemes

The two main examples of slicing are the methods of qT -subtraction [98] and N -jettiness
subtraction [99, 100]. In these methods we take a cross section that we want to calculate,
let’s call it σ(X), and we rewrite it as the integral of a differential distribution with respect
to an observable τ such that we can split its calculation in two regions as

σ(X) =

∫
dτ

dσ(X)

dτ
=

∫ τcut

0

dτ
dσ(X)

dτ
+

∫
τcut

dτ
dσ(X)

dτ
. (17)

Here, σ(X) can be a differential cross section and we identify with X the set of measure-
ments that we want to consider, which can include experimental cuts and constraints on

∗A notable exception is the so-called projection-to-born (P2B) approach [102], which however requires
the knowledge of NkLO corrections fully differential in the Born kinematics.
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the kinematics of particles, such as the rapidity of the Higgs or an electroweak boson. If we
choose the observable τ appropriately, the region above the cut τ ≥ τcut > 0, i.e. the second
term in eq. (17), is populated only by events where there is at least one additional particle
with respect to the Born configuration we are considering. This implies that, if σ(X) is an
n-loop cross section for an m-jet process, the calculation above the cut will involve the cross
section for m + 1-jet process at n − 1 loops. Therefore, the true n-loop singularities arise
only in the region below the cut, τ < τcut, in particular for τ → 0. We can then expand the
differential cross section around the singular limit τ → 0 as

dσ(X)

dτ
=

dσsing(X)

dτ
+
∑
i>0

dσi(X)

dτ
, (18)

where the first term contains the singular behavior scaling as 1
τ
, while the rest of the terms

dσi(X)
dτ

are suppressed by powers of τ i with respect to the leading power term and therefore
are integrable. With that, we may recast eq. (17) as

σ(X) =

∫ τcut

0

dτ
dσsing(X)

dτ
+

∫
τcut

dτ
dσ(X)

dτ
+ ∆σ(X, τcut) , (19)

where

∆σ(X, τcut) ≡
∑
i>0

∫ τcut

0

dτ
dσi(X)

dτ
. (20)

Since the terms in ∆σ(X, τcut) are integrable, we have that ∆σ(X, τcut) → 0 as we take

τcut → 0. Knowing just the leading power term dσsing(X)
dτ

below the cut and the n − 1 loop
cross section above the cut, we have a way of obtaining σ(X) with an error ∆σ(X, τcut) that
vanishes as τcut → 0. Note, that this method can be refined to obtain a subtraction that is
local in τ where the O(1/τ) divergences cancel locally at the integrand level, see [100,126] for
details. This is implemented, for example, in the parton shower program Geneva [127–129]
for the 0−jettiness variable.

The N -jettiness and qT subtraction methods have been successfully applied to a large
variety of differential calculations at NNLO for the LHC [99,130–138,138–140] and recently at
N3LO [20,21], hence constituting one of the backbones of the modern toolbox for generating
high precision predictions for collider observables. However, both formally and practically,
one cannot take τcut to be arbitrarily small, as the cross section above the cut is divergent for
τcut → 0 and so one always have a residual error due to ∆σ(X, τcut) 6= 0. Substantial progress
have been made in obtaining analytic control of ∆σ(X, τcut) by studying perturbative power
corrections [141–153]. Note in particular that there can be a strong dependence on the
precise definition of the observable, see for example the discussion on the leptonic definition
of T0 in [141–143,148].

Crucially, the leading power term dσsing(X)
dτ

is very well understood and it is described
by factorization theorems using effective field theory such as Soft and Collinear Effective
Theory (SCET) [154–157].
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The leading power factorization theorem for qT reads [158–164]

dσsing

dQ2dY d2~qT
=
∑
a,b

Hab(Q
2, µ)

∫
d2~bT
(2π)2

ei ~qT ·
~bT Ba

(
xB1 , bT , µ,

ν

ωa

)
Bb

(
xB2 , bT , µ,

ν

ωb

)
S(bT , µ, ν)

= σ0
∑
a,b

Hab(Q
2, µ)

