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Abstract

Tensor network methods are becoming increasingly important for high-energy physics, condensed

matter physics and quantum information science (QIS). We discuss the impact of tensor network

methods on lattice field theory, quantum gravity and QIS in the context of High Energy Physics

(HEP). These tools will target calculations for strongly interacting systems that are made difficult

by sign problems when conventional Monte Carlo and other importance sampling methods are

used. Further development of methods and software will be needed to make a significant impact in

HEP. We discuss the roadmap to perform quantum chromodynamics (QCD) related calculations

in the coming years. The research is labor intensive and requires state of the art computational

science and computer science input for its development and validation. We briefly discuss the

overlap with other science domains and industry.
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Executive summary for “CompF6: Quantum computing”

Tensor network methods are playing an increasingly important role in several branches of

physics and in quantum information science. Tensor networks provide a compact represen-

tation of entangled quantum systems and quantum states. They can be used to reformulate

physical theories on a lattice and map them onto other quantum systems—such as quantum

computers or quantum simulators. These physical theories can then either be studied clas-

sically using the original tensor network formulation, or in the mapped representation using

quantum hardware.

In the original formulation, they present an increasingly attractive alternative to tradi-

tional Monte Carlo methods (used in lattice QCD) which are currently the only computa-

tional methods able to provide first-principle calculations for a large range of HEP prob-

lems, but which also consume large computational resources. In numerical methods based

on coarse-graining, tensor network methods do not rely on statistical sampling, potentially

providing solutions to problems plagued by sign problems that render Monte Carlo methods

ineffective. In some fields, such as condensed matter physics, their use is fairly common.

However, for problems of interest to HEP, tensor network methods are still very resource

intensive, and are not currently feasible for complex theories in four space-time dimensions,

such as QCD. Further development of tensor network methods and software is needed for

them to make a significant impact in HEP like Monte Carlo.

In addition to providing an alternative to Monte Carlo methods in HEP, tensor networks

are also useful in connecting HEP to QIS. They can provide a convenient representation for

mapping lattice theories to quantum hardware (either in terms of digital quantum circuits

or analog quantum simulators), and can also be used to perform classical simulations of

quantum circuits. This is helpful for developing and testing quantum computing algorithms,

and is an important area of research for determining the tipping point for quantum computers

to provide a computational advantage over classical ones. They also assist in isolating

“building blocks” that have limited complexity and can be optimally approximated for noisy

intermediate-scale quantum (NISQ) hardware.

Here we summarize some of the key problems in HEP that could be addressed with

tensor network methods, the current status of applications to HEP, and the developments

in methods, software, and personnel needed to make progress in these areas.
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Executive summary for “TheoryF10: Quantum Information Science”

Tensor network methods are playing an increasingly important role in several branches

of physics and in quantum information science. In the context of HEP, tensor networks

have appeared as ways to reformulate lattice gauge theory models to obtain a fully discrete

formulation that is suitable for quantum computation and coarse graining methods. Tensor

networks also provide tools to understand entanglement in conformal field theories and their

connection to gravity.

In the context of lattice gauge theory, tensors can be seen as the translationally invariant,

local building blocks of exact discretizations of the path integral. They encode both the local

and global symmetries of the original model. It is easy to design approximations (trunca-

tions) that preserve these symmetries and to design simplified models that should have the

same correct universal continuum limit as the original model. Developing these building

blocks and optimizing the approximations for NISQ machines and classical computers are

important tasks for the near-term future. Tensor networks can also be used to perform

classical simulations of quantum circuits. This is useful for developing and testing quantum

computing algorithms and quantum computational advantage.

