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Abstract

Physical theories grounded in mathematical symmetries are an essential component of our under-
standing of a wide range of properties of the universe. Similarly, in the domain of machine learning, an
awareness of symmetries such as rotation or permutation invariance has driven impressive performance
breakthroughs in computer vision, natural language processing, and other important applications. In this
report, we argue that both the physics community and the broader machine learning community have
much to understand and potentially to gain from a deeper investment in research concerning symmetry
group equivariant machine learning architectures. For some applications, the introduction of symmetries
into the fundamental structural design can yield models that are more economical (i.e. contain fewer, but
more expressive, learned parameters), interpretable (i.e. more explainable or directly mappable to physical
quantities), and/or trainable (i.e. more efficient in both data and computational requirements). We discuss
various figures of merit for evaluating these models as well as some potential benefits and limitations
of these methods for a variety of physics applications. Research and investment into these approaches
will lay the foundation for future architectures that are potentially more robust under new computational
paradigms and will provide a richer description of the physical systems to which they are applied.
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1 Executive Summary

This White Paper highlights the potentially significant scientific and practical benefits of developing machine
learning architectures for current and future physics applications that are inherently organized around symmetry
considerations and structures.

* Symmetries underlie countless physical phenomena throughout the universe across all length and
energy scales. Mathematical descriptions of these symmetries that we observe in nature have been
invaluable in inspiring some of the most successful physics theories to date.

* Incorporating some kinds of symmetries (rotational, translational, sequential, temporal, etc.) into
machine learning architectures has already resulted in significant performance benefits for models such
as convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks
(GNNSs), and transformers.

* Despite the reliance of theoretical physics as a discipline on a variety of symmetry groups, the explicit
inclusion of these symmetries into models designed for physics datasets is rare.

» The potential benefits to physics applications with respect to non-equivariant models range from model
performance (e.g. better generalizability) to resource efficiency during training (e.g. achieving
strong performance with a highly reduced training dataset and/or model parameters) to interpretability
(e.g. potentially mappable to meaningful physical observables).

* The investment of time and funding into the construction of equivariant architectures for physically-
motivated symmetry groups will have far-reaching benefits for applications across fundamental
research in science and industry. The development of symmetry group equivariant machine
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learning architectures has substantial potential to aid in future physics discoveries, but only if
we recognize its importance by dedicating the necessary resources to support it.

2 Introduction

Nearly all areas of science and industry are witnessing a renaissance in the development, application, and
impacts of machine learning (ML) applied to both old and new problems. Sophisticated and extremely
diverse sets of algorithms based on a wide array of ML architectures and design principles are breathing
new life into problems ranging from image recognition [1] to silicon sensor readout [2], from intelligent
molecular design [3] to parsing the landscape of string theories [4] and accelerating theory calculations [5],
and from distinguishing quarks from gluons [6] to controlling telescopes searching the cosmos [7]. As the
computational and architectural landscape of ML continues to evolve, it is essential to also reassess the
fundamental mathematical structures that underlie these approaches, especially when they are applied to the
modeling of physical systems.

One of the driving principles that has often guided the emergence of new directions in theoretical
physics and placed constraints on the methods used to test them is symmetry. Global and gauge symmetries,
continuous and discrete symmetries, internal and external symmetries: the existence of any one of these
can place constraints on the dynamics of a system, require conservation of quantities and quantum numbers,
or reduce the dimensionality of the phase space in which the system evolves. However, it is rare to see the
explicit inclusion of these symmetries into the ML algorithms used to model the dynamics of particles or the
evolution of the universe, for example, despite the fact that symmetries are an inherent and often defining
characteristic of these systems and processes.

In this White Paper we highlight the potentially significant scientific and practical benefits of developing
machine learning architectures for current and future physics applications that are inherently organized around
symmetry considerations and structures. Building these customized architectures for physics use cases will
require special prioritization and investment from our community, as this pioneering work often falls outside
of the scope of traditional research grants. Given the strong motivations supporting the potential of equivariant
models to contribute to our scientific discoveries, we cannot afford to miss out on the opportunity to deepen
our understanding of the relationship between physics and machine learning through the lens of fundamental
symmetries.

3 Equivariance in Machine Learning

Most problems in physics involve structured data that have some inherent compatibility with symmetries:
Euclidean vectors, Minkowski vectors, indistinguishable particles, and so on. Similarly, the underlying
processes generating the data of interest, such as particle collisions or a Monte Carlo simulation, possess
definite symmetry properties. These problems may require or at least benefit from models that construct
intermediate representations and perform computations that reflect the symmetry in question. Following
this approach, elegant architectures can be informed by these principles, and the “building blocks” of such
architectures may be limited to those allowed by the imposed symmetries. Beyond imbuing the network
design with properties that mirror the physical system that it describes, this may — perhaps counter-intuitively —
improve out-of-distribution generalization, interpretability, and uncertainty quantification, while also allowing
for certain simplifications of the model itself. Carefully and appropriately implemented, this may therefore be
a highly sought-after property in neural network design.
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Mathematically, symmetries are usually described by groups. We can characterize the relationship
between a function (such as a neural network layer) and a symmetry group by considering its equivariance
properties. A map f : X — Y is said to be equivariant w.r.t. the actions p : G XX — Xandp’ : GXY =Y
of a group G on X and Y if

