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Abstract: Superconformal field theories (SCFTs) occupy a central role in the study of

many aspects of quantum field theory. In this white paper for the Snowmass process we

give a brief overview of aspects of SCFTs in 3 ≤ D ≤ 6 space-time dimensions, including

classification efforts and some of the vast current research trends on the physical and

mathematical structures generated by this rich class of physical theories.
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1 Background and Motivation

A key problem in theoretical physics is to gain an analytical understanding of the dynamics

of strongly-coupled quantum field theories. This understanding is needed to inform and

constrain both the search for effective theories which go beyond the Standard Model of

particle physics, and the search for effective descriptions of new collective behaviors in

condensed matter systems. Among quantum field theories, conformal field theories (CFTs)

play a central role. As possible UV and IR endpoints of renormalization group (RG) flows

they provide launching points, via deformations, for exploring the broader space of quantum

field theories. In addition, via the AdS/CFT correspondence, CFTs encode aspects of

space-time in quantum gravity, and so their study may also illuminate physics outside of

the framework of local quantum field theory.

Without any further assumptions beyond conformal invariance, locality, and unitarity,

a systematic understanding of the landscape of CFTs remains largely out of reach. The

so(D, 2) conformal symmetry algebra together with unitarity implies useful but weak con-

straints on the allowed spins and dimensions of local operators in a CFT; see [1–6] and

references therein. We will here limit our discussion to D > 2 spacetime dimensions. Fol-

lowing the landmark BPZ paper [7], many thousands of papers explored the rich realm of

RG flows and CFTs in D = 2 spacetime dimensions and the special power of the enhance-

ment of so(D, 2) to the left and right Virasoro algebras; the subject of D = 2 is too rich,

and too special to include here. Likewise, the AdSD+1/CFTD correspondence is too rich

and vast to attempt to be properly represented in this brief overview, see e.g. [8].

As we increase D, interactions are IR-weaker and UV-stronger, so interacting CFTs

become less likely, and more challenging to find and analyze. In space-time dimensions

D = 3 and D = 4 there are a few classes of CFTs which are perturbatively accessible

(close to free field theory) [9–11]. There are also examples of perturbatively accessible

asymptotically safe UV CFT fixed points [12]. D = 4 non-Abelian gauge theories have a

conformal window of matter content that flows to a CFT in the IR, where the lower limit of

the conformal window is a strong coupling question that is debated on a case-by-case basis

in the lattice gauge theory community, see e.g. [13] and references therein. The bootstrap

program [14], based on demanding the associativity of the product of local operators, gives

numerical constraints on the existence of unitary CFTs with low values of conformal central

charges (vaguely, a measure of the number of degrees of freedom or complexity of the CFT)

but becomes increasingly difficult to implement as the central charges increase. The large

N or large central charge limit of generic CFTs is generally challenging.

The existence and tractability of CFTs improves dramatically with the introduction of

supersymmetry. Supersymmetry gives exact analytic control over a large set of important

observables in supersymmetric QFTs, and the constraints and methods are profoundly

extended for superconformal QFTs (SCFTs). The existence of SCFTs in D = 4 [15–22] and

other D have thus attracted considerable attention from the high energy theory community

over the past few decades, and has grown into a mature sub-field; see e.g. [23–26] for some

reviews and references. For superconformal theories, so(D, 2) is part of a superalgebra S

whose fermionic supercharges are in the spinor representation. This is highly restrictive
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and only possible for D ≤ 6 [15]. S also contains a bosonic R-symmetry subalgebra which

is an internal global symmetry of the SCFT. The constraints on operator content coming

from combining superconformal invariance with unitarity are substantially strengthened;

see e.g. [2, 27, 28] and references therein. SCFTs in D > 2 moreover typically have moduli

spaces of supersymmetric vacua, where the theory becomes more weakly coupled, which

greatly aid in their analysis.

In D = 3 and D = 4 (but not D > 4), there are many classes of SCFTs that come

in continuous families, called “conformal manifolds”, labeled by dimensionless couplings

for exactly marginal operators, and there can be strong-weak coupling dualities on such

spaces. In many such classes, the conformal manifold has weakly-coupled regions, where

perturbation theory can be applied [29–45]. In dimensions 3, 4 and 6 and with enough

supersymmetry, infinite subalgebras of the operator product algebra form 1D topological

algebras or vertex operator algebras (VOAs) whose structure is tightly constrained and can

be computed in many examples; see [46] and references therein. Furthermore, knowledge

of these subalgebras greatly enhances the reach of bootstrap techniques; see [14]. The

large N or large central charge limits of many classes of SCFTs can be understood using

semi-classical supergravity or superstring techniques via the AdS/CFT correspondence.

For D > 4, all Lagrangian theories are IR free, so interacting SCFTs appear un-

likely from a traditional QFT perspective. Nevertheless, infinite classes of strongly-coupled

SCFTs in D = 5 and D = 6 dimensions have been constructed and explored by string / M-

/ F- theory compactifications or brane localizations which decouple gravity and preserve

supersymmetry. The existence of D > 4 interacting SCFTs is a guide to developing deeper

perspectives, and new methods, for understanding QFTs in all dimensions. The D > 4

SCFTs are interesting in their own right, and have also served as a gateway to understand

and organize a wide variety of lower-dimensional strongly coupled phenomena.

Starting with 6D SCFTs as “master theories” one obtains field theories in 6−k dimen-

sions by compactification on a k-dimensional manifold Xk, relating in this way the prop-

erties of the lower dimensional theories with the geometric properties of Xk. Perhaps the

best known example is the 2-torus, T 2, compactification of 6D N = (2, 0) SCFTs, which

yields 4D theories with sixteen supercharges, namely N = 4 super Yang-Mills theories.

These 4D N = 4 gauge theories are conjectured to be S-dual [47, 48] — their infinitely-

strong coupling limits are equivalent to their weakly-coupled limits — a conjecture which

seems too difficult to prove using 4D field theory techniques as it involves infinite-coupling

limits. But from the 6D perspective, the complex structure of the T 2 is the holomorphic

gauge coupling τ of the 4D theory, and S-duality is evident geometrically as the invariance

of the complex structure of the torus under τ → −1/τ [49]. Generalizations include the

study of such 6D theories on other Riemann surfaces besides T 2, including the possibility

of punctures [50–57], where global symmetries of the moduli space of the compactification

again translate to highly non-trivial duality transformations in the 4D effective SCFT.

Similar insights have followed for compactifications on other spaces, including sin-

gular ones, leading to an illuminating correspondence between the structure of higher-

dimensional theories and their lower-dimensional counterparts. This perspective has also

been used to understand extended operators and higher-form symmetries of lower di-
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mensional theories. Moreover, the correspondence between higher- and lower-dimensional

SCFTs can be used “in reverse” to inform the mathematical study of the geometry of singu-

lar spaces. See [58] for more about the wonderful synergy between QFT and mathematics,

which has led to important new insights in both directions.

