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1 Description and relevance for the HL-LHC

Unlike other documents prepared for the HL-LHC Computing Review Stage 2, this

“Data Science Tools for Analysis” document is not an experiment or software product

with centralized management. The title describes a collection of interrelated small

projects, developed by a network of teams or individuals in different organizations

and communities. It is relevant to HL-LHC planning because many of the developers

and users of this software are LHC physicists, particularly the Ph.D. students and

postdocs involved in the actual delivery of LHC analyses.

We use the word “data science” for two reasons. The first reason is that most

of the foundational software underlying the ecosystem and work discussed in this

document were developed by cross-disciplinary scientists (i.e. not just HEP) and by

statistician-programmers in industry: business intelligence, finance, web analytics,

and other fields that require timely calculations on large datasets—collectively known

as “data science.” The second reason is that the culture of distributed software

development that is taking hold in HEP derives from exposure to a similar culture

in the data science industry. The norms are changing: it has become more common

for developers to contribute to a variety of related projects, not just their own, and

to value fine-grained packaging in an interoperable ecosystem.
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Although many of the data-science-based projects in HEP are self-motivated—

physicists spontaneously writing software to fulfill the needs of their own analyses—

we can’t simply ignore such developments and assume that it will all work out in

the end. Since the rise of open-source software in the late 1990’s/early 2000’s, the

decentralized nature of its development has been in tension with business needs for

stability, reliable planning, and influence over the direction of development—just as

we need to prepare for the HL-LHC over a decade in advance. In fact, it’s somewhat

surprising that this “chaotic” model of software development works at all; but, cru-

cially, 20 years of experience has shown that it does. A “tragedy of the commons”

does not apply because software is not a scarce resource like grazing pasture—it

can’t be used up by a corporation taking it without recompense. Moreover, commu-

nal software development provides its own incentive for support. Software products

are moving targets: if stakeholders do not contribute their own modifications to the

ever-changing community version, they risk having to maintain an unmergeable fork.

All of this has led to the remarkable situation in which billion dollar companies now

contribute to data analysis software that is available for free.

The relevance of this to the HL-LHC is that our scientific goals are also a spe-

cialized interest, and we can either influence these shared software products to meet

our needs or we will have to maintain our own software stacks. To an extent, young

physicists (i.e., graduate students and postdocs) are making this decision for us by

adopting data science software in their analyses and contributing back to it, as well

as developing their own packages to satisfy HEP-specific needs. This has been a

clear trend in the past 3–4 years, with community support and the emergence of

community projects. We can support this work by connecting it to (not absorbing it

into) established HEP products like ROOT [1] and the LHC experiment frameworks,

and by mediating communication so that these small-granularity software products

can each find their niche, and only one per niche. We can also steer the grassroots

efforts in a forward-looking direction: physicists may be developing tools that suit

their own analyses now, but will they scale to HL-LHC luminosities?

Data science software in HEP is a side job for many of its developers, for whom a

physics analysis or a thesis is the top priority. That makes it particularly vulnerable—

the immediate need to get a physics project done quickly very often outweighs the

future need to get projects like it done in a better way. Git history is littered

with abandoned projects such as these. On the other hand, the will to develop

such software is already, and strongly, present in the community. We do not have to

convince anybody to do it; we just need to ensure that it grows in the right direction.

2 The HEP analysis software landscape is changing

Although we can find evidence of physicists attempting to use tools such as NumPy,

SciPy, Matplotlib, Pandas, Hadoop, and Spark over the past 15–20 years, these data
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science tools have only become a major part of the HEP analysis ecosystem in the

past 4–5 years. Causes for this change are hard to identify conclusively because it is

a bottom-up movement, but the following are likely influences:

• Externally, data analysis tools have consolidated on Python and array-oriented

programming. The landscape had previously been more fractured: in the early

2000’s, novel statistical techniques were implemented in R and big datasets were

managed by Java, but in the past 5 years, Python has become the common

language for both. Because of these changes in the industry, young physicists

are much more likely to see Python in university courses and code examples on

the web, and a career path that involves Python expertise is far more attractive

than one without. Also, “the industry” is orders of magnitude larger than HEP,

and many physics students are at least considering careers outside of HEP. A

significant fraction of the newcomers to our field have prior experience with

Python and have good reasons to leverage it and to want more.