There is an emerging international and interdisciplinary community developing new meth-

ods in this area, which includes an increasing number of researchers from the lattice gauge

theory community. There is a clear road map to do QCD related calculations in the coming

years. This effort is at the interface of quantum computing and classical high performance

computing (HPC) and requires state of the art HPC for its development and validation.
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Executive summary for “TheoryF5: Lattice Gauge Theory”

Tensor Lattice Field Theory (TLFT) is a new approach for understanding the non-

perturbative structure of lattice theories including QCD. Starting from the conventional

Lagrangian/path-integral formulation, it is possible to reformulate the models using tensors

which are translationally invariant, local, and can be considered as building blocks of exact

discretizations of the path integral. They encode the local and global symmetries of the orig-

inal model. They provide a more general space of theories than the traditional Lagrangian

and Hamiltonian densities. Most models studied by lattice gauge theorists can be reformu-

lated in the language of TLFT. Truncations need to be used for practical purposes but can

chosen to preserve symmetries in a generic way. This provides a broad class of models with

the same universal continuum limit as the original model.

TLFT smoothly connects the Lagrangian and Hamiltonian approaches and is very useful

in the context of quantum computing. Moreover, TLFT approaches to the path integral

can also be combined with deterministic coarse-graining methods. This is very efficient for

a broad range of couplings and also allows the study of complex actions. The truncations

performed during coarse-graining are the only approximations used and, if they can be

controlled, exponentially large volumes can be reached. This is potentially interesting in the

study of models beyond the standard model with slowly running coupling constants.

Using TLFT for models directly relevant for HEP is a feasible goal in the next decade.

Developing software and running codes in TLFT is labor intensive and requires access to

high performance computing.
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I. INTRODUCTION

The use of tensor network methods to tackle quantum field theory problems relevant for

HEP is a recent and rapidly developing new area of research. This is a very interdisciplinary

area and workshops involving several communities have taken place recently. For instance,

a recent workshop at the Institute for Nuclear Theory [1] had more than 80 participants in

High Energy, Nuclear and Condensed Matter Physics. Before discussing the science goals,

the importance of the approach for quantum computation, recent progress, and resources

needed, we first give a brief overview of the context in which tensor network methods appear,

and their relations with other areas of research.

An important disclaimer: this white paper does not provide exhaustive lists of references

but rather selected references that are most familiar to tensor practitioners in the US lattice

community. Exhaustive lists of references can be found in recent reviews [2–6]. Additional

information can also be found in some of the 2020 LOI’s [7–9].

• Context

Tensor network methods are playing an increasingly important role in many branches

of physics and data analysis. In the context of HEP and more specifically lattice

gauge theory, tensor network methods appear at the interface of quantum and classical

computing and target questions where sign problems are present or large volumes are

needed. They can also play a role in understanding conformal and holographic theories.

For recent reviews focused on the use of tensors in lattice gauge theory see [4, 5, 10].

• Terminology

The term “tensor” appears in many other contexts. For instance, energy-momentum

tensors or Kalb-Ramond tensor fields are often used in HEP. In contrast, “tensor

networks” refers to objects with multiple indices that can be assembled together to

represent the states of a Hilbert space or transfer matrix, compute expectation values

of operators, or express partition functions. Typically, the indices refer to quantum

numbers or to a list of states in a localized Hilbert space.

• Relationship with quantum computing

The reformulations of lattice field theory models using finite sets of tensor indices

provide Hilbert spaces suitable for quantum computing (see Section III). The space-
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time tensor networks can be adapted to build quantum circuits. Additionally, certain

quantum states that can be represented using a tensor network, e.g. matrix product

states (MPS), can be prepared efficiently on a quantum computer. This allows one to

address more general problems, e.g., quantum simulation, which are still inefficient for

classical computers.

• Condensed matter origins

Many of the basic quantum information ideas behind the use of tensor networks in lat-

tice field theory were originally developed in the context of condensed matter. White

emphasized the need to keep track of the entanglement among coarse-grained blocks

while performing real space renormalization group transformations and invented the

density matrix renormalization group (DMRG) method to handle this [11]. DMRG is

typically the most accurate method for computing ground states of one-dimensional

lattice Hamiltonians and is related to tensor networks called matrix product states

(MPS). Other tensors networks, for instance, called projected entangled pair states

(PEPS) and the multi-scale entanglement renormalization ansatz (MERA), play an

important role in dealing with other types of models. The quantum information the-

ory community has developed a clear understanding of the convergence (or the lack

thereof) of such algorithms in terms of area laws associated with entanglement entropy.