Organization In the rest of this white paper we provide a summary of the current state

of knowledge and directions of active research. Section 2 provides an overview of the

status of the systematic classification of SCFTs for each dimension starting from D =

6 to D = 3. Section 3 summarizes the numerous mathematical structures which the

study of SCFTs has helped in understanding; we focus specifically on the implications

for geometry, representation theory, and vertex operator algebras. Section 4 describes

the latest developments in understanding the structure of extended operators in SCFTs,

including their symmetry structure. While the first three sections focus on theories with

eight or more supercharges, section 5 instead summarizes the state of our understanding

of theories with less supersymmetry.

Given length limitations, this white paper inevitably leaves out numerous results which

connect to the core themes discussed below. We apologize in advance for these omissions.

2 Classification

In this section we summarize classification efforts on SCFTs in various spacetime dimen-

sions. We divide our discussion into the case of D > 4 SCFTs and D ≤ 4 SCFTs. For

D > 4, all Lagrangian interactions are irrelevant at weak coupling.

D > 4 SCFTs

As mentioned, SCFTs can exist only for D ≤ 6 [15]. For D = 6 the classification of [15]

allows N = (n, 0), corresponding to NQ = 8n real supercharges of the same chirality. For

all D = 3, 4, 6 the infinite families admitted by [15] only admit sensible SCFTs for NQ ≤ 16

supercharges [28], so only N = (1, 0) and N = (2, 0) are possible 6D SCFTs. For D = 5,

there is a unique superconformal algebra, and all such SCFTs have N = 1 supersymmetry

(i.e., eight real supercharges). Again, all Lagrangian interactions for D > 4 are irrelevant,

so IR free, and the original arguments for the existence of non-trivial, interacting SCFTs

in D = 5 [59] and D = 6 [60] dimensions included earlier hints from string theory brane

constructions [61, 62].

The SCFTs have a moduli space of supersymmetric vacua where the theory is weakly

coupled. Moduli spaces of SCFTs with NQ = 8 supercharges are similiar across dimensions

for all 3 ≤ D ≤ 6: there can be a Higgs branch, and a Coulomb branch, and in 6D the

Coulomb branch is actually a tensor-branch, associated with a tensor multiplet rather than

a vector multiplet. These branches touch at the origin, where there can be an interact-

ing SCFT. In constructions based on string compactification, one considers a limit where

gravity is switched off, and the background can be taken to be non-compact, with the field

theory degrees of freedom localized at the singularities of the non-compact geometry. The

string constructions for generic, non-singular configurations give the SCFT at a generic

– 4 –



point on the moduli space, where the theory is IR free. To get the interacting SCFT, one

must tune the string constructions to singular configurations, corresponding to tuning the

moduli fields to sit at the origin.

In D = 6, there are supersymmetry protected (BPS) strings whose tension is pro-

portional to the vev of the scalar parameterizing the tensor branch (the D = 6 analog

BPS W -bosons on the Coulomb branch), leading to “tensionless strings” as in [61, 62].

It was argued in [60] that these apparent tensionless strings can be understood (in the

limit where gravity decouples) in terms of conventional QFT, associated with interacting

SCFTs.1 There are by now many constructions of 6D SCFTs, which include both early

and more recent efforts, including references [61–77]. An important comment here is that

while some 6D SCFTs have a gauge theory description on the tensor branch, some do

not, and in any case, all are defined by taking various singular limits in brane / geometric

constructions.

The original examples of 5D interacting SCFTs were constructed by via g−2 → 0

strong coupling limits of gauge theories [59], so the SCFTs have a relevant deformation,

∆L ∼ g−2FµνFµν + . . . which drive RG flows to the IR-free Lagrangian gauge theories;

the IR-free gauge theories UV complete to the SCFTs. The g−2 relevant deformation

of the SCFT is associated with a global symmetry (as are all supersymmetry-preserving,

relevant deformations of 5D SCFTs), the instanton number U(1)I symmetry. As in the

case of 6D SCFTs, there need not exist a gauge theory phase in the moduli space, and the

SCFTs can be obtained by taking singular limits of brane and geometric constructions.

See [59, 65, 78–97] for additional constructions of 5D SCFTs.

2.1 6D SCFTs

All known 6D SCFTs have a tensor branch moduli space of vacua, parametrized by the

expectation value of a real scalar in the tensor multiplet, which contains a 2-form gauge

field. There are BPS strings on this moduli space, and the SCFT is at the origin, where

it seems that the tension of the effective strings goes to zero – such apparently tensionless

string limits are actually interacting SCFTs [60]. Perhaps the best known example of a 6D

SCFT is the A-type N = (2, 0) theory, as given by the worldvolume theory of coincident

M5-branes [62]. In this case, the effective strings come from M2-branes which are stretched

between M5-branes. One reason for the name “A-type” is that upon compactification on a

T 2, this theory descends to N = 4 super Yang-Mills theory with gauge symmetry algebra

su(N) for N M5-branes. There are also D- and E-type N = (2, 0) theories, and these

can be obtained from considering type IIB string theory on an orbifold which preserves

16 supercharges. The ADE classification of such orbifold singularities fits with an ADE

classification of N = (2, 0) theories, see e.g. [98, 99].2

1Let us note that the strings appearing at non-singular points of the moduli space are not the fundamental

strings of superstring theory. Rather, they are effective strings more akin to the QCD effective string.
2Compactification on a T 2 again gives rise to the corresponding N = 4 theory with respective D- and

E-type gauge symmetry algebra. Non-simply laced algebras can also be obtained by twisting by an outer

automorphism of the symmetry algebra. Likewise, the global structure of the gauge group (rather than just

the Lie algebra) is dictated by restricting the spectrum of extended objects compactified on the T 2. See,
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There are many more constructions of 6D N = (1, 0) SCFTs, as cited above. A

systematic approach to a possible classification of N = (1, 0) theories was undertaken in

[75, 77, 101]. The main tool in this approach is to seek out the most general singular string

backgrounds which could produce the requisite vanishing tension BPS strings. A powerful

method for accomplishing this is via F-theory [66, 102, 103]. There are many reviews of

F-theory, see, e.g., [104, 105]. For our purposes, the main point is that the 10D spacetime of

type IIB strings is supplemented by the profile of the IIB axio-dilaton, and this is captured

by a T 2 fibration over the 10D spacetime. To make a 6D N = (1, 0) SCFT, one seeks out

“elliptically fibered Calabi-Yau threefolds”, namely a space B of complex dimension two

(i.e. real dimension four) and a T 2 which sits over each point of B such that the total space

is Calabi-Yau, a structure which is essentially the string theory analog of a Seiberg-Witten

geometry [50, 51]. In F-theory realizations of 6D SCFTs, the tensionless strings arise from

D3-branes wrapped on collapsing two-cycles in the two complex-dimensional base B of

the F-theory threefold X → B. Earlier studies of related F-theory backgrounds include

[68, 72, 106]. The classification of type II and M-theory AdS7 vacua was carried out in

references [107–110]. A full classification of such F-theory geometries was accomplished in

[77]. It was subsequently realized that the same geometry can sometimes describe a “frozen

phase” of F-theory, namely, the geometry could be related to different physical 6D SCFTs,

requiring additional data to specify the SCFT [111–114]. For a more comprehensive review

of 6D SCFTs, see reference [115].