f(pg(x)) = pg (f(x)) )]

for all x € X and g € G. Here, the notation is pg(x) = p(g,x). Most commonly we are concerned with
the case where X and Y are vector spaces and pg and py are linear maps, in which case {p,} and {pg } are
so-called linear representations of G. Intuitively, Equation 1 tells us that for a given transformation of the
input, the output of an equivariant function transforms in a definite way that preserves the group structure.!
Note that in the special case where p, is the identity for all g € G, f is said to be invariant with respect to G.
A diagram illustrating the distinction between invariance and equivariance can be found in Figure 1.

At first, it may seem that invariance would be the most interesting form of equivariance. For example,
consider the problem of recognizing a letter at an arbitrary location within an image. The data contains some
continuous variation due to a translation symmetry, yet it is desirable that an image recognition algorithm
meant to identify that letter — also referred to as a classifier — be able to do so accurately and regardless of
the letter’s position. In this case, the classification algorithm should be invariant with respect the group of
translations. However, the overwhelming success of Convolutional Neural Networks (CNNs) [8, 1] in image
processing serves to illustrate that even when an invariant is desired for the final output, it is beneficial to
construct more general equivariant intermediate representations. CNN layers are not invariant, but rather
preserve discrete translation symmetries at each layer; if the input image is shifted by a certain number of
pixels, the output of the CNN layer (ignoring boundary effects) is shifted by a corresponding amount [9, 10].
In a typical CNN, an invariant representation is typically formed only in the last few layers of the network.

Intuitively, the reason CNNs are so effective on image data is because they are able to learn specific
features, such as edges or textures, that can be matched at any location on the input image. This economizes
parameters, since the CNN need not learn the same features over and over at every location. This also
improves generalization, since a given feature can be detected even if it appears at a location that was not
observed in the training dataset.

This motivates us to consider whether new architectures can have a similar impact by leveraging symmetries
relevant to problems in physics, just as CNNs did by exploiting the natural translation symmetry of image
data, and doing so by constructing equivariant latent representations of the inputs at every layer of the network.
In the context of problems with exact symmetries, it therefore makes sense to consider architectures that
are fully made up from only equivariant operations. To this end, we must design “building blocks” with
equivariance properties corresponding to the symmetries of interest. Note that various deviations from this
approach cannot be dismissed, as will be discussed in Section 6.

The overall viability of equivariant machine learning can be motivated by mathematical results such
as universality theorems. The most general form of equivariant linear layers with respect to the action
of any compact group was derived in [11]. In [12] it was shown that for a wide class of Lie Groups, all
equivariant mappings can be expressed in terms of a finite basis of invariants and equivariant tensors and
easily approximated with conventional feed-forward neural networks. Further, in [13, 14] it was shown
that a fairly generic equivariant architecture based on tensor products is sufficient to implicitly generate the
relevant finite basis. Thus, equivariance does not impose any real constraints on the overall design of neural
networks, other than requiring all node-level operations to be equivariant. In particular, recurrent, adversarial,
generative, etc. architectures can be constructed out of the equivariant “building blocks”, easily mimicking

IThis is inherent in the definition of the group representation: pgpp, - f(x) = p; n o S(x).
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Figure 1: An illustration of the differences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, f : X — Y is a map between vector spaces
X andY. pg(x) = p(g,x) is an action of a group G on X and pg(y) = p’(g, y) is an action of a group G on
Y. The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map f is equivariant with respect to the actions p : G X X — X
and p’ : G XY - Y if f(pg(x)) = pg (f(x)) forallx € X and g € G.
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traditional architectures.

These general ideas have already led to the development of multiple equivariant architectures for sets
(permutation invariance) [15, 16], graphs (graph isomorphisms and permutation equivariance) [17], 3D data
(spatial rotations) [18, 19], homogeneous spaces of Lie groups such as the two-dimensional sphere [20, 21],
and even gauge equivariant systems [22, 23]. In fact, the success of many of the more traditional architectures
like CNNs and Recurrent Neural Networks (RNN) can be largely attributed to their equivariance properties [1].

Symmetries play a central role in any area of physics [24], and as such physics may provide one of the
widest variety of symmetry groups relevant in computational problems. In particular, high-energy particle
physics involves symmetry groups ranging from U(1), SU(2) and SU(3) to the orthochronous Lorentz group
SO*(1, 3), and even more exotic ones like Eg and conformal Lie algebras. Architectures that respect these
symmetries may be able to provide more sensible and tractable models with parameters that could be directly
interpreted in the context of known physical models, similar to attention mapping studies for CNNs used in
image recognition.