For recent reviews see [12, 13].

• Tensors for HEP and nuclear physics

There has been a significant interdisciplinary effort starting around 2010, and high-

lighted in conferences and workshops at the Aspen Center for Physics, KITP, the INT

and KITPC, to apply some of methods developed in the condensed matter community

to problems in HEP and nuclear physics (NP). The annual lattice conferences have

helped foster interactions among the communities involved [14–20]. The number of

contributions has grown steadily with the years. Tensor reformulations of lattice gauge

theory models starting from the standard Lagrangian path-integral formalism connect

smoothly to Hamiltonian approaches developed in condensed matter physics.

• Tensors as building blocks of computations

The tensors are local objects containing all the universal information about the model

in question such as its dimension and symmetries. Most lattice models have a tensor
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reformulation and there is a clear plan to follow the road map that has been successful

for QCD (the “Kogut sequence”, see below). Tensors can be used to deal with sign

problems, strongly interacting systems and conformal field theory (but efficient numer-

ical methods remain to be fully developed in 2+1 and 3+1 dimensions). They provide

new tools for the lattice field theory and AdS/CFT communities. Quantum circuits

can also be viewed as tensor networks, providing alternative methods for constructing,

transforming and evaluating quantum computations [21–23].

• The road map

The lattice gauge theory community worked its way over many years to being able to

simulate full QCD with dynamical fermions by starting with simpler models in lower

dimensions. This approximate sequence of models is sometimes called the “Kogut

sequence” or the “Kogut ladder” after review articles [24, 25]. A similar road map is

being followed with the tensor reformulations discussed here [5].

II. SCIENCE GOALS FOR HEP

• Quantitatively reliable coarse-graining for strong interactions

Quarks and gluons play an important role for problems with typical energies ranging

from MeV to TeV. Hypothetical models beyond the standard model often involve

effective coupling constants that run very slowly with energy scale. To tackle such

problems it is crucial to develop reliable methods for performing coarse-graining and

renormalization. Tensor renormalization group (TRG) methods have the potential to

meet these expectations because they allow a clean partition of the degrees of freedom

at different scales. Indeed such methods have been used in simple models to obtain

critical exponents to very high precision. However, the truncation methods that must

be employed still need optimization for use in higher dimensions with both fermions

and gauge fields.

• Dealing with sign problems at finite density

A certain number of problems in astrophysics and nuclear physics require calculations

involving quarks and gluons at finite density. These calculations are plagued by sign

problems which prevent the use of conventional importance sampling. TRG methods
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rely on the singular value decomposition (SVD) and are typically insensitive to sign

problems. In 1+1 dimensions, they are generically very efficient in dealing with prob-

lems involving finite density or complex couplings where the Euclidean Boltzmann

weights are not real and positive. Developing efficient methods in higher dimensions

is an important goal for the tensor community.

• Real-time evolution of strongly interacting particles

The interpretation of hadron collider data relies extensively on event generation al-

gorithms such as Pythia [26]. These algorithms incorporate results from perturbative

QCD that are reliable at short distances and use empirical models to describe the

formation of hadrons at larger distances. Replacing these empirical models by ab-

initio calculations based on lattice QCD is one of the major motivations for quantum

computing in HEP. This is discussed in a separate white paper [27]. Tensor methods

can also in principle be used to handle real-time evolution and out-of equilibrium sit-

uations. This is a well-developed research area in condensed matter and we hope that

this can also become the case in HEP.

III. RELATION WITH QUANTUM COMPUTING AND QIS

• Discretization of path-integrals

For qubit-based quantum computing a complete discretization of both field space and

spacetime is necessary. Tensor network methods starting from a lattice path-integral

formulation provide a general way to reach this goal.

• Character expansions

For compact groups, character expansions (e.g., Fourier expansion) provide a natural

way to discretize the path integral of models with continuous variables (e.g., the gluon

fields in QCD). They were extensively developed in the context of strong coupling

expansions in the early days of lattice QCD but they also connect with modern worm

algorithms and can be adapted to work well even at weak coupling.

