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Universitat de València–CSIC, Dr. Moliner 50, 46100 Burjassot, Spain

Finding a rationale behind the observed pattern of neutrino mixings has been at the focus
of neutrino flavor model building. Many different approaches have been put forward including
models based on symmetries. Among the most predictive models based on symmetries are
models which predict not only the mixing parameters but also correlations between them.
These mixing sum rules allow to probe flavor models in the future. In this white paper
we collect the predictions for the mixing parameters from flavor models based on discrete
symmetries broken to certain residual symmetries of the lepton mass matrices and from
models with modular symmetries to contrast them with bounds from current and future
oscillations experiments.
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EXECUTIVE SUMMARY

The observation of neutrino oscillations has introduced more new parameters to the Standard
Model but has also prompted a great deal of experimental and theoretical activity. Of particular
theoretical interest is the question about the rationale and the origin of the mixing parameters.
Approaches to the neutrino flavor puzzle include models based on symmetries, an approach mo-
tivated by the enormous success of using symmetries as the underlying guiding principle in the
construction of the Standard Model. Among the most predictive flavor models are models based
on symmetries which predict apart from values for the mixing parameters also correlations between
them, so called mixing sum rules, which allow to test and distinguish them. These predictions in
turn can provide targets for upcoming neutrino experiments and motivate the sensitivity these
experiments aim to achieve in the measurement of the mixing parameters. We have summarized
the predictions from models with mixing sum rules based on discrete symmetries broken to certain
residual symmetries of the lepton mass matrices and models with modular symmetries in Figs. 1
and 2. Probing these flavor models is crucial to find out whether the patterns observed in lep-
ton mixing correspond to an underlying symmetry and will provide tremendous insights in the
construction of a model beyond the Standard Model.
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I. INTRODUCTION

The flavor puzzle, the question of the origin of the values of the fermion masses and mixings, is
one of the major open questions in particle physics. Despite the enormous success of the Standard
Model (SM) we do not know yet why there are three fermion generations, and what determines
the values of the fermion masses and the mixing patterns. In fact, the vast majority of the free
parameters of the SM are related to the flavor sector and describe the fermion masses and quark
and lepton mixings. Finding a rationale behind the observed values of the masses and mixings is
of great importance to advance our understanding of the underlying physics and will be crucial in
our quest to find the ultimate model of nature.

The observation of large mixings in the lepton sector [1] and the existing upper bounds on
the absolute neutrino mass scale [2, 3] have added a new piece to the flavor puzzle. The quark
mixing matrix, the CKM matrix [4], is nearly diagonal with small hierarchically ordered off-diagonal
elements, whereas the leptonic mixing matrix, the PMNS matrix, has entries of O(1) apart from
the 1-3 entry. Even though we have not measured yet the absolute neutrino mass scale, the upper
limit on the neutrino masses shows that they are at least 6 orders of magnitude lighter than the
lightest charged fermion, the electron. Due to the prominent role of neutrinos in the flavor puzzle
they might be related as well to its solution. In particular finding an explanation behind the
leptonic mixing pattern has led to a plethora of flavor models in the past. Flavor models which
fail to predict mixing parameters in agreement with experimental data are obviously not valid.
However, for the remaining models the question might arise “How do we know which flavor model
is the correct one, if any?”. As we will show in the following precision measurements of the leptonic
mixing parameters are fundamental to finding the correct neutrino flavor model. While the leptonic
mixing angles have been determined with a rather good accuracy [1], the Dirac CP-violating phase
is largely experimentally undetermined. We will demonstrate that a precise measurement of this
quantity will allow us to distinguish different flavor models from each other and therefore provide
insights in not only the open question of leptonic CP violation but also in physics beyond the SM.

In the following we will focus on models based on discrete flavor symmetries which lead to
certain specific predictions for the values of and/or correlations between the low-energy neutrino
mixing parameters which can be tested experimentally.