These ideas are general and may be applied in any field of computational physics. In this White Paper
we focus on a particular subset of applications in particle physics where the data typically contain the
energy-momentum 4-vectors of particles produced in collision events at high-energy particle accelerators, or
by simulation software used to model the collision events. As 4-vectors, these data naturally support an action
of the Lorentz group, therefore architectures that are Lorentz-invariant or Lorentz-equivariant are a major step
towards understanding the ways in which machine learning can solve physical problems with such inputs.
The first successful application was for the Lorentz-invariant task of top-tagging [14], where a competitive
performance was reached despite a dramatic decrease in the number of parameters. We are confident that in
the near future these applications will be extended to complex regression tasks and tasks with vector targets.

4 Potential Benefits of Equivariant Models

The success of neural networks is often attributed to the massive computational capacities of modern
computers, allowing one to practically optimize models with billions of parameters. Mathematical statements
like the Universal Approximation Theorem [25], while not guaranteeing much in practice, make it plausible
that an arbitrarily complex system can be modeled and learned even by a simple fully-connected neural
network. Nevertheless, it is likely that such “uninformed” architectures which make no reference to the
underlying structure of the system will not yield efficient nor possibly even optimal models even if they can, in
principle, provide a high accuracy of predictions. This section elaborates on the potential benefits to consider
in the construction of more “informed” architectures. We also discuss why a focus merely on the accuracy of
predictions can be detrimental to machine learning in scientific contexts, and how it can be re-balanced for
more physics-oriented model development.

As discussed in Section 3, many architectures are successful precisely because they take advantage of
some intrinsic properties of the corresponding system under study — for instance, spatial translation invariance
of image recognition, ‘time’ translation equivariance in text, and permutation equivariance in graph networks.
Recently, generalizations of the symmetry group of the convolution operation [26] as well as message passing
graph neural networks [27] show that the complexity of the learning task can be significantly improved
with fewer parameters. Symmetry equivariant transformer networks can surpass the performance of the
corresponding convolutional networks [28], and symmetry equivariant normalizing flows can produce better
generated outputs than non-equivariant normalizing flows [29]. It has been demonstrated that, in general,
the symmetry equivariant networks can estimate conserved quantities associated with the dynamics better,
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compared to a general fully connected network [26, 30]. Some use cases such as accelerating first-principles
theoretical physics calculations suggest that building in symmetries might be required for guarantees of
exactness, or to properly encode the theory. For the application of generative models to accelerate lattice
gauge field theory calculations, incorporating the high-dimensional gauge symmetry exactly was found to be
essential to train models [22, 23]. We may conclude that the value of such architectures lies not just in the
quality of the predictions they produce, but also in a number of other properties that make them better models,
as opposed to simply better predictors:

* Model size/complexity. With the symmetries of the underlying problem built-in, the model size
is constrained with respect to one that does not respect these symmetries. For a given number of
parameters, the symmetric model may use fewer parameters more efficiently [31]. Lower-dimensional
models may also be desirable if they are to be used as physical models, but model size is also crucial in
many low-latency applications. Fewer parameters may also result in a less complex loss landscape
and thus more efficient optimization and training dynamics. Section 6 expands on this topic with a
discussion of approximate and partial symmetries.

* Interpretability. A model constrained by the symmetry group(s) of the underlying problem may be
more interpretable than a general one — not only for likely having fewer parameters, but also because
these parameters will represent physically meaningful observables. In the context of CNNgs, this fact
is used when interpreting convolutional kernels as translation-invariant visual features. In a more
general context, the parameters of a symmetric model can be made themselves invariant, and therefore
potentially direct representations of measurable quantities. Additionally, by comparing equivariant and
non-equivariant architectures applied to the same problem, one may be able to more easily probe the
learning dynamics of the non-equivariant model and characterize what non-symmetric information is
being learned.

» Sample efficiency. In contrast to the common way of training a generic unconstrained model to
respect symmetries, i.e., by augmenting the dataset with a multitude of symmetry transformations, an
equivariant model can potentially achieve the same performance with a dramatically reduced training
dataset. For example, training a fully-connected network for image recognition may require many
modified copies of the input data for the network to “learn” a translational or rotational symmetry,
whereas a CNN requires fewer such samples. Improvements in sample efficiency have been shown to
range from factors of a few to thousands [30, 32, 33].

* Generalizability. If an equivariant model can learn an entire orbit (manifold spanned by the action of the
symmetry group) from a single sample, then, similarly, any new input from the same orbit will produce
an output entirely determined by equivariance. In essence, symmetry allows the network to learn exact
reduced representations, and dimension reduction is a known method of enhancing generalization [].
Additionally, diverse training paradigms can be applied to a single equivariant model architecture in
order to extend the generalizability of the model depending on a variety of end use cases. For instance,
if training efficiency is a priority, one could include symmetry-breaking parameters initially during
the training that subsequently decay, thereby allowing a more efficient optimization pathway through
nonphysical parts of model space. Alternatively, for systems with approximate symmetries, one could
start with an exact equivariance requirement that is then loosened later in training.

* Faithfulness to physical laws. Finally, since equivariant architectures implement physical symmetries
as hard constraints “baked into” the structure of the network itself, they can guarantee that whatever is
learned by the model is not going to violate known laws of nature. This is particularly important in,
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e.g., quantum chemistry applications, where an incorrectly learned interaction term could for example
violate the law of conservation of angular momentum.