∫
d2~bT
(2π)2

ei ~qT ·
~bT f̃a(x

B
1 , bT , µ, ζa) f̃b(x

B
2 , bT , µ, ζb) , (21)

where ~bT is Fourier-conjugate to ~qT which is the commonly used notation in the literature,
as the functions factorize as simple products in impact parameter space (see ref. [165] for
a formulation in momentum space). Analogously, the singular limit of 0-Jettiness, which is
relevant for inclusive and differential color singlet production at the LHC, takes the form

dσsing

dQ2dY dT0
=
∑
a,b

Hab(Q
2, µ)

∫
dta dtbBa(ta, xa, µ)Bb(tb, xb, µ)Sc

(
T0 −

ta
Qa

− tb
Qb

, µ
)
. (22)

For the application of qT or N -jettiness subtraction at NnLO, all ingredients appearing in the
leading power factorization theorem must be calculated at NnLO, so let us give some details

on the objects appearing in eqs. (21) and (22). We take Q2 = xB1 x
B
2 E

2
cm and Y = 1

2
log
(
xB1
xB2

)
to be the color singlet invariant mass and rapidity, respectively. The hard function Ha,b

encodes the virtual corrections to the born process a, b → h, with h being the color singlet
particle. It is related to the square of the IR finite part of the quark/gluon form factor which
is known up to N3LO for more than a decade [166–174] and has now been calculated at N4LO
in ref. [175]. For the explicit expressions for H itself up to 3 loops. see ref. [174]. In eq. (21),
the soft function S(bT , µ, ν) encodes the information about the QCD soft radiation dynamics
in the presence the transverse momentum measurement constraint and can be formulated as a
shifted Wilson line matrix element in position space, see ref. [176] for details, and it is known

at N3LO [177]. Ba

(
xB1 , bT , µ,

ν
ωa

)
is the qT beam function for the parton a and it describes

the probability of finding such parton in the proton with longitudinal momentum fraction
x and impact parameter ~bT . The beam functions allow an operator product expansion for
qT � ΛQCD onto standard longitudinal pdfs in terms of perturbatively calculable matching
kernels

Bi(z,~bT , µ, ν) =
∑
j

∫ 1

z

dz′

z′
Iij(z′,~bT , µ, ν)fj

( z
z′
, µ
)
×
[
1 +O(btΛQCD)

]
. (23)

The kernels Iij(z′,~bT , µ, ν) have been recently calculated up to N3LO in ref. [178, 179] both
for the quark and the gluon case. This provided the last missing ingredients to apply qT
subtraction at N3LO and have been implemented for fiducial Higgs production in ref. [21]
and differential rapidity distribution for Drelly-Yan in ref. [20]. Note that due to the well
known presence of rapidity divergences [146, 163, 176, 180–187] the beam and soft functions
separately depend on a rapidity scale ν, but can be combined, as we have done in the
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second line of eq. (21), into Transverse Momentum Dependent Parton Distribution Functions
(TMDPDFs),

fi(x, bT , µ,Q) = Bi

(
x, bT , µ,

ν

Q

)√
S(bT , µ, ν) , (24)

which are rapidity renormalization scheme independent objects.

4.3 The N-jettiness soft function at N3LO

The qT subtraction method has been successfully applied to color singlet production
processes at N3LO for the LHC. To also describe the production of colored final states, a
different method is required to isolate the initial and final state singularities simultaneously.
Such a method is provided by the N -jettiness slicing method. When final state colored
objects are computed, such as in jet production or in the case of the Higgs pT spectrum, the
singular limit of the cross section in the regime where TN < τcut takes the factorized form

dσ(TN < τcut) = H

∫
Ba ⊗Bb ⊗

N∑
n

Jn ⊗ SN , (25)

where in addition to the beam function Ba in the 0-jettiness case, Jn is the inclusive jet
function to take care of the final state collinear singularities. SN is the soft function which
divides the phase space into N different partitions, each with one and only one collinear
singularity. The partition of the phase space follows the definition of the N -jettiness

TN =
∑
k

min
i

{
2
pi · qk
Qi

}
. (26)

The pi are light-like vectors for each of the initial beams and final-state jets in the prob-
lem, while the qk denote the four-momenta of any final-state QCD radiation. The Qi are
dimensionful variables that characterize the hardness of the beam-jets and final-state jets.