• Symmetry compatible truncations

For practical purposes, truncations of the character expansions are necessary. Fortu-

nately, this can be done in a way compatible with symmetries [5, 28, 29].
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• Locality and effective theories

The (quasi) locality of microscopic interactions is a crucial ingredient of Lloyd’s quan-

tum supremacy argument [30]. It is present in tensor network reformulations and their

effective theories obtained by coarse graining.

• Simulation of the building blocks of quantum algorithms

Quantum algorithms can be interpreted as tensor networks, where each tensor corre-

sponds to a quantum gate. From this point of view, we can isolate building blocks of

the quantum algorithm and use tensor network methods to perform the tensor con-

tractions, providing a useful technique to simulate quantum algorithms on classical

computers.

• State preparation

Tensor networks with some local structure allow one to produce state-preparation

quantum circuits of small size or depth. This is beneficial for quantum simulation. It

is also beneficial to study/verify new physical theories and for observing convergence

by changing the bond dimension of the tensor.

• Quantum state tomography

Tensor networks can also be used in the context of quantum state tomography [31].

By imposing a tensor network structure (e.g., a PEPS), there is a way perform efficient

quantum state tomography, which requires exponential resources in general. Efficient

quantum state tomography is important for many reasons, including the verification

of quantum computing devices and experiments.

• Relation with other approaches

The study of the transfer matrix derived from the tensor formalism leads to finite

algebras [29] that can be compared with quantum link constructions [32, 33]. Related

methods [34, 35] have been used in the context of quantum computing. These related

formulations should be compared in the continuum limit. For instance, it has been

showed recently that truncations of the Abelian Higgs model in the charge represen-

tation leads to a phase transition associated with an enhanced symmetry.
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IV. SELECTED RECENT PROGRESS

• Spin and gauge models with Abelian symmetries

It was found out early [36] that the character expansions for Abelian groups leads to

simple factorization. The integration of the fields result in Kronecker deltas which

represent the symmetry (modulo n for Z
n
versions). The identities representing the

symmetry depend only on these selection rules and not on the specific values taken by

the tensor elements [28, 29]. Consequently, truncations preserve symmetries exactly

and it is possible to attempt to reach the continuum limit with highly simplified

microscopic formulations. In addition, for gauge theories, one can integrate completely

the gauge fields without gauge fixing and the procedure is manifestly gauge invariant.

• Spin and gauge models with non-Abelian symmetries

The mass-gap of the O(3) nonlinear sigma model in 2D was studied in Ref. [37] by fit-

ting the two-point correlation function. In Refs. [38] the CP(1) model in 2D with and

without a θ-term was analyzed using the higher order tensor renormalization group,

and the loop-tensor network renormalization algorithms. Reference [39] considered the

non-Abelian Higgs model in 2D. This model is confining across the entire phase dia-

gram, and the string tension was extracted from Polyakov loop correlators. Extracting

spectra and binding energies from correlations functions is an important step on the

path towards analyzing QCD. Understanding the systematics of the method in the

presence of a θ-term – which has a sign problem – for a theory which is asymptotically

free will help guide the method in higher dimensions with other non-Abelian groups.

• Scalar theories

The complex scalar φ4 theory with finite chemical potential, a typical model with

the sign problem, is analyzed in 2D and 4D [40, 41]. While the presence of a sign

problem is a strong motivation to use tensor network methods, a notable accuracy

of the critical coupling constant compared to other schemes including Monte Carlo

simulations is reported in the 2D real φ4 theory [42, 43] following the pioneering work

by Shimizu [44]. To discretize the field space a Taylor expansion of the hopping factors

combined with Gaussian quadratures is used.