While equivariant models are not yet commonplace in fundamental physics and astrophysics, other fields
such as computational chemistry, protein folding, and more have seen clear benefits from these architectures —
with one recent and notable example being the success of AlphaFold [34] in protein structure predictions.

Studying the above qualities of a model is likely to benefit both ML practitioners and physics phenome-
nologists. For example, there is a challenge in explaining the difference in performance between completely
unconstrained networks (e.g., ParticleNet [35]) and highly expert-engineered networks (e.g., the learnable
linear basis described in [36]). Constructing equivariant (or partially equivariant) models can help interpolate
between these two edge cases, and understand which features are important in the task. This is clearly related
to the qualities of interpretability and generalizability: presumably overparameterized networks are, to some
degree, exploiting underlying symmetries of the system they are trained upon. However, if networks are not
encouraged to generalize according to the available transformation properties then they will not explore or
exploit these symmetries well. As shown in Figure 2, jet tagging networks with Lorentz equivariance are
robust to unseen boosting regimes, whereas non-equivariant designs may be sensitive to these transformations.
The consequences of this sensitivity are also clearly shown in [32] (Figure 3 of that work), where the jet
tagging performance of unconstrained networks diminishes for instance as input data is Lorentz-boosted. For
models where Lorentz equivariance is enforced, generalization is almost perfect. It remains to be studied
whether partially equivariant networks [37] maintain this generalizability.

There is an open question of whether an unconstrained network can learn the symmetries of a physical
system by being exposed to all possible transformations in the space during training. Certainly data
augmentation with relevant symmetries can lead to improved performance [39], although there remains to
be done generalizability and interpretability studies of whether this augmentation is leading to a genuine
learning of the underlying symmetries. It may be possible to use generative models to discover symmetries
on various physics datasets [40]. An additional promising direction may be to recover symmetries by learning
some latent representation of a physical system (for example as a Structured World Model [41]) and study the
symmetry structure in this space [42].

5 Reconsidering Evaluation Metrics

The merits of a scientific method cannot be argued without first establishing common metrics by which to
judge such methods. Traditionally, machine learning models are evaluated and compared based on simple
performance metrics such as accuracy, error, true/false positive rates, receiver operating characteristic (ROC),
and, to a lesser extent, computational efficiency. These metrics are indeed good at evaluating the raw
performance of a statistical model: they judge a machine learning model by ability to reproduce or extract
certain features of the data. However, in many scientific applications, and especially in physics, a good
description of a system needs to do more than merely reproduce observations. A good physical model of
a system should make accurate predictions while also satisfying several qualitative criteria. For example,
it should minimize the number of free parameters needed to express the complexity of the system; these
parameters should be chosen in a way that clarifies their physical meaning as much as possible; the values of
the model’s parameters can be learned from a dataset that is smaller than that needed for a generic model
with many parameters; the model is generalizable and makes accurate predictions even for experiments that
have never been conducted — in other words, all of the qualities that equivariance is designed to enhance.
These properties can act as a guide for extending a purely statistical model to a more comprehensive physical
description of a system.
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Figure 2: The accuracy of various neural networks in performing top quark tagging, as a function of a
Lorentz boost applied to the testing data reference frame (parametrized with 8 = v/c). The simple, 4-layer
fully-connected network is not robust against Lorentz boosts, so the classification accuracy suffers as the
testing data has a hidden Lorentz boost applied. While this can be potentially mitigated by careful training
data augmentation — in this case by applying random Lorentz boosts to training events — an equivariant
architecture like the Lorentz Group Network [14] can provide for robustness without the need for any special
training procedure. Decreased accuracy at relatively high boosts for LGN is due to numerical precision
limits of that particular design. Network training and testing was performed using the top-tagging reference
dataset [38], and each curve is averaged over three separately trained network instances.
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In light of this discussion, we propose that the community focus on developing and implementing a more
holistic approach to evaluating and comparing machine learning models in scientific applications. Here we
list only a few common ways of quantifying the above qualities of neural networks.

* Quantifying model size. Model size (and/or capacity) is fairly trivial to report, but is still often
under-emphasized in the literature. The number of parameters is the simplest metric of model size, but
others metrics such as memory usage can also be considered. Lowering the number of parameters,
assuming performance doesn’t suffer, brings one closer to a viable physical model. The connection
between model size and ease-of-training is non-trivial. While large unconstrained models need to
learn symmetries themselves, they are also more likely to pick a "winning ticket", according to the
Lottery Ticket Hypothesis [43]. This suggests that it is useful to consider the effect of model size in
symmetry-constrained networks separately in training and inference.

* Quantifying inference efficiency. A typical use-case for physics-informed ML is to miniaturize a model
for inference on-the-edge in some experiment set-up. We suggest that some measure of power-to-weight
ratio may be useful when surveying the wide variety of ML architectures and features applied to a
physics task. In [37] one such measure is proposed: an “ant factor” that represents the performance
of a network relative to its size. Here “performance” and “size” should be defined by the scientific
field as is most relevant. An example of this ant factor (based on background rejection rate) is given in
Figure 3 as a function of the number of equivariant channels vs. non-equivariant channels. This sort of
exploration could guide a community to an architecture most appropriate to its hardware budget or
latency constraints.