Moving to a point in moduli space where all effective strings have finite tension is

known as the “tensor branch” of the theory (because it is achieved by giving vevs to the

real scalars of the 6D supermultiplet known as the tensor multiplet). Remarkably, the

tensor branch of all such 6D SCFTs resembles a generalized quiver gauge theory with a

single one-dimensional spine of gauge groups (and accompanying tensor multiplets) joined

together by links known as “conformal matter” [76, 116]. Conformal matter with flavor

symmetry algebra g ⊕ g with g a Lie algebra of ADE type is also realized by M5-branes

probing the ADE singularity C2/ΓADE . One important use for this quiver picture is to

extract the structure of zero-form global symmetries [117–121], as well as their anomalies.

The explicit algorithm for computing these anomalies was established in references [121–

128]. Another direct use for this quiver picture is in the study of the worldvolume of

effective strings of the theory, as in [129–139].

In fact, all of the 6D SCFTs realized via F-theory can be obtained via a process of

fission (Higgs branch and tensor branch deformations) and fusion (gauging a simple gauge

group and adding a tensor multiplet), starting from a handful of progenitor theories based

on M5-branes probing a Horava-Witten E8 wall wrapping an ADE singularity [140]. This

same analysis also serves to significantly constrain possible renormalization group flows.

Supersymmetric deformations of 6D SCFTs are all triggered by operator vevs and are

specified as Higgs branch deformations when the R-symmetry is broken, and tensor branch

deformations when the R-symmetry is preserved [141, 142]. This is reflected in the geometry

as complex structure deformations and Kahler deformations of the Calabi-Yau. Moreover,

e.g., [100] and references therein for further discussion on this point.
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Higgs branch deformations are essentially classified by the hierarchical algebraic data asso-

ciated with flavor symmetry breaking patterns [118, 121, 127, 143, 144]. Outstanding open

problems in this direction include obtaining a full classification of possible renormalization

group flows triggered by deformations of a fixed point, and using the quiver-like structure

of these theories, (especially in the limit of a large number of gauge groups) to obtain

additional data on the operator content of these theories (see, e.g., [145–149]). Another

important goal in this direction is to completely establish a six-dimensional analog of the

a-theorem for supersymmetric flows. Some of the differences compared with the 4D proof

based on dilaton scattering [150] were noted in [151] and were further elaborated on in

the supersymmetric setting in [152]. An analytic proof for the special case of moduli space

flows was given in [99, 153] for N = (2, 0) theories, and for tensor branch flows of N = (1, 0)

theories was established in [154]. A geometric study of more general flows was presented

in [127], which served as a starting point for a “proof by brute force” of a/c-theorems for

tensor branch and Higgs branch flows [155]. It remains an outstanding open problem to

give an analytic proof of the a-theorem for supersymmetric Higgs branch as well as mixed

branch flows. This may also shed light on how to establish the 6D a-theorem without the

assumption of supersymmetry.

2.2 5D SCFTs

Much recent progress has also been made in the classification of 5D SCFTs. The early

examples of these theories [59, 79, 81] have since been generalized to a number of com-

plementary constructions involving branes at singularities, and singular limits of string

compactification geometries. Again, the operating method for realizing a 5D SCFT is to

start with an effective field theory with a moduli space of vacua which also has finite ten-

sion strings. Moving to a point in moduli space where these strings have vanishing tension

then yields the requisite SCFT. The most flexible known framework which encompasses

all known examples is based on M-theory on non-compact singular Calabi-Yau threefolds.

Such backgrounds preserve eight real supercharges. To get a 5D SCFT, one requires a

holomorphic divisor (i.e., a real four-dimensional subspace) which collapses to a point. An

M5-brane wrapped on such a divisor generates an effective string in the 5D theory, and its

tension goes to zero when the divisor collapses to zero size. A priori, this is a different point

in moduli space from where particles become massless. Though not necessary to realize a

5D SCFT, many have a gauge theory phase, and a corresponding U(1)I global symmetry

which assigns an instanton number to the codimension-four gauge instanton configurations

[156, 157] (its one-form current is dual to the second Chern class of the gauge fields). This

provides an important constraint on the dynamics of effective strings in such models.

It is conjectured that all 5D SCFTs arise from collapsing configurations of divisors

in Calabi-Yau threefolds, possibly accompanied by a quotient by a symmetry (i.e., an

automorphism) of the Calabi-Yau geometry. This is closely related to the open mathe-

matical question of classifying canonical singularities. In the case of a small number of

collapsing surfaces, there is a complete classification of such theories [88, 158]. For higher

rank theories, much of the analysis has centered on the special case obtained from com-

pactification of 6D SCFTs on a circle, possibly accompanied by an automorphism twist
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[87, 93–95, 159, 160]. In geometric terms, this occurs because 6D SCFTs arise from com-

pactification of a canonical singularity of an elliptically fibered Calabi-Yau threefold, and

so a further circle compactification, accompanied by Wilson lines and an automorphism

twist, can flow to a 5D SCFT, as obtained from M-theory compactified on a Calabi-Yau

threefold with a canonical singularity see e.g. [79, 81, 161–164].

One of the major open questions in this direction is to find all 5D SCFTs obtained from

canonical singularities for non-compact Calabi-Yau threefolds. The analogous question for

theories with a dual AdS6 supergravity description has largely been answered implicitly

in a series of papers [165–175]. The classification of all Calabi-Yau geometries which can

produce a 5D SCFT is more challenging than the classification of 6D SCFTs because there

is no general numerical criterion for determining when configurations of collapsing divisors

will produce a 5D SCFT, and so examples are handled on a case by case basis. It has

been conjectured, however, that all 5D SCFTs arise from circle compactification (with

twists) from a 6D SCFT [87]. If this were true, the question would reduce to determining

all possible moduli space flows in that more limited setting. Examples which resist an

obvious embedding in an elliptically fibered Calabi-Yau threefold include orbifolds of the

form C3/Γ for Γ a finite subgroup of SU(3) [87, 96, 97, 161]. That said, these examples

may be connected to other theories via a flow in moduli space.

D ≤ 4 SCFTs

For D ≤ 4 the gauge coupling is either marginal or relevant. Thus, gauge theories provide

an extremely useful view into the space of interacting SCFTs in four dimensions or lower.

Despite that, the landscape of SCFTs in D ≤ 4 remains overwhelmingly populated by

theories which do not have any Lagrangian description, though some can be obtained as

IR fixed points of renormalization group flows, including some cases where supersymmetry

is broken along the flow but restored or enhanced in the IR [176–180].

2.3 4D N ≥ 2 SCFTs

For 4D SCFTs with N = 2 supersymmetry which have a gauge theory description, the

gauge coupling is exactly marginal [181]. Associated with the Lagrangian descriptions of

these N ≥ 2 gauge theories [182] are a set of techniques based on supersymmetric localiza-

tion, special geometric structures on conformal manifolds, and large N and large R-charge

limits, which permit the calculation of some more detailed observables — in particular,

correlators of non-chiral Coulomb branch operators in these SCFTs [183–201]. In some

cases these techniques have been extended to non-Lagrangian SCFTs via renormalization

group flows from gauge theories [194, 197, 202]. Nevertheless, with the exception of the

simplest set of theories, the so-called rank-1 theories [203–206], which have been completely

classified, and partial progress for rank-2 theories [207, 208], the classification of N = 2

theories in four dimensions remains an open problem.