• Fermions
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Application of the Grassmann tensor renormalization group [45, 46] to relativistic

fermion models started from a series of investigation on the 2D Schwinger model

with Wilson fermions [47–49]. A key feature of these fermion models is the presence

of Grassmann variables that decorate the tensor networks. In some special cases

that include the 2D Schwinger model with staggered fermions, it is shown that one

can construct a tensor network representation without Grassmann variables [50]. A

coarse-graining algorithm for Grassmann variables in higher dimensions that goes well

with the higher order TRG (HOTRG) [51] and its approximation schemes [52, 53] was

proposed in [54].

• Supersymmetric models

The 2D N = 1 Wess–Zumino model, the simplest supersymmetric model with a severe

sign problem, is analyzed using the Grassmann tensor renormalization group [55]. In

this work, a non-interacting case that is exactly solvable is employed as a numerical

test. More complicated models including the interacting case of the same model and

the N = (2, 2) Wess–Zumino model would be a possible and interesting direction.

• Quantum gravity

Tensor networks can be useful in the study of quantum gravity as well. One of the

directions where tensor networks have appeared is in the “spin-foam” formulation of

quantum gravity [56]. In Ref. [57], a tensor network formulation, as well as a coarse-

graining scheme were developed for a spin-foam partition function. In Ref. [58] the

authors form a tensor network for the partition function of two-dimensional gravity

where the gauge symmetry has been extended to merge the tetrad and spin-connection

variables into a single connection. In this work the Fisher zeros of the partition function

are plotted in the complex-coupling plane. In a related work the authors in Ref. [59]

model de Sitter space using the multi-scale entanglement renormalization ansatz tensor

network.

• Other approaches

As explained before, there is a large literature where MPS and PEPS are used to

handle gauge theories [3, 4] that is not reviewed here. For recents progress, see for

instance [60–63].
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V. TECHNOLOGIES AND RESOURCES NEEDED

• Method development

A large variety of tensor network algorithms have been developed to approximately

evaluate observables in Hamiltonian and Lagrangian systems (see section A in the

appendix for a summary and references). The methods span a range of compromises

between accuracy, compute time and memory use, with the most accurate methods

generally requiring the most time and memory. For systems with one spatial dimen-

sion, the time and memory requirements of the most accurate methods can typically

be accommodated on modern computers. However, for three spatial dimensions, the

computing demands for the most accurate methods are well beyond what is presently

possible, and a significant reduction in the size and connectivity of the tensors within

the network is necessary. Several advances have been made to improve the scalabil-

ity of methods, which has made initial simulations of some 3+1 dimensional models

possible. However, high precision simulations of simple 3+1 dimensional systems and

initial tests for more complex theories (such as QCD) still remain a significant chal-

lenge. Sustained research into understanding the tradeoffs among approaches, and

developing new methods is necessary in order to reach the accuracy and scalability

needed for many of the problems of interest to HEP.

• Tensor network software and library requirements

Tensor network calculations rely on efficient tensor (or matrix) math libraries. The

most common operations needed are

– Reshaping the tensor and permuting the order of indices

– Element-wise operations (e.g. scaling elements, adding tensors)

– Contracting indices in a product of two (or more) tensors

– Tensor decompositions (typically SVD or eigen-decomposition)

A list of some tensor software can be found on the web [64] and a more comprehensive

list of packages is available here [65]. Many of the tensor libraries were developed and

are currently used by the condensed matter community, and may have MPS or other

methods implemented. Popular programming languages are C++, Python and, more
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recently, Julia. For HEP research Numpy is still a popular choice for implementations

of TRG and related algorithms. Since many of the tensor libraries use optimized

GEMM routines for contractions, performance among them for large tensor sizes will

be similar for the same set of operations. The main differences between them tend

to be in the interface (e.g. whether contractions use Einstein notation, or some other

helper functions). This can make a difference in the ease of use, however, the order of

contractions can make a big difference in the memory and compute requirements, so

interfaces that allow specifying a collection of contractions need to either determine

the optimal order or let the user specify. Determining the optimal contraction order

becomes particularly important for larger networks but is considered to be an NP-hard

problem. Finding efficient methods to determine nearly-optimal orderings is an active

area of research, especially for classical simulations of quantum circuits.