* Quantifying sample efficiency. Sample efficiency is commonly illustrated via learning curves.
Depending on the dataset, equivariant neural networks can achieve equal performance with only a
fraction of the training data, and such comparisons should ideally be reported in publications.

* Quantifying variance/bias tradeoff. Closely related to the above, since equivariant networks operate in
a hypothesis space of reduced size, they are less likely to overfit the data, specifically they are prevented
from overfitting the data in a way that would violate the underlying group symmetries.

* Quantifying generalizability and interpretability. These two properties are much more difficult to
quantify, and it is a topic ongoing research in the machine learning community. Transfer learning, the
process of training a network in some region of phase space and gauging its performance in another,
can be used to demonstrate generalization. Methods such as network dissection [44], originally suited
for CNNs, can be extended to arbitrary equivariant architectures to provide metrics of interpretability.
Notably, this may be easier to do in scientific applications where the tasks are typically less complex
than in general purpose image recognition, for example.

All this is not to say that pure model performance is unimportant, or that it needs to be sacrificed in
favor of other properties. In fact, equivariant architectures already provide state-of-the-art predictions in
scientific contexts, as seen, for example, in chemistry and high energy physics [45, 32], and we believe
that further research of equivariant architectures will only increase the performance gap between them and
generic networks applied to physics problems. Nevertheless, the value of these models is not only in their raw
performance, and we hope that this paper will help convince other scientists in the community that a broader
approach to network design that is less focused on short-term performance gains can facilitate bridge-building
between machine learning and physics.
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Figure 3: An example of quantifying model efficiency as a function of its symmetry-constrained properties.
Unconstrained learning is along the x-axis, Lorentz-constrained learning is along the y-axis, and lighter colors
show greater efficiency (as captured by the “ant factor”, a power-to-weight ratio)

6 Soft Equivariance

Exact symmetries do not exhaust the possibilities for symmetry-informed models and problems. Many
real-world problems deal only with approximate symmetries or combine symmetric and non-symmetric types
of data. This issue comes up already in typical applications of CNNs for image recognition: the convolutional
layers of CNNs provide translation-equivariant latent representations, but the network output emerges from
a final, non-equivariant stage of the network (say, a dense layer). Moreover, images are always finite, and
edge effects are a very well known issue for CNNs. The translational symmetry is realized only with respect
to a subset of the full symmetry group. In machine learning, the relevant distinction is between soft and
hard inductive biases. Up to this point, we have focused on the hard inductive bias introduced by a rigidly
equivariant architecture. Here we briefly discuss the possibility of softer versions of that constraint. We can
distinguish several types of soft or broken symmetry:

* Infinitesimal symmetry. Finite transformations may not always be a symmetry for a problem, but
their infinitesimal versions might. For example, in image recognition and neuroscience, learning
the infinitesimal generators of transformations is common. Mathematically, such models work with
representations of Lie algebras as opposed to groups.

* Partial symmetry. By this we mean symmetry with respect to a subset of the full group of transformations
(for example translations only up to a finite distance). In this case, approaches based on linear
representation theory can still be effective because most of the structure of representations is determined
just by the local neighborhood of the identity in the group. Including non-equivariant sub-networks
also becomes reasonable.

* Approximate symmetry. In many problems the symmetry transformations aren’t expected to work in
an exact manner at all — this could be due to the presence of noise, interactions between different



7 DISCUSSION 12

parts of the data, or even fundamental physical effects such as symmetry breaking. In these cases it is
possible to relax the symmetry constraint gradually by allowing limited data mixing between different
irreducible representations that wouldn’t interact under exact symmetry.

One well-known example of a synthesis between equivariant and non-equivariant methods is Al-
phaFold [34], whose key component is an equivariant transformer [46]. Examples of models using partial
equivariance for physics tasks include GNNs for jet tagging [37] and residual networks for dynamical
systems [47].

7 Discussion

When developing a neural network approach for any task in physics, one should consider the specifics of
the task when determining what kind of architecture to use: how the data is represented, which symmetry
group(s) govern it, and what kind of information one is trying to extract. Below are a few practical points to
keep in mind when considering the development and use of equivariant networks.

* Development and training time: At present, the main deterrent to a more widespread use of equivariant
architectures is the time investment they require for model design, development, and training — which
includes the time possibly needed for the technical implementation of complicated mathematical
symmetry group structures, as well as additional computing time: During the training process, the
forward and backward propagation steps may be less optimized than those of simpler models and not
benefit from optimized tensor operations as easily, thus significantly extending the required training
time. However, equivariant models generally require significantly smaller training datasets than simpler
models, potentially offsetting the training inefficiencies introduced by the more complex mathematical
computations during training. Furthermore, the equivariant “building blocks” of such architectures
are typically highly reusable, so it can be the case that the time-consuming early development for a
given symmetry may not need to be repeated. Additionally, the development of equivariant models
for physics tasks opens potential avenues for collaboration with the broader ML community as many
existing architectures for enforcing Euclidean equivariance may be easily modified to accommodate
more exotic symmetries.