Dimensional reduction works in a remarkably effective way to engineer superconformal

fixed points in four dimensions. The class-S theories, i.e., those which can be engineered by

compactifying (2, 0) 6D theories on a Riemann surface in the presence of codimension-two
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defects [209–226] fill a vast landscape of SCFTs. More recently, a thorough understanding

of the wordvolume theory of D3 branes in F-theory probing both an S-fold [227, 228] —

a generalization of an orientifold — and an exceptional 7-brane singularity, the so-called

N = 2 S-folds [228–233] has been used to move beyond class S.3 This construction also

realizes theories which had been predicted by the systematic analysis of rank-1 theories and

which can be instead realized in the more general construction of twisted compactification

of 6D (1, 0) theories [234]. The methods which worked to compile the classification in

rank-1 are of limited use for higher ranks. Thus for general answers a variety of approaches

have been employed: (a) leveraging singularity theory to perform a systematic analysis of

N = 2 SCFTs which can be engineered in type IIB on a Calabi-Yau threefold [235–239],

(b) systematic study of the constraint of special Kähler geometry [240] constraining the

set of allowed Coulomb branches [207, 208, 241–249], and (c) systematic understanding of

Higgs branches of NQ = 8 supercharge SCFTs as the Coulomb branch of 3D N = 4 SCFT

magnetic quivers (as 3D mirror symmetry [250]) for Higgs branches of D > 3 SCFTs[143,

148, 162–164, 251–256]. These approaches are helpful given the limited effectiveness of

bootstrap methods in this context [257].

Much more progress can be made studying theories in 4D with N ≥ 3 supersymmetry

[227, 228, 258–262]. In this case it can be shown that the Kähler metric is necessarily flat

[142, 263] and thus isotrivial4 [241]. Further restricting to theories with freely generated

Coulomb branch chiral ring [264, 265], the moduli space of N ≥ 3 theories in 4D are

realized as orbifolds by crystallographic complex reflection groups [246, 266, 267]. Many of

the consistent low-energy solutions, particularly those which are associated with exceptional

crystallographic complex reflection groups, have not been realized in string theory and thus

remain conjectural. Furthermore, an altogether new set of 4D SCFTs might arise upon

lifting the assumption that the Coulomb branch chiral ring is freely generated; this would

result in complex singularities in the moduli space of vacua [264, 268].

Given the availability of techniques allowing classification schemes for SCFTs in 4D

which do not rely on string theory, it is intriguing to compare these results with those

obtained from compactification of the aforementioned 5D and 6D theories. The analysis

is complicated by the variety of compactifications which are allowed [234, 269] and there

are currently only limited results in this direction. Preliminary evidence shows that many

4D SCFTs can indeed be obtained from SCFTs in higher dimensions [244], though many

challenges remain, e.g. see the classification of [182] of 4D Lagrangian theories; many of

the quivers there have no known stringy construction.5 Understanding these challenging

examples would be of great value in testing the possible completeness of string theory

constructions of SCFTs.

3The “S” of an S-fold has no relation to the “S” of class S theories (which refers to Six dimensional).
4On the Coulomb branch of an N = 2 theory, the metric on the Coulomb branch is generated from

Imτij , and the condition that the metric is isotrivial is just the statement that τij is locally constant.
5We thank Y. Tachikawa for this comment.
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2.4 3D N ≥ 4 SCFTs

By reducing 4D N ≥ 2 SCFTs on a circle, we obtain N ≥ 4 theories in 3D. For 3D

N = 4 theories, the Coulomb branch has a hyperkahler structure which is similar to the

one present on the Higgs branch. Indeed, this is compatible with 3D mirror symmetry

duality [250], which exchanges the Higgs branch of theory T A with the Coulomb branch

of T B — the mirror dual of T A — and vice versa. Recently there has been a flurry of

activity which has improved our general understanding of mirror duals of Argyres-Douglas

theories [270–275] as well as the identification of new mirror dualities altogether [276–278].

Further insights into mirror symmetry can also be obtained [279, 280] by exploiting the

fact that 3D N = 4 theories have a topological sector [281, 282], which descends from the

vertex operator algebra (VOA) associated to N = 2 4D SCFTs [283, 284] (see below for

additional details on the appearance of VOAs).

Despite all this recent progress, a systematic charting of N = 4 3D theories remains

a vast challenge. The situation is more manageable upon restricting to N ≥ 5, see [285]

for N = 5 examples, for N ≥ 6 see [286–293] and, for N = 8 maximally supersymmetric

theories in 3D, see [294–299]. In particular there has been an intriguing proposal for

a classification scheme of N ≥ 6 theories based on real and complex reflection groups

[300]. If true, this predicts the existence of two new N = 8 SCFTs. In three dimensions,

N = 7 supersymmetry necessarily implies N = 8 supersymmetry [28, 301] and SCFTs

with NQ > 16 can exist but are necessarily free [28].

3 SCFTs and new mathematics

SCFTs have also been used as a powerful tool to glean insights in a variety of separate

fields in mathematics. We will here just mention a few examples, leaving a fuller discussion

on the intersection between quantum field theory and mathematics to [58].

3.1 Geometry and singularities

The close interplay between singular Calabi-Yau geometries and the resulting physical the-

ories has been fruitful in both directions. In particular, physical considerations can predict

new mathematical structures. The expectation that physical theories can be connected

under renormalization group flows is manifested in the geometry as a hierarchical stratifi-

cation of singular geometries according to a partially ordered set. As explicit examples, in

6D SCFTs, a number of flavor symmetry breaking patterns are captured by nilpotent orbits

of elements in the flavor symmetry algebra [118, 140, 143, 302–307]. These in turn admit

a partial ordering, which directly translates to smoothing deformations of the associated

geometry. By the Jacobson-Morozov theorem, each nilpotent orbit defines a Lie algebra

homomorphism sl(2)→ gflav, in the obvious notation. Another application of related math-

ematical structures is the development of a geometric classification scheme for finite group

homomorphisms from finite subgroups of SU(2) to the Lie group E8 [77, 308], which was

even used to correct a few typos in the original list of examples presented in reference [309]!

The common bridge connecting these seemingly different structures is via the 6D SCFT of
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M5-branes probing an ADE singularity wrapped by a Horava-Witten nine-brane. An open

problem here is to use the hierarchy of RG flows in physics to develop a partial ordering

of such homomorphisms.

The same sort of geometric partial ordering also appears in Higgs branch deformations

of 5D SCFTs [94, 95]. In the case of 6D SCFTs, the classification of canonical singularities

for elliptically fibered Calabi-Yau threefolds was accomplished using physical methods in

[77]. This was also recently joined by a mathematical classification scheme in [310]. The

case of D = 5 SCFTs involves the mathematically far more challenging issue of classifying

canonical singularities of non-compact Calabi-Yau threefolds, i.e., relaxing the condition

that there is an elliptic fibration. See e.g. [162, 164] for studies of canonical singularities

related to 4D and 5D SCFTs.