To apply eq. (25) to N3LO calculations, all ingredients therein have to be calculated to
3-loops. The quark jet function was first calculated to 3-loops in [188] and was confirmed
in [189] by a different method that uses the three-loop coefficient functions [190,191] for deep-
inelastic scattering via the exchange of a virtual photon that couples to quarks. When couple
the photon to a scalar instead, it has also been used to obtain the gluon jet function [189].
The beam function Ba is also fully known to N3LO for both the quark and gluon case [192],
by means of the collinear expansion strategy of the differential Higgs boson and Drell-Yan
production cross sections [193].

Compared with the jet and beam functions, the soft function is currently known only at
NNLO, partly due to the existence of the step θ-functions to partition the phase space in the
soft function. At NNLO, the soft function was obtained numerically by means of the phase
space sector decomposition method [194, 195], thanks to the perfect knowledge of the real-
virtual (RV) soft current at O(α2

s) with no ε-expansion [196]. The strategy, however, may
likely not work at N3LO. The calculations of the double-real-virtual and double-virtual-real
correction is more complicated and the ε-expansion seems inevitable in order to carry out the
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loop integrals. Though challenging, recent developments for the computation of phase-space
integrals with step functions [197–200] bring new opportunities to obtain the α3

s order soft
function analytically.

Due to the presence of theta functions, some modern techniques of the loop calculations,
such as the integration-by-parts (IBP) method [201,202] and the differential-equation method
[203,204], cannot be directly applied. Theta functions appear in many instances, for example
as experimental constraints. One example is the N -jettiness soft functions, for which at the
moment only numerical results are known at 2-loops. The problem of step functions in phase
space integrals can be solved by using the method developed in refs. [197–199]. The idea
is that a theta function has an integral representation similar to the alpha parametrization
of a propagator. Thus integrals with theta functions can be reduced and calculated by
constructing IBP identities and differential equations in the parametric representation.

Specifically,the step θ-function and the δ-function belong to the integral class with defi-
nition

wλ(u) ≡ e−
λ+1
2
iπ

∫ ∞
−∞

dx
1

xλ+1
eixu. (27)

Obviously, we have w0(u) = 2πθ(u) and w−1(u) = 2πδ(u). Thanks to the similarity with
the alpha parametrization of a propagator, the function wλ can be regarded as a propagator
with an index λ. Thus integrals with theta functions can directly be parametrized. The
resulting parametric integrals I(λ1, λ2, . . . , λn) satisfy the identities(

D0
∂F(x̂)

∂x̂i
− ẑi

)
I(λ1, λ2, . . . , λn) = 0, i = 1, 2, . . . , n+ 1, (28)

where D0 is an operator that increases the spacetime dimensions by 2, and x̂ and ẑ are
operators increasing or decreasing the indices.† F is related to the well-known Symanzik
polynomials U and F through F(x) ≡ F (x) + U(x)xn+1.

Based on eq. (28), two methods to reduce the parametric integrals were presented in
ref. [198]. Meanwhile, differential equations can also be constructed straightforwardly in
the parametric representation, and therefore the techniques for loop calculations can be sys-
tematically applied to the phase space integrals with theta functions. The computational
framework developed will make the analytic calculations of many observables at N3LO pos-
sible, such as the thrust or N -jettiness soft functions.

As an example, we consider the calculation of the following integral:

I =
(2π)5

π3d/2

∫
ddl1d

dl2d
dl3
δ(l21)δ(l

2
2)δ(l

−
1 − l+1 )δ(l+1 + l+2 − 1)θ(l−2 − l+2 )

l23(l3 + l1)2(l3 − l2)2(−l+2 )(l+1 + l+3 )(l−2 − l−3 )
.

This integral is relevant for the calculation of the RRV contribution to the thrust soft function
at N3LO. Here we use the lightcone coordinates. That is, l+i ≡ li · n1, l

−
i ≡ li · n2, with

n2
1 = n2

2 = 0, and n1 ·n2 = 2. To construct differential equations, we insert an auxiliary delta

†For a regular propagator, x̂ increases the index and ẑ decreases the index. For a “propagator” wλ, x̂
decreases the index and ẑ increases the index.
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function δ(l−1 + l−2 −y). Following the approach that we have presented, the resulting integral
can then be calculated by the standard differential-equation method. The result reads

I =ieiπε[2πΓ(1 + ε)]3
[
− 11

12ε4
− 7

3ε3
+

1

ε2

(
29

3
+

13π2

36

)
+

1

ε

(
59ζ3

2
− 121

3
− 13π2

9

)
+

509

3
+

41π2

9
+

1091π4

360
− 4π2 log(2)

]
.