* High performance computing: For the full exploitation of equivariant networks — and more generally
machine learning for physics — it will be important for physics-specific equivariant architectures to be
optimized for deployment on exascale computing hardware. This will require some investment and
recognition on the HPC side that not all applications of ML to physics will use “out-of-the-box™ designs
like CNNs, and so hardware benchmarking and acceptance tests on limited default architectures may
not meet all of our community needs.

* Data dimensionality: One should consider the dimensionality of the sample data used for training —
or more precisely, the dimensionality of the data versus that of its symmetry group. While the use of
equivariant networks can improve sample efficiency, the added computational cost may outweigh these
benefits, especially for low-dimensional symmetry groups. For example, in [23] it was found that
imposing gauge symmetry significantly improved model efficiency, but imposing a residual hypercubic
symmetry was expensive and did not improve performance. In addition, network training dynamics
can be complicated when the training path is restricted to lie in symmetry-respecting space, and in
some cases it may be more efficient to allow the network’s optimisation trajectory to move through
non-physical model space.
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» Towards a general-use toolkit: There has been significant effort spent in transferring physics-informed
ML ideas from the computer vision community to the physics community (and indeed proving that
these ideas are even applicable). As pointed out above, for a particular use-case, components of an
equivariant architecture may be re-usable and transferable. However, these deep explorations of a
particular symmetry should run in parallel with an attempt to generalize equivariance tools across
symmetry groups, scientific fields, and core architectures (CNNs, GNNs, RNNs, transformers, etc.).
Most open-source libraries for implementing equivariance are currently highly specialized in this
regard. This is clearly not a trivial task, with several significant obstacles. Group calculations are
usually performed symbolically (for example in Sympy [48]), then converted to convolutions or
numerical formulae by hand. Libraries for this are specialized to particular families of symmetries
and it would be a Herculean task to generalize these across multiple families of symmetry. A second
obstacle that a general toolkit would face is that many of the highly optimized algorithms that enable
unconstrained ML are non-trivial within an equivariant architecture. For example, nearest-neighbor
algorithms are the backbone of many graph neural network approaches, and within Euclidean space
there are dozens of libraries available. However, libraries for performing neighbor searches in curved
or non-positive-definite space (e.g. spacetime) are essentially non-existent. Some headway may be
made across these obstacles by use of approximations of symmetries, or low-order truncations of group
operations (for example, by the relatively simple convolutions suggested in [27]).

8 Conclusions

Symmetries underlie countless physical phenomena throughout the universe across all length and energy
scales. This White Paper puts forth the arguments for incorporating knowledge of these symmetries and their
equivariance properties into the algorithms and architectures that scientists use to investigate and describe
numerous physical systems, with a particular emphasis on the potential for impacts in fundamental particle
physics. Numerous advantages and potential limitations of such an approach are discussed, along with
proposals for developing and implementing a more holistic approach to evaluating and comparing machine
learning models in scientific applications. The investment of time and funding into the construction of
equivariant architectures for physically-motivated symmetry groups is likely to have far-reaching benefits
for applications across fundamental research in science and industry. The development of symmetry group
equivariant machine learning architectures has substantial potential to aid in future physics discoveries, but
only if we recognize its importance by dedicating the necessary resources to support it.

References
[1] W. Rawat and Z. Wang, Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review, Neural Computation 29 (2017) 2352.

[2] ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector,
JINST 9 (2014) P09009 [1406.7690].

[3] G. Schneider and P. Wrede, Artificial neural networks for computer-based molecular design, Prog.
Biophys 70 (1998) 175.

[4] J. Carifio, J. Halverson, D. Krioukov and B.D. Nelson, Machine Learning in the String Landscape,
JHEP 09 (2017) 157 [1707 .00655].


https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1088/1748-0221/9/09/P09009
https://arxiv.org/abs/1406.7690
https://doi.org/10.1016/S0079-6107(98)00026-1
https://doi.org/10.1016/S0079-6107(98)00026-1
https://doi.org/10.1007/JHEP09(2017)157
https://arxiv.org/abs/1707.00655

REFERENCES 14

[5S] M.S. Albergo, G. Kanwar and P.E. Shanahan, Flow-based generative models for Markov chain Monte
Carlo in lattice field theory, Phys. Rev. D 100 (2019) 034515 [1904.12072].

[6] P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated
quark/gluon jet discrimination, JHEP 01 (2017) 110 [1612.01551].

[7] D.G. Sandler, T.K. Barrett, D.A. Palmer, R.Q. Fugate and W.J. Wild, Use of a neural network to control
an adaptive optics system for an astronomical telescope, Nature 351 (1991) 300.

[8] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard et al., Handwritten digit
recognition with a back-propagation network, Advances in Neural Information Processing Systems 2

(1989) .

[9] T. Cohen and M. Welling, Group Equivariant Convolutional Networks, Proceedings of the 33rd
International Conference on Machine Learning, ICML 2016 48 (2016) 2990 [1602.07576].