In lower-dimensional SCFTs, the possible geometric singularities which can be realized

in the “internal” compactification directions can become significantly more intricate. For

example, for Calabi-Yau spaces of complex dimension four and above, it is possible to

have singularities which do not admit a crepant resolution. These figure prominently in

the physics of S-folds (see, e.g., [28, 227, 228, 230–233, 259–261, 267, 311–330]), which

have already led to the discovery of many new 4D N ≤ 3 SCFTs. What is currently

unclear is how severe a singularity can be admitted whilst still retaining a physical SCFT

interpretation. For recent discussion on the physical interpretation of terminal singularities,

see, e.g., [162, 331].

3.2 Vertex operator algebras

To any four-dimensional N = 2 SCFT T one can canonically associate a two-dimensional

non-unitary vertex operator algebra (VOA) χ[T ] [332] which arises as a cohomological

reduction of the full OPE algebra of the four-dimensional theory, or equivalently, by intro-

ducing a certain Ω background that deforms the holomorphic-topological twist of the theory

[333, 334]. χ[T ] carries many features of the 4D avatar: its central charge is c2D = −12c4D

and the 4D flavor symmetry gets enhanced to an affine Lie algebra and k2D = −k4D/2.

Less directly χ[T ] is constrained by 4D unitarity [335–337] but it remains an open problem

how to completely characterize it. Since the early days, it has been noticed that the struc-

ture of χ[T ] is deeply connected with the physics of the Higgs branch which conjecturally

[338] arises as the associated variety [339] to the VOA. This conjecture, which has been

shown [283] to imply a previous conjecture of Arakawa [340, Conjecture 1], carries deep

implications: the VOAs which arise from the cohomological reduction of N = 2 SCFTs

would then be of a special type known as “quasi-lisse” [341], a property which ensures that

their vacuum characters satisfy a linear modular differential equation [342–344]. The repre-

sentation theory of χ[T ], which is seldomly rational, can be complicated and it remains an

open problem to understand which characters participate in the modular property of the

vacuum character; these and related issues have been recently investigated in [345–348]. In

recent years a varieties of techniques have been employed to compute χ[T ] in a large set

of examples [284, 342, 343, 349–360] and it is worthwhile noticing that surprisingly often,

in the Argyres-Douglas case, χ[T ] is an affine Kac-Moody at boundary admissible level

[353, 354, 361, 362].
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The connection between VOA and Higgs branch physics might be even deeper than

initially thought. In fact, inspired by [363], it has been recently shown that the low-energy

effective theory on the Higgs branch provides a way to build free field realizations of χ[T ]

[267, 364–366]. This perspective might provide an interesting framework to leverage VOA

constraints to classify allowed 4D SCFTs. The VOA is moreover connected [356] to the

Lens index. Finally, tantalizing connections between chiral algebras and Coulomb branches

have been noticed in a variety of examples [344, 367, 368]. It remains an open question

whether this is a general property of VOAs, which would then be even more constrained

than initially expected.

4 Extended operators and higher-form symmetries

Extended operators are important observables of QFT. For example, the spectrum of

Wilson-’t Hooft line operators in 4D gauge theories is non-perturbative data which dif-

ferentiates between otherwise perturbatively equivalent QFTs [258]. It is challenging to

characterize the spectra of such operators, and compute their correlators, in general QFTs.

See e.g. [369–379] for aspects of topological extended operators. Supersymmetry-protected

(BPS) extended operators are better understood via techniques such as supersymmetric lo-

calization, and via their geometric realization as wrapped branes in string / M- / F-theory

constructions [380–404].

For CFTs, a key simplification comes from focusing on “conformal extended opera-

tors” [405], i.e. those configurations which preserve a maximal subgroup of the conformal

group. These are the flat or straight extended operators and their conformal transforms;

in euclidean space they have planar or spherical world volumes. Our understanding of

the constraints on the spectrum of extended operators coming from CFT unitarity and of

the structure of the operator product algebra of conformal extended operators is rapidly

developing [14, 406–423]. Challenges, such as generalizing the notions of primary and de-

scendant operators for extended operators, may become more tractable by specializing to

BPS conformal operators in SCFTs; some work along this direction is [374, 424–437]

Generalized, n-form global symmetries [438] can act on m-dimensional extended opera-

tors for m ≥ n. Thus local operators are charged only under ordinary (0-form) symmetries,

line operators may be charged under both 0- and 1-form symmetries, etc. n-form symme-

try charges and transformations are captured by the insertion of (d−n−1)-dimensional

extended operators in correlators. These symmetry operators are topological operators,

and their action is sensitive only to the topological linking of their world volumes with

the world volumes of other operators in the correlator. The generalized symmetry opera-

tors may themselves be charged under n-form symmetries, implying that different n-form

symmetries may have an “extended group” structure. Moreover, n-form symmetries may

be part of larger “non-invertible symmetries” consisting of the algebra of all topological

operators in a theory. The characterization of higher-form and non-invertible symmetries

in various QFTs is an area of active research, see [439].

Supersymmetry, and the moduli spaces of vacua, helps to determine these symmetry

algebras and their action on the spectrum of operators. Superconformal symmetry provides
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strong additional restrictions. Indeed, the representation theory of the superconformal al-

gebra forbids higher-form conserved currents, so there can be no continuous higher-form

symmetries in SCFTs [28]; see also [440] for similar restrictions without assuming super-

symmetry. There can be continuous higher symmetry in non-conformal supersymmetric

theories, and its presence is an obstruction to conformal invariance anywhere along the RG

flow unless the symmetry is accidental in the IR and explicitly broken in the UV [128, 441].

SCFTs can have interesting discrete higher-form symmetries, and this has been an active

area of recent research: recent work in six dimensions includes [162, 397, 442–446]; in five

dimensions includes [97, 403, 445, 447, 448]; in four dimensions includes [404, 449–452];

and in three dimensions includes [453–459].

