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Abstract: In this white paper we summarise the construction and applications of lattice

theories possessing exact supersymmetry focusing, in particular, on N = 4 Yang-Mills

theory. Lattice formulations of this theory allow for numerical simulation of the theory at

strong coupling and hence give a window on non-perturbative physics away from the planar

limit. This has important applications to our understanding of holographic approaches to

quantum gravity and conformal field theories.
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1 Executive summary

In this white paper we summarise the construction and applications of lattice theories pos-

sessing exact supersymmetry focusing, in particular, on N = 4 Yang-Mills theory. Lattice

formulations of this theory allow for numerical simulation of the theory at strong coupling

and hence give a window on non-perturbative physics away from the planar limit. This

has important applications to our understanding of holographic approaches to quantum

gravity and conformal field theories. In particular:

• We find that quantities scale with the ’t Hooft coupling λ in a way that is consistent

with holography. In particular, Wilson loops scale as exp(−c
√
λ), where c is some

constant.

• Success in this regime opens the door to other interesting studies at strong coupling

and away from the planar limit including tests of S-duality, computations of the di-

mension of the Konishi operator and calculations of string loop corrections to classical

supergravity.

• Such calculations can also help bridge to other theoretical efforts such as the scatter-

ing amplitudes and conformal bootstrap programs.

2 Review

In recent years a new approach to the problem of formulating supersymmetric lattice the-

ories has been developed with the result that a certain class of supersymmetric theory can

be discretized while preserving one or more supercharges at non-zero lattice spacing. These

theories can be derived in two independent ways; by exploiting orbifold and deconstruction

techniques or by careful discretization of a topologically twisted formulation of the target

supersymetric theory [1] 1.

1Actually the orbifold methods only yield Yang-Mills theories while the topological constructions are

also capable of describing Wess-Zumino models
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In the case of N = 4 Yang-Mills the resultant lattice action is

S =
N

4λ
Q
∑
x

Tr

(
χabFab + ηDaUa +

1

2
ηd+ κ η (Re det [Ua(x)]− 1)

)
+ Sclosed (2.1)

where the lattice field strength

Fab(x) = Ua(x)Ub(x+ â)− Ub(x)Ua(x+ b̂) (2.2)

where Ua(x) denotes a complexified gauge field living on the lattice link running from

x → x + â and where â denotes one of the five basis vectors of an underlying A∗
4 lattice.

Similarly

DaUa = Ua(x)Ua(x)− Ua(x− â)Ua(x− â). (2.3)

The five fermion fields ψa, being superpartners of the gauge fields, live on the corresponding

links, while the ten fermion fields χab(x) are associated with new face links running from

x+ â+ b̂→ x. The scalar fermion η(x) lives on the lattice site x and is associated with a

conserved supercharge Q which acts on the fields in the following way2

QUa → ψa

Qψa → 0

Q η → d

Q d→ 0

Qχab → Fab

QUa → 0 (2.4)

Notice that Q2 = 0 which guarantees the supersymmetric invariance of the first part of

the lattice action. The auxiliary site field d(x) is needed for nilpotency of Q offshell. The

second term Sclosed is given by

Sclosed = − N

16λ

∑
x

Tr εabcdeχabDcχde (2.5)

where the covariant difference operator acting on the fermion field χde takes the form

Dcχde(x) = Uc(x− ĉ)χde(x+ â+ b̂)− χde(x− d̂− ê)Uc(x+ â+ b̂) (2.6)

To retain exact supersymmetry all fields reside in the algebra of the gauge group – tak-

ing their values in the adjoint representation of U(N): f(x) =
∑N2

A=1 T
AfA(x) with

Tr (TATB) = −δAB. The latter term can be shown to be supersymmetric via an ex-

act lattice Bianchi identity εabcdeDcχde = 0. This action is invariant under Q, SU(N)

lattice gauge invariance and the S5 point group symmetry of the A∗
4 lattice.3 Carrying

2One of the things that is learned from the orbifold construction is that the number conserved super-

charges is equal to the the number of site fermions.
3Notice that there are five lattice vectors, â = 1̂, . . . , 5̂, corresponding to the nearest-neighbor links of the

A∗
4 lattice, and the fact that we have five complexified “gauge fields.” The A∗

4 lattice is four-dimensional,

in spite of having five primitive vectors.
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out the Q variation and integrating out the auxiliary field d we obtain the supersymmetric

lattice action S = Sb + Sf where

Sb =
N

4λ

∑
x

Tr
(
FabFab

)
+

1

2
Tr
(
DaUa − κ [Re det [Ua(x)]− 1]2

)
(2.7)

and

Sf = −N
4λ

∑
x

(
Tr χabD[aψ b] + ηDaψa −

κ

2
Tr (η)det (Ua(x))Tr (U−1

a (x)ψa(x))
)