II. NEUTRINO FLAVOR MODELS

A. Models based on symmetries

Using symmetries as underlying guiding principle in model building has been very successful
in the past, in fact symmetries were fundamental to construct the SM demonstrating that nature
respects certain symmetries. Due to the success of symmetries it is natural to expect that they
might be also the clue to the solution of the flavor puzzle. Several classes of models have been put
forward which utilize discrete symmetries, modular symmetries, or continuous symmetries. All of
these models have different predictions and phenomenology and are based on different underlying
assumptions.

1. Discrete symmetries

Discrete non-Abelian symmetries have been invoked to explain the large leptonic mixing angles.
As these symmetries allow for rotations in the flavor space by fixed (large) angles, neutrino mixing,
as suggested, e.g., in [5], seems to be the appropriate flavor related structure to search for evidence
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of existence of an underlying flavor symmetry, and therefore for new physics. Models based on
discrete symmetries like S3, S4, A4, T

′
, A5 as well as the series Dn, ∆(3n2), ∆(6n2) with n ∈ N and

Σ groups (see, e.g., [6–9] for reviews and original references) have been considered. These models
predict different values for θ12, maximal θ23 but vanishing θ13. Models of interest are bi-maximal
(BM), tri-bimaximal (TBM), hexagonal (HG) mixing, and models which involve the golden ration
(GR) r = (1 +

√
5)/2 (GRA, GRB)

θ12 = 45◦ (BM), θ12 = arcsin(1/
√

3) ≈ 35◦ (TBM), θ12 = 30◦ (HG),

θ12 = arctan(1/r) ≈ 31◦ (GRA), θ12 = arccos(r/2) = 36◦ (GRB). (1)

The observation of non-zero θ13 implies that these models need to be corrected such that θ13, as
well as θ12 and θ23, are compatible with the experimental data. A natural origin of these corrections
comes from the charged lepton sector since the charged lepton mixing matrix Ue contributes to
the PMNS matrix as UPMNS = U †eUν . In particular, models based on grand unified theories
(GUT) provide a natural origin for non-diagonal charged lepton mass matrices. In models based
on SU(5) θe12 is expect to be of the order of the Cabibbo angle θC leading to a θ13 in agreement
with experimental data as θ13 ≈ θC/

√
2 [10–13]. In general if Ue is of a simple form of a U(2)

transformation in a plane or a product of two U(2) transformations each in a plane, it has been
shown in [14, 15] that a sum rule for cos δ arises which involves the mixing angles and θ12 predicted
by the underlying symmetry form of the PMNS matrix. An example for a sum rule is [14],

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2 θ23 sin2 θ13

)]
,

where θ12, θ13, θ23 are the measured neutrino mixing angles and δ is the Dirac CP-violating phase
in the standard parametrization of the neutrino mixing matrix [16], and θν12 is fixed by the assumed
underlying symmetry. In particular, θν12 can take values given in Eq. (1). Analogous sum rules
for cos δ arise when, e.g., the TBM symmetry form of UPMNS is “perturbed” on the right by a
matrix describing a U(2) transformation in the 1-3 plane [17] or 2-3 plane [18], leading to the
trimaximal mixing patterns. Crucial for the presence of a sum rule is that less free parameters
than observables are introduced. Therefore models leading to sum rules can be considered the most
economic approach to the flavor puzzle. For systematic studies on sum rules, see [14, 15, 19–25],
and for reviews, see [8, 26, 27]. In [14, 15] different mixing sum rules have been derived, and in
[15, 22, 23] the phenomenological consequences of these sum rules have been studied. In [25] sum
rules and predictions for cos δ have been obtained from all possible types of residual symmetries in
the charged lepton and neutrino sectors, and in [28] viability of these scenarios has been analyzed
in light of global neutrino oscillation data. In sec. III we will show the predictions from sum rules
derived in models with certain residual symmetries for all mixing parameters.

The presence of mixing sum rules significantly increases the testability of flavor models and can
guide the requirements on the target precision for the measurements of the mixing parameters.
Indeed, with the help of mixing sum rules one can forecast the impact of measurements at future
neutrino oscillation experiments [28–35] like DUNE, T2HK, ESSνSB, and JUNO.