5 Theories with less supersymmetry (8 > NQ ≥ 2)

Above we considered SCFTs with NQ = 8 supercharges. Here we mention aspects of

SCFTs with NQ = 4 supercharges, namely 4D N = 1 and 3D N = 2 theories, where the

superconformal algebra contains a U(1)R symmetry. Many examples of 4D N = 1 SCFTs

were found starting in the mid 1990s, via singularities of the moduli space, dualities and

’t Hooft anomaly matching, and a variety of other methods, see e.g. [23, 24, 460–465]

and references therein. Additional checks of 4D N = 1 dualities and the SCFT operator

spectrum comes from superconformal indices, see e.g. [466–468]. In 4D N = 1 finding the

exact superconformal U(1)R can require a-maximization [469]

Dimensional reduction from 6D SCFTs is an extremely useful tool in the construction

and study of NQ = 4 SCFTs. It is possible to obtain 4D N = 1 SCFTs from compactifica-

tion of N = (2, 0) and N = (1, 0) 6D SCFTs. To obtain an N = 1 SCFT in the former case,

one has to turn on fluxes for the global symmetries [470–475]. In the latter case instead it is

possible to compactify on a generic Riemann surface [476–482], with additional boundary

conditions for operators specified at marked points or “punctures” [55, 483–488]. Particu-

larly tractable cases are theories obtained from compactification of the 6D E-string theory

[489–491] and the theories of class Sk obtained from a stack of M5-branes probing an Ak−1

singularity [492–498]. The interesting pattern that arises in many of these examples is that

the simplicity of the parent 6D theory translates to the simplicity of the 4D N = 1 SCFTs

with a variety of minimal N = (1, 0) theories having a simple quiver formulation [499]. For

many other such N = 1 SCFTs, it remains an outstanding open problem to determine if

the SCFTs can also be defined in terms of RG flows from 4D Lagrangian theories. See also

[500–505] for other examples of 4D N = 1 SCFTs and dualities obtained via compactifi-

cation; for efforts to charting the possible 4D N = 1 SCFTs and their connections via RG

flows and dualities see e.g. [506] where it is shown that even highly restricted UV starting

points can lead to a remarkably rich landscape of SCFTs. See also [507] for a classification

of rich classes of SCFTs obtained from simple gauge group with a large N limit with dense

spectrum.

An another recently discovered intriguing phenomenon is the existence of a 4D N = 1

conformal manifold for theories with higher supersymmetry, even in the absence of exactly

marginal deformations fully preserving the supersymmetry of the original theory [508–510].
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This observation has led to the discovery of new N = 1 dualities [511, 512] as well as an

N = 1 Lagrangian for an inherently strongly coupled N = 3 theory [329].

Finding the exact U(1)R symmetry in 3D N = 2 theories can require Z-extremization

[513, 514] (or τRR extremization [515], which applies for SCFTs in any D, see also [516–

519]). In 3D there are also N = 3 and N = 1 supersymmetries with NQ = 6 and NQ =

2, respectively.6 Furthermore, compactifying to three dimensions allows for additional

structure since the interactions are no longer constrained by asymptotic freedom bounds

and there is the possibility of supersymmetrized Chern-Simons terms. The landscape

of SCFTs and dualities in 3D N = 2, and inter-connections with compactified higher

dimensional theories, is thus quite rich, see e.g. [521, 525–532], and there is an active

effort in fully characterizing 3D N = 2 dualities beyond theories with SU(N) gauge group

and/or with matter in representations fundamental/adjoint representations [530, 533–537].

Relatedly, these dualities involve the non-trivial matching of electric and magnetic degrees

of freedom on the two sides and it is particularly challenging to fully understand the

properties of monopole operators [538–541]. Another challenge is that in 3D there are only

discrete anomalies, e.g. the Z2-valued parity anomaly [542–544], which makes it challenging

to provide definitive evidence for these dualities. Fortunately, computing exact operator

dimensions and other exact results localization techniques in 3D N = 2 [545] yield highly

non-trivial evidence for the many conjectured 3D dualities, see e.g. [546–549].

Finally, there is an intriguing connection between 3D N = 2 and the characterization

of three manifolds. This is done by exploiting the fact that compactifying a 6D (2,0) theory

on a three manifold M3 gives a 3D N = 2 theory which can be then used as a quantum

invariant of M3. This feature has been dubbed 3D-3D correspondence [550–552], and

continues to be actively investigated [457, 553–569]. It is also possible to obtain 3D SCFTs

via compactification of 5D SCFTs, see e.g. [532].
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[455] F. Benini, C. Córdova, and P.-S. Hsin, On 2-Group Global Symmetries and their Anomalies,

JHEP 03 (2019) 118, [arXiv:1803.09336].

[456] P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on One-Form Global Symmetries and

Their Gauging in 3d and 4d, SciPost Phys. 6 (2019), no. 3 039, [arXiv:1812.04716].

[457] J. Eckhard, H. Kim, S. Schafer-Nameki, and B. Willett, Higher-Form Symmetries, Bethe

Vacua, and the 3d-3d Correspondence, JHEP 01 (2020) 101, [arXiv:1910.14086].

[458] E. Beratto, N. Mekareeya, and M. Sacchi, Zero-form and one-form symmetries of the ABJ

and related theories, arXiv:2112.09531.

[459] M. Cvetic, J. J. Heckman, E. Torres, and G. Zoccarato, Reflections on the matter of 3D

N=1 vacua and local Spin(7) compactifications, Phys. Rev. D 105 (2022), no. 2 026008,

[arXiv:2107.00025].

[460] N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories,

Phys. Rev. D 49 (1994) 6857–6863, [hep-th/9402044].

[461] K. A. Intriligator and N. Seiberg, Phases of N=1 supersymmetric gauge theories in

four-dimensions, Nucl. Phys. B 431 (1994) 551–568, [hep-th/9408155].

[462] N. Seiberg, Electric - magnetic duality in supersymmetric nonAbelian gauge theories, Nucl.

Phys. B 435 (1995) 129–146, [hep-th/9411149].

[463] D. Kutasov, A Comment on duality in N=1 supersymmetric nonAbelian gauge theories,

Phys. Lett. B 351 (1995) 230–234, [hep-th/9503086].

[464] D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys.

Lett. B 354 (1995) 315–321, [hep-th/9505004].

[465] K. A. Intriligator, R. G. Leigh, and M. J. Strassler, New examples of duality in chiral and

nonchiral supersymmetric gauge theories, Nucl. Phys. B 456 (1995) 567–621,

[hep-th/9506148].

[466] F. A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected

Operators and q-Hypergeometric Identities to N=1 Dual Theories, Nucl. Phys. B 818

(2009) 137–178, [arXiv:0801.4947].

– 38 –

http://arxiv.org/abs/2105.08724
http://arxiv.org/abs/2007.15603
http://arxiv.org/abs/2102.01693
http://arxiv.org/abs/2107.06816
http://arxiv.org/abs/2201.00018
http://arxiv.org/abs/1403.0617
http://arxiv.org/abs/1702.07035
http://arxiv.org/abs/1803.09336
http://arxiv.org/abs/1812.04716
http://arxiv.org/abs/1910.14086
http://arxiv.org/abs/2112.09531
http://arxiv.org/abs/2107.00025
http://arxiv.org/abs/hep-th/9402044
http://arxiv.org/abs/hep-th/9408155
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9503086
http://arxiv.org/abs/hep-th/9505004
http://arxiv.org/abs/hep-th/9506148
http://arxiv.org/abs/0801.4947


[467] V. P. Spiridonov and G. S. Vartanov, Elliptic Hypergeometry of Supersymmetric Dualities,

Commun. Math. Phys. 304 (2011) 797–874, [arXiv:0910.5944].

[468] C. Closset, H. Kim, and B. Willett, N = 1 supersymmetric indices and the

four-dimensional A-model, JHEP 08 (2017) 090, [arXiv:1707.05774].

[469] K. A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl.

Phys. B 667 (2003) 183–200, [hep-th/0304128].

[470] F. Benini, Y. Tachikawa, and B. Wecht, Sicilian gauge theories and N=1 dualities, JHEP

01 (2010) 088, [arXiv:0909.1327].