+ Sclosed

(2.8)

In the continuum this action can be obtained by discretization of the Marcus or GL twist

of N = 4 Yang-Mills but in flat space is completely equivalent to it. In the continuum the

twist is done as a prelude to the construction of a topological quantum field theory but in

the context of lattice supersymmetry it is merely used as a change of variables that allows

for discretization while preserving a single exact supersymmetry. The twisting removes the

spinors from the theory replacing them by the antisymmetric tensor fields η, ψa, χab which

appears as components of a Kähler-Dirac field. The latter is equivalent at zero coupling

to a (reduced) staggered field and hence describes four physical Majorana fermions in the

continuum limit - as required for N = 4 Yang-Mills. The twisting procedure also packs

the six scalar fields of the continuum theory together with the four gauge fields into five

complex gauge fields corresponding to the lattice fields Ua. The coupling κ is needed to

project the theory from U(N) to SU(N) and thereby evade instability issues that otherwise

would arise at strong coupling.

General arguments have been put forward that the theory should approach the contin-

uum N = 4 theory after tuning a single marginal operator [2]. The theory can be simulated

using the same algorithms that are employed for lattice QCD [3–5]. 4 It has also been used

to explore the physics of black holes and gauge-gravity duality in lower dimensions [7–16].

There is one final wrinkle that needs to be mentioned. To regulate the flat directions of

the theory to do simulations it is necessary to add a soft supersymmetry breaking term of

the form

Smass = µ2
∑
x

Tr
(
Ua(x)Ua(x)− I

)2
(2.9)

While this breaks the exact supersymmetry softly all counter terms induced by this breaking

will have couplings that are multiplicative in µ2 and hence vanishing as µ2 → 0.

3 Conformal invariance and holography

N = 4 Yang-Mills is thought to be a non-trivial conformal field theory for any value of the

’t Hooft coupling. Simulations are consistent with this and show a single phase theory with

vanishing string tension. Furthermore, the theory can be solved in the planar limit N →∞
and exhibits a non-trivial dependence on the ’t Hooft coupling λ. Specifically circular

4The theory does not appear to suffer from a sign problem although the exact reasons for this are not

well understood [6].
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supersymmetric Wilson loops Wsusy in the planar strong coupling limit are independent of

size and depend only on
√
λ [17, 18].

lnWsusy = const
√
λ

This result was first derived by exploiting holography to relate this Yang-Mills theory to

classical supergravity in five dimensional AdS space.

The characteristic
√
λ dependence can also be seen in the results of numerical sim-

ulations at strong coupling even for small numbers of colors - see fig. 1 which plots the

logarithm of the square lattice Wilson loop constructed from Ua as a function of
√
λ for

N = 2. The dependence on loop size R reflects the presence of a constant perimeter term
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Figure 1. Supersymmetric n× n Wilson loops on 124 lattice at µ = 0.025

in the static potential arising from the (static) quark mass [19]. Indeed if this is subtracted

out by normalizing the Wilson loops by appropriate powers of the Polyakov line one obtains

the plot in fig. 2 which exhibits both an insensitivity to loop size and also the
√
λ behavior

expected from holography. The strange
√
λ dependence cannot be seen in perturbation

theory and this result is a very non-trivial test of the correctness of the lattice approach in

a non-perturbative regime.

4 Future Directions - executive summary

Supersymmetric lattice actions can be formulated which conserve one or more continuum

supersymmetries and flow to the continuum theory with minimal tuning as the lattice

spacing is sent to zero. One of the most interesting examples that has been studied is

N = 4 super Yang-Mills. Results that have been obtained so far are consistent with a

single conformally invariant phase for any value of the ’t Hooft coupling and agree with

holographic predictions for Wilson loops even for small numbers of colors – an unexpected

and non-trivial result. Future work will focus on a variety of outstanding issues

– 4 –



 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6

lo
g
(W

/P
2

R
/L

)

Sqrt(λ)

L=124, κ=1, µ=0.025 

6x6
3x3

Figure 2. Renormalized supersymmetric 6× 6 and 3× 3 Wilson loops on 124 lattice at µ = 0.025

• Look for precise numerical agreement of the lattice and continuum results for super-

symmetric Wilson loops in the planar limit at strong coupling.

• Explore whether fine tuning is indeed needed to restore the remaining supersymme-

tries in the continuum limit.

• Compute the Konishi operator and supergravity operator scaling dimensions that

characterize the conformal behavior of the theory for arbitary numbers of colors

comparing with bootstrap and planar calculations. Here it is important to take into

account the impact of discretization on the SU(4)R ' SO(6) flavor symmetry.

• Search for evidence of S-duality in the lattice theory by measuring gauge boson and

monopole masses in the Coulomb phase of the lattice theory. Here one has a precise,

BPS-protected formula to compare to.
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