[10] S. Dieleman, J.D. Fauw and K. Kavukcuoglu, Exploiting cyclic symmetry in convolutional neural
networks, [1602.02660].

[11] R. Kondor and S. Trivedi, On the Generalization of Equivariance and Convolution in Neural Networks
to the Action of Compact Groups, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018 80 (2018) 2747.

[12] D. Yarotsky, Universal approximations of invariant maps by neural networks, CoRR (2018)
[1804.10306].

[13] R. Kondor, N-body networks: a covariant hierarchical neural network architecture for learning atomic
potentials, [1803.01588].

[14] A. Bogatskiy, B. Anderson, J.T. Offermann, M. Roussi, D.W. Miller and R. Kondor, Lorentz group
equivariant neural network for particle physics, Proceedings of the 37th International Conference on
Machine Learning, ICML 2020 (2020) [2006.04780].

[15] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov and A.J. Smola, Deep Sets,
Advances in Neural Information Processing Systems 30 (2017) 3391.

[16] M.J. Dolan and A. Ore, Equivariant energy flow networks for jet tagging, Physical Review D 103 (2021)
[2012.00964].

[17] H. Maron, H. Ben-Hamu, N. Shamir and Y. Lipman, Invariant and equivariant graph networks,
International Conference on Learning Representations, ICLR 2019 (2019) [1812.09902].

[18] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda and M.M. Bronstein, Geometric deep learning

on graphs and manifolds using mixture model cnns, IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017 (2017) 5425.

[19] N. Thomas, T. Smidt, S.M. Kearnes, L. Yang, L. Li, K. Kohlhoff et al., Tensor field networks: Rotation-
and translation-equivariant neural networks for 3d point clouds, NeurIPS 2018 Workshop on Molecules
and Materials (2018) [1802.08219].

[20] T.S. Cohen, M. Geiger, J. Kohler and M. Welling, Spherical CNNs, in International Conference on
Learning Representations, 2018, https://openreview.net/forum?id=Hkbd5xZRb.


https://doi.org/10.1103/PhysRevD.100.034515
https://arxiv.org/abs/1904.12072
https://doi.org/10.1007/JHEP01(2017)110
https://arxiv.org/abs/1612.01551
https://doi.org/10.1038/351300a0
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
http://proceedings.mlr.press/v48/cohenc16.html
http://proceedings.mlr.press/v48/cohenc16.html
https://arxiv.org/abs/1602.07576
https://arxiv.org/abs/1602.02660
http://proceedings.mlr.press/v80/kondor18a.html
http://proceedings.mlr.press/v80/kondor18a.html
https://dblp.org/rec/bib/journals/corr/abs-1804-10306
https://arxiv.org/abs/1804.10306
https://arxiv.org/abs/1803.01588
http://proceedings.mlr.press/v119/bogatskiy20a.html
http://proceedings.mlr.press/v119/bogatskiy20a.html
https://arxiv.org/abs/2006.04780
http://papers.nips.cc/paper/6931-deep-sets.pdf
https://doi.org/10.1103/physrevd.103.074022
https://doi.org/10.1103/physrevd.103.074022
https://arxiv.org/abs/2012.00964
https://openreview.net/forum?id=Syx72jC9tm
https://arxiv.org/abs/1812.09902
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1109/CVPR.2017.576
http://www.quantum-machine.org/workshops/nips2018/
http://www.quantum-machine.org/workshops/nips2018/
https://arxiv.org/abs/1802.08219
https://openreview.net/forum?id=Hkbd5xZRb

REFERENCES 15

[21] R. Kondor, Z. Lin and S. Trivedi, Clebsch-Gordan Nets: a Fully Fourier Space Spherical
Convolutional Neural Network, in NeurIPS 2018, S. Bengio, H.M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi and R. Garnett, eds., pp. 10138-10147, 2018, http://papers.nips.cc/paper/8215-
clebschgordan-nets-a-fully-fourier-space-spherical-convolutional-neural-network.

[22] G. Kanwar, M.S. Albergo, D. Boyda, K. Cranmer, D.C. Hackett, S. Racaniere et al., Equivariant
flow-based sampling for lattice gauge theory, [2003.06413].

[23] D. Boyda, G. Kanwar, S. Racaniere, D.J. Rezende, M.S. Albergo, K. Cranmer et al., Sampling using
SU(N) gauge equivariant flows, [2008.05456].

[24] T. Frankel, The geometry of physics, Cambridge University Press, Cambridge, second ed. (2004).

[25] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal
approximators, Neural Netw 2 (1989) 359.

[26] M. Finzi, S. Stanton, P. Izmailov and A.G. Wilson, Generalizing convolutional neural networks for
equivariance to lie groups on arbitrary continuous data, Proceedings of the 37th International
Conference on Machine Learning, ICML 2020 119 (2020) 3165 [2002.12880].

[27] V.G. Satorras, E. Hoogeboom and M. Welling, E(n) equivariant graph neural networks, Proceedings of
the 38th International Conference on Machine Learning, ICML 2021 (2021) [2102.09844].