[471] I. Bah, C. Beem, N. Bobev, and B. Wecht, Four-Dimensional SCFTs from M5-Branes,

JHEP 06 (2012) 005, [arXiv:1203.0303].

[472] C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP 04

(2014) 036, [arXiv:1212.1467].

[473] P. Agarwal, K. Intriligator, and J. Song, Infinitely many N = 1 dualities from m + 1 − m

= 1, JHEP 10 (2015) 035, [arXiv:1505.00255].

[474] M. Fazzi and S. Giacomelli, N = 1 superconformal theories with DN blocks, Phys. Rev. D

95 (2017), no. 8 085010, [arXiv:1609.08156].

[475] E. Nardoni, 4d SCFTs from negative-degree line bundles, JHEP 08 (2018) 199,

[arXiv:1611.01229].

[476] D. R. Morrison and C. Vafa, F-theory and N = 1 SCFTs in four dimensions, JHEP 08

(2016) 070, [arXiv:1604.03560].

[477] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, E-String Theory on Riemann Surfaces,

Fortsch. Phys. 66 (2018), no. 1 1700074, [arXiv:1709.02496].

[478] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, Compactifications of ADE conformal

matter on a torus, JHEP 09 (2018) 110, [arXiv:1806.07620].

[479] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, D-type Conformal Matter and SU/USp

Quivers, JHEP 06 (2018) 058, [arXiv:1802.00620].

[480] F. Apruzzi, J. J. Heckman, D. R. Morrison, and L. Tizzano, 4D Gauge Theories with

Conformal Matter, JHEP 09 (2018) 088, [arXiv:1803.00582].

[481] S. S. Razamat and E. Sabag, Sequences of 6d SCFTs on generic Riemann surfaces, JHEP

01 (2020) 086, [arXiv:1910.03603].

[482] C. Hwang, S. S. Razamat, E. Sabag, and M. Sacchi, Rank Q E-String on Spheres with Flux,

arXiv:2103.09149.

[483] D. Xie, M5 brane and four dimensional N = 1 theories I, JHEP 04 (2014) 154,

[arXiv:1307.5877].

[484] I. Bah and N. Bobev, Linear quivers and N = 1 SCFTs from M5-branes, JHEP 08 (2014)

121, [arXiv:1307.7104].

[485] P. Agarwal and J. Song, New N=1 Dualities from M5-branes and Outer-automorphism

Twists, JHEP 03 (2014) 133, [arXiv:1311.2945].

[486] P. Agarwal, I. Bah, K. Maruyoshi, and J. Song, Quiver tails and N = 1 SCFTs from

M5-branes, JHEP 03 (2015) 049, [arXiv:1409.1908].

– 39 –

http://arxiv.org/abs/0910.5944
http://arxiv.org/abs/1707.05774
http://arxiv.org/abs/hep-th/0304128
http://arxiv.org/abs/0909.1327
http://arxiv.org/abs/1203.0303
http://arxiv.org/abs/1212.1467
http://arxiv.org/abs/1505.00255
http://arxiv.org/abs/1609.08156
http://arxiv.org/abs/1611.01229
http://arxiv.org/abs/1604.03560
http://arxiv.org/abs/1709.02496
http://arxiv.org/abs/1806.07620
http://arxiv.org/abs/1802.00620
http://arxiv.org/abs/1803.00582
http://arxiv.org/abs/1910.03603
http://arxiv.org/abs/2103.09149
http://arxiv.org/abs/1307.5877
http://arxiv.org/abs/1307.7104
http://arxiv.org/abs/1311.2945
http://arxiv.org/abs/1409.1908


[487] J. J. Heckman, P. Jefferson, T. Rudelius, and C. Vafa, Punctures for theories of class SΓ ,

JHEP 03 (2017) 171, [arXiv:1609.01281].

[488] F. Hassler and J. J. Heckman, Punctures and Dynamical Systems, Lett. Math. Phys. 109

(2019), no. 3 449–495, [arXiv:1711.03973].

[489] B. Nazzal and S. S. Razamat, Surface Defects in E-String Compactifications and the van

Diejen Model, SIGMA 14 (2018) 036, [arXiv:1801.00960].

[490] S. Pasquetti, S. S. Razamat, M. Sacchi, and G. Zafrir, Rank Q E-string on a torus with

flux, SciPost Phys. 8 (2020), no. 1 014, [arXiv:1908.03278].

[491] S. S. Razamat and E. Sabag, SQCD and pairs of pants, JHEP 09 (2020) 028,

[arXiv:2006.03480].

[492] D. Gaiotto and S. S. Razamat, N = 1 theories of class Sk, JHEP 07 (2015) 073,

[arXiv:1503.05159].

[493] I. Coman, E. Pomoni, M. Taki, and F. Yagi, Spectral curves of N = 1 theories of class Sk,

JHEP 06 (2017) 136, [arXiv:1512.06079].

[494] S. Franco, H. Hayashi, and A. Uranga, Charting Class Sk Territory, Phys. Rev. D 92

(2015), no. 4 045004, [arXiv:1504.05988].

[495] A. Hanany and K. Maruyoshi, Chiral theories of class S, JHEP 12 (2015) 080,

[arXiv:1505.05053].

[496] S. S. Razamat, C. Vafa, and G. Zafrir, 4d N = 1 from 6d (1, 0), JHEP 04 (2017) 064,

[arXiv:1610.09178].

[497] I. Bah, A. Hanany, K. Maruyoshi, S. S. Razamat, Y. Tachikawa, and G. Zafrir, 4d N = 1

from 6d N = (1, 0) on a torus with fluxes, JHEP 06 (2017) 022, [arXiv:1702.04740].

[498] T. Bourton, A. Pini, and E. Pomoni, The Coulomb and Higgs branches of N = 1 theories of

Class Sk, JHEP 02 (2021) 137, [arXiv:2011.01587].

[499] S. S. Razamat and G. Zafrir, Compactification of 6d minimal SCFTs on Riemann surfaces,

Phys. Rev. D 98 (2018), no. 6 066006, [arXiv:1806.09196].

[500] A. Gadde, K. Maruyoshi, Y. Tachikawa, and W. Yan, New N=1 Dualities, JHEP 06 (2013)

056, [arXiv:1303.0836].

[501] A. Gadde, S. S. Razamat, and B. Willett, ”Lagrangian” for a Non-Lagrangian Field Theory

with N = 2 Supersymmetry, Phys. Rev. Lett. 115 (2015), no. 17 171604,

[arXiv:1505.05834].

[502] P. Agarwal, K. Maruyoshi, and J. Song, A “Lagrangian” for the E7 superconformal theory,

JHEP 05 (2018) 193, [arXiv:1802.05268].

[503] E. Sabag, Non minimal D-type conformal matter compactified on three punctured spheres,

JHEP 10 (2020) 139, [arXiv:2007.13567].

[504] J. Chen, B. Haghighat, S. Liu, and M. Sperling, 4d N=1 from 6d D-type N=(1,0), JHEP

01 (2020) 152, [arXiv:1907.00536].