2. Modular symmetries

Recently a new approach to flavor model building based on modular symmetries has been put
forward [36]. In this approach modular invariance plays the role of the flavor symmetry and
couplings of the theory are modular forms of certain level N and weight k, see [36–46] for early
models. In minimal models, the vacuum expectation value of a complex field (modulus) is the
only source of flavor symmetry breaking and a small number of other free model parameters are
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present. Therefore, correlations between the mixing parameters arise. In [47] new sum rules in
models based on modular symmetries have been derived for the case of a fixed modulus. It has
been shown that the four mixing parameters depend on two free parameters only. An example for
these relations as a function of the model parameters θ, φ is [17, 27, 47] (see also [46])

sin2 θ12(θ) =
1

3− 2 sin2 θ
, (2)

sin2 θ13(θ) =
2

3
sin2 θ , (3)

sin2 θ23(θ, φ) =
1

2
+

sin θ13(θ)

2

√
2− 3 sin2 θ13(θ)

1− sin2 θ13(θ)
cosφ , (4)

δ(θ, φ) = arcsin

(
− sinφ

sin 2θ23(θ, φ)

)
. (5)

The relations in other models are similar, θ12 and θ13 only depend on θ while θ23 and δ additionally
depend on φ. The exact relations however depend on the models. It has been pointed out first in
[41] that in the lepton flavor models based on modular invariance, there is a new type of correlation
(not present in the models with traditional discrete symmetries) between the values of the neutrino
masses (i.e., absolute neutrino mass scale) and the values of the neutrino mixing angles. In [47]
the correlations of θ23 and δ with the absolute neutrino mass scale have been studied in the cases
of several analytic sum rules. We show the predictions of the sum rules derived in models based
on modular symmetries in sec. III.

3. Continuous symmetries

Apart from discrete symmetries also continuous symmetries have been proposed as approach
to the flavor puzzle. For example models based on U(1), SU(2), U(2), SU(3), U(3) have been con-
sidered, see e.g. [48–53]. These models are motivated by the observed hierarchies in the fermion
masses for which they provide a dynamical origin and simultaneously predict the mixing patterns.
The mixing parameters are then given as functions of the Yukawa matrix elements. Using global,
continuous symmetries which are broken by scalars (flavons) to reproduce the fermion masses and
mixings leads to unobserved massless Goldstone bosons. They can be avoided by gauging the flavor
symmetry as it has been done in [54] where the lepton flavor symmetry of the SM in the absence
of lepton masses has been considered. It has been shown that the leptonic masses and mixings can
be reproduced [55–58]. A maximal θ23 angle suggests that muon and tau neutrinos are maximally
mixed such that a Lµ − Lτ symmetry might be realized in nature. However, this symmetry then
needs to be necessarily broken to allow for non-zero θ12, θ13 [59] as well as the hierarchy in the
charged fermion masses [60].

B. Other approaches

1. Texture zeros

The predictivity of flavor models can be increased by a reduction of free parameters in the
neutrino mass matrix. A simple way to achieve this is to assume that some entries in the neutrino
mass matrix vanish. These texture-zeros models have been thoroughly studied in the literature
(see [61] for early work and [62] for a review). Models with three-zero texture have been ruled out
experimentally [63–65] and out of 15 possibilities for two-zero textures only seven textures lead to
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predictions compatible with the experimental data [61] (for a recent analysis, see also [66]). These
models lead to different predictions for the observable in neutrinoless double beta decay, and for
θ13. However, questions about the origin of these zeros arise as well as the impact of potential
corrections to the vanishing matrix elements which would spoil the predictions derived with exact
texture zeros.