Tensor decompositions In many cases the exact contraction of tensor networks is

not feasible, and approximations must be made. This is often done by using an SVD

to reduce the size of intermediate tensors by keeping only the largest modes, and

hence having an efficient SVD is important. Since typically only a small portion of the

modes are being kept, a full SVD isn’t necessary. A partial SVD, such as one using

randomized linear algebra [66], can be more efficient as the tensor sizes grow.

Distributed memory As the tensor sizes grow, the memory available on a single

computer will become a bottleneck. High accuracy calculations of theories such as

QCD will likely require larger amounts of memory found on leadership computing

resources. This will require having distributed memory tensor libraries that can effi-

ciently perform the necessary contractions and SVD procedures on distributed tensors.

Symmetries Many problems of interest to HEP have symmetries that can also be

captured in the TN formulation. This leads to sparse structure in the tensors which

can be taken advantage of to make the calculations more efficient and even more

accurate. Some tensor libraries developed for condensed matter applications can take

symmetries into account. Adopting and modifying these for problems in HEP could

be beneficial.

Software ecosystem As noted in [65], there are a large number of libraries available

with overlapping capabilities, each developed for a specific research group or applica-
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tion in mind. Due to the diverse set of target problems, methods and implementations,

consolidating on a single or small number of libraries may be difficult. For HEP, hav-

ing a coordinated research plan to develop tensor network software tailored for HEP

problems, while leveraging libraries actively developed in the condensed matter and

computer science communities may be a viable strategy to avoid further fragmentation.

• Access to large scale classical computers

Unlike traditional lattice field theory methods which have a cost in compute time and

memory that grows with some power of the system volume, tensor network methods

tend to have more modest resource growth for increasing volume. Many TN methods

have a resource growth that is only logarithmic in the volume, and some can even

work directly in the infinite volume limit. The major factors influencing the resource

requirements for TN methods are

– The number of spatial dimensions in the theory

– The complexity of the theory (requiring a larger tensor on each site)

– The required accuracy of the final result

Increasing the accuracy of simulations requires growing the size of the intermediate

tensors in the corresponding contraction and truncation procedure, to capture the

necessary entanglement in the system.

Improved truncation schemes can help reduce the memory footprint in favor of more

compute cycles (which can be advantageous as the compute power of computing tech-

nology tends to grow faster than memory capacity). However, when moving to 3+1

dimensions, the memory and compute requirements will both grow very fast as the

accuracy is improved, and high accuracy simulations of complex systems such as QCD

will likely require running across large scale leadership computing facilities. In this case

having efficient distributed memory versions of the codes will be necessary. Having

access to large machines (with large memory) will also be necessary to develop meth-

ods and to calculate results. Since there is no statistical sampling in TN methods,

as opposed to standard lattice Monte Carlo methods, the total compute time needed

could be less than for traditional lattice methods. The main bottleneck, however, is

likely to be the memory size needed to store tensors required for the target accuracy.
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In some cases, storage of the large tensors for later use may also be desired, requiring

sufficient storage space and I/O bandwidth for tensors of order of the size of the total

available memory.

• Workforce

Progress on these problems will require a collaborative workforce across HEP and

ASCR domains, along with collaborations with other science domains such as con-

densed matter physics. This will require skilled domain scientists familiar with the

construction of lattice theories and relating numerical measurements to physical re-

sults. It will also require computational scientists developing improved tensor network

methods that optimize the tradeoff between memory and compute time for a given

science problem and computer hardware. They will also need to engage computer

scientists and applied mathematicians who are developing libraries and methods for

large scale parallelization of tensor network contractions and decompositions.

VI. OVERLAP WITH OTHER SCIENCE DOMAINS AND INDUSTRY

• Condensed matter physics

The development and application of tensor network methods is an active and vibrant

field in condensed matter physics. More details on the background in condensed matter

physics can be found in previous sections and related references. Many applications

to HEP grew out of the related work by, and in collaboration with, condensed matter

researchers. For example, the reformulation of lattice gauge theories was developed as

part of a collaboration extending the methods of Tao Xiang’s group [51].