[28] M. Hutchinson, C.L. Lan, S. Zaidi, E. Dupont, Y.W. Teh and H. Kim, Lietransformer: Equivariant
self-attention for lie groups, [2012.10885].

[29] V.G. Satorras, E. Hoogeboom, F.B. Fuchs, 1. Posner and M. Welling, E(n) equivariant normalizing flows
for molecule generation in 3d, CoRR abs/2105.09016 (2021) [2105.09016].

[30] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J.P. Mailoa, M. Kornbluth et al., E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials, [2101.03164].

[31] T.S. Cohen and M. Welling, Steerable CNNs, in International Conference on Learning Representations,
2017, https://openreview.net/forum?id=rJQKYt5ll.

[32] S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian et al., An efficient Lorentz equivariant graph neural
network for jet tagging, [2201.08187].

[33] M. Dax, S.R. Green, J. Gair, M. Deistler, B. Scholkopf and J.H. Macke, Group equivariant neural
posterior estimation, 2021.

[34] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger et al., Highly accurate protein
structure prediction with AlphaFold, Nature 596 (2021) 583.

[35] H. Qu and L. Gouskos, Jet tagging via particle clouds, Physical Review D 101 (2020) .

[36] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy flow polynomials: a complete linear basis for jet
substructure, Journal of High Energy Physics 2018 (2018) .

[37] D. Murnane, S. Thais and J. Wong, Semi-Equivariant GNN Architectures for Jet Tagging,
[2202.06941].

[38] G. Kasieczka, T. Plehn, J. Thompson and M. Russel, Top quark tagging reference dataset, Zenodo
(2019) .


http://papers.nips.cc/paper/8215-clebschgordan-nets-a-fully-fourier-space-spherical-convolutional-neural-network
http://papers.nips.cc/paper/8215-clebschgordan-nets-a-fully-fourier-space-spherical-convolutional-neural-network
https://arxiv.org/abs/2003.06413
https://arxiv.org/abs/2008.05456
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://proceedings.mlr.press/v119/finzi20a.html
http://proceedings.mlr.press/v119/finzi20a.html
https://arxiv.org/abs/2002.12880
https://proceedings.mlr.press/v139/satorras21a.html
https://proceedings.mlr.press/v139/satorras21a.html
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2012.10885
https://arxiv.org/abs/2105.09016
https://arxiv.org/abs/2105.09016
https://arxiv.org/abs/2101.03164
https://openreview.net/forum?id=rJQKYt5ll
https://arxiv.org/abs/2201.08187
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1103/physrevd.101.056019
https://doi.org/10.1007/jhep04(2018)013
https://arxiv.org/abs/2202.06941
https://zenodo.org/record/2603256
https://zenodo.org/record/2603256

REFERENCES 16

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

B.M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vogel, Symmetries, safety, and
self-supervision, [2108.04253].

K. Desai, B. Nachman and J. Thaler, SymmetryGAN: Symmetry discovery with deep learning,
[2112.05722].

T. Kipf, E. van der Pol and M. Welling, Contrastive learning of structured world models, [1911.12247].

J.Y. Park, O. Biza, L. Zhao, J.-W. van de Meent and R. Walters, Learning symmetric representations for
equivariant world models, .

J. Frankle and M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable neural networks,
[1803.03635].

D. Bau, B. Zhou, A. Khosla, A. Oliva and A. Torralba, Network dissection: Quantifying interpretability

of deep visual representations, Proceedings of the IEEE conference on computer vision and pattern
recognition (2017) 6541.

B.M. Anderson, T. Hy and R. Kondor, Cormorant: Covariant Molecular Neural Networks, in NeurlPS
2019, HM. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.B. Fox and R. Garnett, eds.,
pp. 14510-14519, 2019,
http://papers.nips.cc/paper/9596-cormorant-covariant-molecular-neural-networks.

F.B. Fuchs, D.E. Worrall, V. Fischer and M. Welling, SE(3)-Transformers: 3D Roto-Translation
Equivariant Attention Networks, arXiv (2020) [2006.10503].

M. Finzi, G. Benton and A.G. Wilson, Residual pathway priors for soft equivariance constraints,
[2112.01388].

A. Meurer, C.P. Smith, M. Paprocki, O. Certik, S.B. Kirpichev, M. Rocklin et al., Sympy: symbolic
computing in python, PeerJ Computer Science 3 (2017) e103.


https://arxiv.org/abs/2108.04253
https://arxiv.org/abs/2112.05722
https://arxiv.org/abs/1911.12247
https://arxiv.org/abs/1803.03635
http://papers.nips.cc/paper/9596-cormorant-covariant-molecular-neural-networks
https://github.com/FabianFuchsML/se3-transformer-public
https://arxiv.org/abs/2006.10503
https://arxiv.org/abs/2112.01388
https://doi.org/10.7717/peerj-cs.103

	Executive Summary
	Introduction 
	Equivariance in Machine Learning 
	Potential Benefits of Equivariant Models 
	Reconsidering Evaluation Metrics 
	Soft Equivariance 
	Discussion 
	Conclusions 