2. Anarchy

An alternative approach to the flavor puzzle not based on symmetries is anarchy [67, 68]. In
these models one assumes that the elements of the neutrino mixing matrix are of comparable size
without any specific underlying pattern. By sampling random neutrino matrices it has been shown
that one expects large neutrino mixing angles. In fact, the anarchy hypothesis is consistent with
our current understanding of lepton mixing, and the observed values for the mixing parameters are
compatible (at ∼ 2σ C.L.) with the ones obtained by randomly drawing a mixing matrix from an
unbiased distribution of unitary 3× 3 matrices. Additionally, the probability peaks at sin δ = ±1
[69] such that a measurement of maximal CP violation in the neutrino sector would be well in
agreement with the anarchy hypothesis.

Anarchy does not predict correlations between different mixing parameters as their unique
probability distributions are uncorrelated. Furthermore, anarchy only leads to probabilities for a
certain measurement therefore it is challenging to fully verify or falsify anarchy models.

III. PRECISION MEASUREMENTS OF MIXING PARAMETERS

Predictions from flavor models based on discrete and modular symmetries provide excellent
targets for neutrino oscillation experiments. In addition to predicting the mixing parameters,
they also predict correlations between them enhancing therefore their testability and providing an
additional handle to disentangle different models. We show in Figs. 1 and 2 the best fit predictions
for the mixing parameters in the three classes of flavor models:

• Models based on the non-Abelian discrete symmetries A4, S4 and A5 combined with a
generalized CP symmetry [70, 71] and broken to Ge > Z2 and Gν = Z2 × CP residual
symmetries in the charged lepton and neutrino sectors, respectively. The corresponding
mixing patterns are characterized by one free angle parameter. See [35] for a summary of
such scenarios and original references.

• Models based on the non-Abelian discrete symmetries A4, S4 and A5 broken to Ge (Gν) > Z2

and Gν (Ge) = Z2 [25, 28]. The corresponding mixing patterns are determined by two free
parameters — an angle and a phase.

• Models with modular A4, S4 and A5 symmetries [41, 42, 46, 72] leading to the sum rules
derived in [47], as well as the models based on the double cover of modular S4 [73, 74]
combined with a generalized CP symmetry [75]. In the cases when analytical sum rules can
be derived, the resulting mixing patterns depend on two free parameters, cf. Eqs. (2)–(5).

The corresponding total ∆χ2 is calculated using the results of the global analysis of neutrino
oscillation data performed in [1]. The predictions for the mixing parameters do not depend on
the neutrino mass ordering. However, as the model parameters have been fitted to the global
neutrino data, the ∆χ2 of the predictions changes. Note that since sin2 θ13 is determined with a
relatively high precision, it drives the value of the free angle parameter when fitting the models
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FIG. 1. Best-fit predictions of the models based on discrete symmetries broken to certain residual symmetries
of the lepton mass matrices [28, 35], and the models based on modular symmetries discussed in [47, 73, 74].
The gray regions are the current 3σ ranges for normal ordering (NO) of neutrino masses from [1] (the
ranges for inverted ordering (IO) are very similar). The dashed line is the current best fit value. The red
region is the prospective 3σ range after 6 years of JUNO running [77]. The assumed future best fit value
is sin2 θ12 = 0.307. The sensitivity of DUNE to θ13 after 15 years of running [76] will not improve current
bounds.
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FIG. 2. Best-fit predictions of the models based on discrete symmetries broken to certain residual symmetries
of the lepton mass matrices [28, 35], and the models based on modular symmetries discussed in [47, 73, 74].
The gray regions are the current 3σ ranges for NO from [1] (the ranges for IO are very similar). The dashed
line is the current best fit value for NO. The red regions are the prospective 3σ ranges after 15 years of
DUNE running [76]. The assumed future best fit value is sin2 θ23 = 0.58. The current 3σ range for cos δ
extends over the whole parameter range. For the prospective 3σ ranges we show the sensitivities for assumed
true values δ = 0 and δ = −π/2.

to the data, cf. Eq. (3). This is why in all the cases considered, a value of sin2 θ13 lying very
close to its experimental best-fit value is realized. We compare the model predictions with the
current constraints [1] and projections from upcoming neutrino experiments like DUNE [76] and
JUNO [77].