• Classical simulation of quantum circuits

Tensor network methods can also be used to perform classical simulations of quantum

circuits, used for testing and development of quantum algorithms. This can be done

by using the tensor network to hold a compact approximation of the full state vector,

for example using a PEPS network [67]. One can also use tensor network methods to

simulate the output of quantum computers without storing the full state vector [68, 69].

The classical simulation of quantum circuits is an important means of developing

and testing quantum algorithms for HEP applications. Additionally, improvements
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in methods for simulating quantum circuits could have an impact in tensor network

methods directly applied to computing HEP problems, and vice versa.

VII. CONCLUSIONS

In summary, tensor network methods are playing an increasingly important role in several

branches of physics and are also becoming important in the context of HEP. Tensor networks

provide a compact representation of entangled quantum systems and quantum states that

can be used to reformulate physical theories on a lattice, map them onto other quantum

systems, such as quantum computers or quantum simulators, and to classically evaluate

simulation results either in the tensor network formulation, or in the mapped representation

onto quantum hardware.

Tensor Lattice Field Theory (TLFT) is a new approach to models studied in the context

of lattice QCD. It provides reformulations of these models where the microscopic tensors

are the translationally invariant, local, building blocks of exact discretizations of the path

integral. They encode the local and global symmetries of the original model. They also

provide a more general space of theories than the traditional Lagrangian and Hamiltonian

densities. Most model studied by lattice gauge theorists can be reformulated in TLFT.

Truncations need to be used for practical purposes and preserve symmetries in a generic

way. This provides a broader class of models with the same universal continuum limit as the

original model. TLFT methods connect smoothly between the Lagrangian and Hamiltonian

approaches and can be very useful in the context of quantum computing.

TLFT presents an increasingly attractive alternative to traditional Monte Carlo methods,

which are currently the only computational methods able to provide first-principle calcula-

tions for a large range of HEP problems but have limitations. In numerical methods based

on coarse-graining, tensor network methods do not rely on statistical sampling, so can also

provide solutions to problems plagued by sign problems that render Monte Carlo methods

ineffective. In some fields, such as condensed matter physics, their use is fairly common.

However, for problems of interest to HEP, tensor network methods are still very resource

intensive, and are not currently feasible for complex theories in four space-time dimensions,

such as QCD. Further development in tensor network methods and software is needed for

them to make a significant impact in HEP too.
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Tensor networks can also provide a convenient representation for mapping lattice theo-

ries to quantum hardware (either in terms of digital quantum circuits or analog quantum

simulators). They can also be used to efficiently perform classical simulations of quantum

circuits. This is useful for developing and testing quantum computing algorithms, and is

an important area of research for determining the tipping point for quantum computers to

provide a quantum advantage over classical ones. They help isolate “building blocks” that

have a limited complexity and can be optimally approximated for NISQ hardware.

We have summarized some of the key problems in HEP that could be addressed with

tensor network methods, the current status of applications to HEP, and the developments

in methods, software and personnel needed to make progress in these areas.

Using TLFT for models directly relevant for HEP is a feasible goal for the next decade.

Developing software and running codes in TLFT is labor intensive and requires access to

HPC.
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[6] J. Ignacio Cirac, David Pérez-Garćıa, Norbert Schuch, and Frank Verstraete, “Matrix

product states and projected entangled pair states: Concepts, symmetries, theorems,”

Rev. Mod. Phys. 93, 045003 (2021).

[7] Yannick Meurice, Rolando Somma, Burak Sahinoglu, and Guiffre Vidal, “Tensor networks in

high energy physics, Snowmass LOI ” (2020).

18

https://sites.google.com/uw.edu/int/21-1c-highlights
http://dx.doi.org/10.1038/s42254-019-0086-7
http://dx.doi.org/10.1140/epjd/e2020-100571-8
http://arxiv.org/abs/1911.00003
http://dx.doi.org/ 10.1088/1361-6633/ab6311
http://arxiv.org/abs/1910.00257
http://arxiv.org/abs/2010.06539
http://dx.doi.org/10.1103/RevModPhys.93.045003


[8] Judah Unmuth-Yockey, “The tensor renormalization group is poised for success,” Snowmass

LOI (2020).