5 Bottlenecks and open questions

Achieving the goal of percent level physics in hadron collisions will require a concerted
effort and support from particle physics phenomenology community. In previous sections, we
discussed the status and significant developments towards perturbative corrections at N3LO.
Below we identify some of the mayor challenges that have to be overcome in the future.

5.1 Accessibility and User Friendliness

Creating frameworks that make N3LO (and NNLO) predictions easily accessible to a
large community should be a priority. An enormous degree of automatisation and easy
access for NLO computations lead to the current back-bone of modern high energy LHC
phenomenology. Repeating a similar success story at higher orders is important to achieve
our scientific goals. Predictions at N3LO will reach a much larger audience and unfold their
impact fully if they can be accessed in terms of public software and such infrastructure
is support by the community. For example, individual publications by members of the
theoretical community may predict a particular observable as measured by a particular
experiment. This or another experiment may in the future decide to modify the definition of
the observable slightly by varying simple input parameters. If the prediction of an observable
relies on public software and the experimental analysis team can easily adjust the software,
then the original theoretical work will be useful for the new analysis. Other examples are the
demand for easy access in the extraction of PDFs, the development of new observables or the
comparisons and validation of new computations. The benefit of disseminating theoretical
results in an optimal way cannot be overstated but also not fully explored in the scope of
this article.

5.2 Corrections beyond QCD

The computation of QCD corrections to scattering cross sections is one particular pertur-
bative input towards precision predictions. Corrections due to the exchange of electroweak
particles are typically of similar size as NNLO corrections. This is most easily illustrated
by comparing the electroweak and strong coupling constant, α2

S ∼ αEWK. This implies
α3
S ∼ αEWKαS, so that for high precision observables even mixed QCD-electroweak correc-

tions will become important. Equally important may be effects due to non-vanishing quark
masses. As a first and often good approximation light quark masses are neglected in per-
turbative computations. However, when experimental precision becomes high enough these
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effects need to be accounted for. The technological challenges for the computation of elec-
troweak and mass corrections are very similar to those of performing N3LO computations
and by large the statements of previous sections apply. It should be noted that aiming for
higher precision in our predictions does not only complicate computations due to the per-
turbative complexity of gauge theory at increasing perturbative order but also due to the
fact that many more ingredients like electroweak and mass corrections need to be taken into
account.

5.3 Factorisation Violation at N3LO and beyond

Apart from developing formalisms for N3LO calculations, it is also important to in-
vestigate whether the standard perturbative approach is sensible at all. Studies in this
direction are in their infancy, but will be crucial to the precision program. Currently, it is
already known that a naive perturbative approach would not work for top production at
N3LO [205,206], and there are indications that the standard framework of collinear factori-
sation may become less straightforward at higher orders [117, 207, 208]. Another important
issue is whether uncontrolled non-perturbative effects may be actually larger than higher-
order perturbative corrections, making the latter pointless. In the recent past, there was
some indication that this may not be the case for several key collider observables [209] but
more work is needed to establish a clear picture.

5.4 DGLAP-evolution at four loops

We have already emphasised that the development of tools for perturbative computations
at N3LO goes hand in hand with the need to improve our understanding of the PDFs describ-
ing the internal structure of the proton. PDFs are non-perturbative and need to be extracted
from experimental data. The evolution of the PDFs with the factorization scale is purely
perturbative and is governed by the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation [210–212]. The DGLAP anomalous dimensions are currently known to
three loop order [213–216], which is sufficient for NNLO computations. In order to achieve
N3LO accuracy for PDFs, the four-loop corrections to the anomalous dimensions will be
required and an effort of their computation is on-going [217–219]. Their full computation is
technically very challenging, and will benefit from the developments discussed in section 3.

5.5 N3LO PDFs

As more and more computations for cross sections at N3LO become available, it will be
possible to use these computations to extract parton distribution functions at this order from
a global data set. The importance of precise N3LO PDFs was already discussed in section 2.
In particular, moving towards N3LO PDFs will be associated with additional conceptual
challenges, like the treatment of theoretical uncertainties or the simultaneous extraction
of quark masses or the strong coupling constant. Furthermore, a rise in complexity can
be expected to go along side an increase in the demand for computing facilities for PDF
extraction. We would like to stress that fits of PDFs are highly non-trivial and require
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significant community support. Developing and maintaining the infrastructure for the PDF
extraction should be a priority.