We see that a precise measurement of the mixing parameters will be crucial to probe and dis-
entangle flavor models. However, the required sensitivity to distinguish between different models
depends on the true value of the parameter, as there are classes of models which have very sim-
ilar predictions such that an isolated measurement of one angle cannot distinguish these models.
Therefore the correlations between the mixing parameters should be probed, these can be even
more powerful than isolated measurements of the angles [35, 47]. In [33] it has been shown that
the combined data of DUNE and T2HK can distinguish some models based on discrete symmetries
from each other at the 3σ level. The predicted values for θ12 deviate from the current best fit
value whereas the predictions for θ13 are rather close to the current best fit. If the real value of
θ12 is indeed close to the current best fit the majority of the flavor models discussed here will be
disfavored. Therefore it will be imperative that JUNO achieves the envisioned precision in the
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determination of θ12. The model predictions for cos δ and θ23 are rather distributed within the
current 3σ ranges. Thus already with moderate precision in δ and θ23 many models can be probed
and distinguished. While T2HK [78] will have only sensitivity to | cos(δ)|, DUNE will have access
to the sign. This could become interesting if the true value of δ is not near ±π/2 as predicted by
many flavor models.

In these studies it was assumed that the sum rule is exactly realized at low energy. However,
as every quantity in quantum field theory, the mixing parameters get affected by renormalization
group running which has been recently updated and studied systematically in [79–81]. Those
corrections can be particularly important in GUT scenarios where these sum rules can occur as
well [10, 11, 13]. Future precision measurements of the mixing parameters need to be carefully
compared to flavor model predictions taking possible corrections to these relations into account.

IV. CONCLUSIONS

We are entering the precision era of neutrino physics. But the question arises “How precise do
we want to measure the neutrino parameters?”. Flavor models can provide a compelling answer to
this question. Among the most predictive flavor models are models based on discrete or modular
symmetries as they predict concrete values for the mixing parameters as well as correlations between
them. These sum rules can be used to distinguish different flavor models. In Figs. 1 and 2 we
have compiled the predictions of these models and demonstrated that precision measurements
of all mixing parameters are crucial to thoroughly test flavor models. Therefore it is of utmost
importance that upcoming neutrino oscillation experiments like DUNE, T2HK, and JUNO reach
their envisioned precision. Doing so will guide us in our quest to unveil new physics beyond the
SM by testing the existence of additional symmetries. In the past precision measurements of the
mixing angles were already fundamental in testing flavor models as the measurement of non-zero
θ13 with small uncertainties excluded many flavor models [82]. This demonstrates the power of
precision measurement in neutrino physics in our path to new physics models.

In addition to precise measurements of the mixing parameters, models based on continuous
symmetries lead to additional predictions like new degrees of freedom. In particular the models
based on continuous gauged symmetries (see for example [54, 83]) predict new gauge bosons with a
certain flavor structure and these models can therefore also be probed at the intensity and energy
frontiers. While we focused here on the predictions of flavor models for the mixing parameters,
models where the light neutrino masses depend on two free parameters only [84] predict relations
between the light neutrino masses including the Majorana phases [85]. These mass sum rules
can be probed at experiments sensitive to the absolute neutrino mass scale, the neutrino mass
ordering, and with neutrinoless double beta decay experiments [86–90]. Therefore, in addition to
precision measurements of mixing angles also an observation of neutrinoless double beta decay can
provide insights into flavor symmetries. Together with the predictions for the Majorana phases
(see, e.g., [24]), flavor models predicting the Dirac phase could be related to the production of the
matter asymmetry of the Universe [91–93] by providing the required amount of CP violation (see,
e.g., [94–96]).

Flavor models provide a rich phenomenology and represent an ideal target for upcoming ex-
periments. Future detailed studies of sum rules both from the theoretical as well as from the
experimental side are hence a great opportunity for model builders, phenomenologists and experi-
mentalists to gain more insights into the mysteries hidden in the neutrino sector.
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