[505] G. Zafrir, On the torus compactifications of Z2 orbifolds of E-string theories, JHEP 10

(2019) 040, [arXiv:1809.04260].

[506] K. Maruyoshi, E. Nardoni, and J. Song, Landscape of Simple Superconformal Field Theories

in 4d, Phys. Rev. Lett. 122 (2019), no. 12 121601, [arXiv:1806.08353].

– 40 –

http://arxiv.org/abs/1609.01281
http://arxiv.org/abs/1711.03973
http://arxiv.org/abs/1801.00960
http://arxiv.org/abs/1908.03278
http://arxiv.org/abs/2006.03480
http://arxiv.org/abs/1503.05159
http://arxiv.org/abs/1512.06079
http://arxiv.org/abs/1504.05988
http://arxiv.org/abs/1505.05053
http://arxiv.org/abs/1610.09178
http://arxiv.org/abs/1702.04740
http://arxiv.org/abs/2011.01587
http://arxiv.org/abs/1806.09196
http://arxiv.org/abs/1303.0836
http://arxiv.org/abs/1505.05834
http://arxiv.org/abs/1802.05268
http://arxiv.org/abs/2007.13567
http://arxiv.org/abs/1907.00536
http://arxiv.org/abs/1809.04260
http://arxiv.org/abs/1806.08353


[507] P. Agarwal, K.-H. Lee, and J. Song, Classification of large N superconformal gauge theories

with a dense spectrum, JHEP 10 (2021) 049, [arXiv:2007.16165].

[508] K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, JHEP 02

(2017) 075, [arXiv:1607.04281].

[509] S. S. Razamat and G. Zafrir, N = 1 conformal dualities, JHEP 09 (2019) 046,

[arXiv:1906.05088].

[510] S. S. Razamat, E. Sabag, and G. Zafrir, Weakly coupled conformal manifolds in 4d, JHEP

06 (2020) 179, [arXiv:2004.07097].

[511] G. Zafrir, An N = 1 Lagrangian for the rank 1 E6 superconformal theory, JHEP 12 (2020)

098, [arXiv:1912.09348].

[512] S. S. Razamat and G. Zafrir, N = 1 conformal duals of gauged En MN models, JHEP 06

(2020) 176, [arXiv:2003.01843].

[513] D. L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159,

[arXiv:1012.3210].

[514] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, Contact

Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories,

JHEP 10 (2012) 053, [arXiv:1205.4142].

[515] E. Barnes, E. Gorbatov, K. A. Intriligator, M. Sudano, and J. Wright, The Exact

superconformal R-symmetry minimizes tau(RR), Nucl. Phys. B 730 (2005) 210–222,

[hep-th/0507137].

[516] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, Supersymmetric Field

Theories on Three-Manifolds, JHEP 05 (2013) 017, [arXiv:1212.3388].

[517] T. Nishioka and K. Yonekura, On RG Flow of τRR for Supersymmetric Field Theories in

Three-Dimensions, JHEP 05 (2013) 165, [arXiv:1303.1522].

[518] A. Amariti and A. Gnecchi, 3D τRR-minimization in AdS4 gauged supergravity, JHEP 07

(2016) 006, [arXiv:1511.08214].

[519] A. Amariti and A. Gnecchi, τRR minimization in presence of hypermultiplets,

arXiv:2107.01195.

[520] A. Kapustin, B. Willett, and I. Yaakov, Tests of Seiberg-like dualities in three dimensions,

JHEP 08 (2020) 114, [arXiv:1012.4021].

[521] A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812

(2009) 1–11, [arXiv:0808.0360].

[522] N. Kubo and K. Nii, 3d N = 3 Generalized Giveon-Kutasov Duality, arXiv:2111.13366.

[523] D. Gaiotto, Z. Komargodski, and J. Wu, Curious Aspects of Three-Dimensional N = 1

SCFTs, JHEP 08 (2018) 004, [arXiv:1804.02018].

[524] F. Benini and S. Benvenuti, N = 1 dualities in 2+1 dimensions, JHEP 11 (2018) 197,

[arXiv:1803.01784].

[525] J. de Boer, K. Hori, and Y. Oz, Dynamics of N=2 supersymmetric gauge theories in

three-dimensions, Nucl. Phys. B 500 (1997) 163–191, [hep-th/9703100].

[526] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. J. Strassler, Aspects of N=2

– 41 –

http://arxiv.org/abs/2007.16165
http://arxiv.org/abs/1607.04281
http://arxiv.org/abs/1906.05088
http://arxiv.org/abs/2004.07097
http://arxiv.org/abs/1912.09348
http://arxiv.org/abs/2003.01843
http://arxiv.org/abs/1012.3210
http://arxiv.org/abs/1205.4142
http://arxiv.org/abs/hep-th/0507137
http://arxiv.org/abs/1212.3388
http://arxiv.org/abs/1303.1522
http://arxiv.org/abs/1511.08214
http://arxiv.org/abs/2107.01195
http://arxiv.org/abs/1012.4021
http://arxiv.org/abs/0808.0360
http://arxiv.org/abs/2111.13366
http://arxiv.org/abs/1804.02018
http://arxiv.org/abs/1803.01784
http://arxiv.org/abs/hep-th/9703100


supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67–99,

[hep-th/9703110].

[527] O. Aharony, IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge

theories, Phys. Lett. B 404 (1997) 71–76, [hep-th/9703215].

[528] F. Benini, C. Closset, and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10

(2011) 075, [arXiv:1108.5373].

[529] K. Intriligator and N. Seiberg, Aspects of 3d N=2 Chern-Simons-Matter Theories, JHEP

07 (2013) 079, [arXiv:1305.1633].

[530] A. Amariti and M. Fazzi, Dualities for three-dimensional N = 2 SU(Nc) chiral adjoint

SQCD, JHEP 11 (2020) 030, [arXiv:2007.01323].

[531] M. Sacchi, O. Sela, and G. Zafrir, On the 3d compactifications of 5d SCFTs associated with

SU(N+1) gauge theories, arXiv:2111.12745.

[532] M. Sacchi, O. Sela, and G. Zafrir, Compactifying 5d superconformal field theories to 3d,

JHEP 09 (2021) 149, [arXiv:2105.01497].

[533] T. Okazaki and D. J. Smith, Web of Seiberg-like dualities for 3d N = 2 quivers,

arXiv:2112.07347.

[534] M. Fazzi, A. Lanir, S. S. Razamat, and O. Sela, Chiral 3d SU(3) SQCD and N = 2 mirror

duality, JHEP 11 (2018) 025, [arXiv:1808.04173].

[535] S. Benvenuti, A tale of exceptional 3d dualities, JHEP 03 (2019) 125, [arXiv:1809.03925].

[536] A. Amariti and L. Cassia, USp(2Nc) SQCD3 with antisymmetric: dualities and symmetry

enhancements, JHEP 02 (2019) 013, [arXiv:1809.03796].

[537] S. Giacomelli, Dualities for adjoint SQCD in three dimensions and emergent symmetries,

JHEP 03 (2019) 144, [arXiv:1901.09947].
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