5.6 Parton Showers

Parton shower Monte Carlo generators are the workhorses of the LHC phenomenology
community. They allow for the simulation of realistic scattering events in LHC detectors.
A consistent combination of parton showers with fixed order perturbative computations at
high perturbative orders is a challenging task but should be envisioned for the future of the
precision program at the LHC. Currently, NLO accurate parton showers are wide spread
and successes at NNLO are available (see for example refs. [220–224]). Recently, extensions
to combine parton showers and N3LO computations have been proposed [225, 226]. The
fusion of N3LO calculation and parton shower Monte Carlo event generators should be
further explored and would yield a particularly efficient way of making high order precision
computations useful to the larger community.

5.7 Resummation

Fixed order computations fail to describe scattering processes adequately in soft and
collinear regions of phase space. To adequately describe such regions, the perturbative series
can be re-ordered and observables can be described to all perturbative orders but limited
logarithmic accuracy. Such resummation techniques are widely available and an extremely
successful tool in the standard tool box of high energy physics. Their futher development
in conjunction with high order computations is important. In particular, the existence of
higher order computations often leads to the extraction universal ingredients necessary for
ever more precise resummed predictions. The combination of resummation and fixed order
predictions then allows for a precise description of observables in and away from soft and
collinear sensitive regions.

5.8 Uncertainties

The truncation of the perturbative expansion naturally leads to an incomplete descrip-
tion of fundamental scattering processes and an uncertainty has to be associated with the
prediction of an observable up to a given order. Largely, our field currently uses variations
of unphysical scales to estimate such an uncertainty. This method is heuristic and lacks
a proper statistical interpretation. As theory uncertainties become dominant, their quan-
titative assessment becomes more important. Furthermore, explicit frameworks to derive
statistically sound statements about theoretical uncertainties and correlations of such uncer-
tainties among many observables will play an increasingly important role. Steps to a more
refined formulation of such uncertainties have been taken [227–229] but more research in this
direction is desirable.
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6 Conclusions

In this article we describe one particular requirement towards percent precision phe-
nomenology for LHC processes: the ability to perform computations at N3LO in perturbative
QCD. We study the status of current, inclusive N3LO predictions for idealised observables
and find the following:

1. N3LO corrections for typical LHC processes are at the level of several percent and thus
important to reach the LHC target precision.

2. The inclusion of N3LO corrections overall significantly improves the description of
observables.

3. Residual uncertainties due to the truncation of the perturbative expansion are at the
percent level.

4. Residual perturbative uncertainties are of comparable size to other typical uncertainties
associated with perturbative predictions.

Next, we explore key ingredients towards enabling future N3LO computations for a wide
range of realistic predictions of observables. We highlight the importance of the computation
of multi-loop scattering amplitudes as a key ingredient to N3LO cross sections. We emphasise
the importance of the development of techniques and tools for the computation of such
amplitudes. In particular, we highlight the impact of the development of our mathematical
understanding of the functions comprising scattering amplitudes. So-called elliptic multiple
polylogarithms are representatives of functions that are part of active mathematical and
physics research and play a key role in as building blocks for scattering amplitudes.

Another key aspect of future N3LO predictions is the development of efficient strategies
and algorithms for the integration of final state degrees of freedom. In particular, we discuss
the current status of slicing and subtraction techniques and explore their applicability to
N3LO calculations. We emphasize the importance of future developments of such phase
space integration techniques to achieve a broad range of fully realistic predictions at N3LO.

We highlight that achieving percent level precision for processes of high phenomenolog-
ical relevance will rely on much more than QCD corrections at N3LO. We discuss briefly
some of the theoretical developments we envision to go alongside the further development of
predictions at N3LO in QCD.

The precision phenomenology program of LHC has the enormous potential to answer
some of the most pressing question of contemporary physics. The success of this program
relies on our capability to interpret the observed data. Being able to perform accurate and
precise predictions using perturbative quantum field theory is a key element in this process.
In particuar, predictions at N3LO in QCD will play the role of a future precision standard
for important LHC observables. Developing the understanding and technology to realise
widespread N3LO phenomenology represents an exciting and multi-facetted field of active
research.
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