[9] Nouman Butt, Xiao-Yong Jin, James Osborn, and Zain Saleem, “Tensor network methods

for lattice field theories,” Snowmass LOI (2020).
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Appendix A: Brief background on tensor methods

This is a brief overview of some tensor network methods. More complete and detailed

summaries can be found in several review articles [2–6].

The Density Matrix Renormalization Group (DMRG) [11] method (and the similar repre-
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sentation known as Matrix Product States (MPS) [70]) was developed for 1D lattice Hamil-

tonians, and is now the most accurate method available for many of these types of problems.

MPS can also be applied to 2D Hamiltonians, but this is typically limited to cases with low

entanglement. The Projected Entanglement Pair States (PEPS) [71–73] is an extension of

MPS that can capture 2D entanglement well, but at a greatly increased cost.

An alternative to MPS is provided by Tree Tensor Networks (TTN). These use a binary

tree of tensors to represent the state, which can be more efficient in memory, especially for

large systems, but generally does not provide as good a representation as MPS. This can

be circumvented by the addition of disentanglers into the tree network, which provide extra

connections within TTN that allow it to express much greater entanglement (by applying

unitary rotations that remove entanglement without changing the physics). This is the

basis of the Multiscale Entanglement Renormalization Ansatz (MERA) network [74]. The

disentanglers require extra effort to optimize, but for Hamiltonian systems, they still allow

for an efficient contraction of the network.

TTNs can be applied to 2D Hamiltonians as well, with and without disentanglers. An

implementation with disentanglers has been shown to work expecially well [75], however it

comes with a large cost.

For HEP applications, an important problem is the evaluation of partition functions, and

related observables, that would come from Lagrangian systems (and also classical Hamiltoni-

ans). One of the original methods designed for the evaluation of 2D partition functions was

the Tensor Renormalization Group (TRG) algorithm [76]. This method explicitly decom-

posed and contracted neighboring tensors together to produce a new renormalized tensor

encoding the interactions of several sites. An improved method for performing the tensor

block transformation, based on a higher order SVD for tensors, was introduced as the Higher

Order TRG (HOTRG) method [51]. This method has a relatively simple form and can easily

be extended to higher dimensions, though the entanglement is limited due to the tree-like

structure of the projections.

Several methods have been introduced to improve on the accuracy of HOTRG. The Tensor

Network Renormalization (TNR) method [77] includes extra disentangling steps, similar to

those used in MERA. TNR has only been applied in 2D systems so far, and generalizing to

higher dimensions is non-trivial. Other methods that attempt to remove unnecessary short-

range degrees of while preserving the long-range ones are Loop-TNR [78] and Gilt-TNR [79].
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These are based the idea of removing degrees of freedom around a loop and are easier to

apply in higher dimensions.

One method developed explicitly to scale well in higher dimensions is Anisotropic TRG

[52]. This is based on an update step that is similar to the original TRG method, which

is relatively cheap, but not as accurate as some of the above methods at a given bond

dimension. Another variation developed to make the calculations even cheaper in memory

and compute time is to decomposes the network so that it only contains triad tensors (ones

with three indices) [53]. This representation can be combined with other methods such as

HOTRG.

Choosing the best method for a given problem can be difficult as it depends on the

details of the observables being measured, the required accuracy and even the details of

the implementations and the computer hardware being used. For problems in 4D, memory

used is a significant constraint. Methods that use less memory can be run with a larger

bond dimension, than those that consume more memory. In some cases the larger bond

dimension can make up for the accuracy lost (at fixed bond dimension) due to breaking up

the tensor, or using a simpler update method. However this is not always the case, since

many of the methods are based on local update steps which do not necessarily converge on

the correct answer in a consistent manner. In some cases a more expensive, but more uni-

formly converging method might give better accuracy for a fixed hardware budget (memory

and/or compute time). Searching for the best combination of efficiency and convergence for

problems of interest to HEP is an open question.
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