• Internally, organizations within HEP have mediated communications about

data science software, helping physicist-developers find each other, reduce du-

plication, and build on each others’ tools. These organizations have legitimized

the idea of using data science software in HEP, and they are actively support-

ing its development, especially for the foundational components that enable

specialized tools.

The first of these organizations, the HEP Software Foundation (HSF) [2], was

conceived in a community event at SLAC [3] in 2015 and cohered in the milestone

Community Whitepaper endeavor [4] of 2017. The HSF’s primary mission is com-

munication: helping project developers find each other to work toward a common

vision, as well as providing fora in which new projects are conceived, particularly

across experiment boundaries. The HSF does not fund projects or direct them. The

Data Analysis Working Group (DAWG) hosts monthly meetings on data analysis

software, giving physicist-developers a place to showcase their work and find users

and collaborators.

The “Python in HEP” Working Group (PyHEP) brings together a community

of developers and users of Python in Particle Physics, with the aim of improving the

sharing of knowledge and expertise. It embraces the broad community, from HEP to

the Astroparticle and Intensity Frontier communities. Activities-wise it hosts large,

annual workshops on both domain-specific and infrastructure libraries, as well as

Python Module of the Month meetings to focus on data science and HEP domain-

specific packages of interest.

DIANA/HEP [5] and its much larger successor, IRIS-HEP [6], were funded by

the NSF in 2015 and 2018, respectively, to support the development of HEP software

(a) financially, by funding software developers, (b) as an intellectual hub for sharing
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knowledge and fostering connections, and (c) through training and education. The

directly funded software products include Awkward Array, Hist, pyhf, recast, Ser-

viceX, SkyhookDM, Uproot, and Vector, all of which have substantially influenced

the Python/data science ecosystem in HEP. Weekly DIANA/HEP and IRIS-HEP

topical meetings are held by physicists and occasionally draw data scientists from in-

dustry to share tools and techniques, and IRIS-HEP hosts cross-experiment software

tutorials, as well as the annual CoDaS-HEP school.

Other national projects, such as SWIFT-HEP in the U.K., are fulfilling a similar

role to IRIS-HEP in the U.S.; SWIFT-HEP started in Spring 2021.

Less formally, the Scikit-HEP community project [7], initiated by several HEP

physicists from several experiments in Autumn 2016, has focused efforts to build a

Pythonic toolset ecosystem for analysis in HEP—the first such community project—

by providing a common goal, brand, high standards of quality packaging, and a web

presence. It grew dramatically, providing many of the packages listed above, with

strong community adoption. The developers of software projects like Coffea (U.S.

project), FAST-HEP (U.K. project) and zfit (Swiss project), also have a strong influ-

ence on the ecosystem, since each widely-used software package accretes a planetary

system of related tools. Coffea [8], a Fermilab project that glues together founda-

tional components and adds whatever is missing for analysis, has been particularly

influential, albeit mostly within CMS. It can be credited with the initial promotion of

Awkward Array [9] and it acts as a rapid testing ground for components that eventu-

ally spin off into their own infrastructure components, such as Hist (for histograms)

and Vector (for Lorentz vectors).

The big picture of developments in data science software, HEP software, and

the LHC/HL-LHC timeline are depicted together in Figure 1. Major developments

in data science—scientific Python, big data, GPUs and machine learning—roughly

coincide with the development and first run of the LHC, from the late 1990’s to

2015. The HSF, DIANA/HEP, and IRIS-HEP were active after 2015, and these

organizations fostered the development of data science-oriented software in HEP.

Originally, data science in industry was split between R for statistical techniques,

Java for scale-out (particularly Hadoop and Spark), and Python. Figure 2 shows the

ascendancy of Python as the language of data analytics, as measured by Google

search terms. By 2018, “Python” was more frequently searched with “analytics”

than “R” or “Java,” and machine learning, which entered a renaissance in 2015, was

Python-focused from the start.

Within HEP, adoption of Python also ramped up in the years following 2015. As

a specific illustration of this trend, Figure 3 shows the language of GitHub repositories

created by CMS physicists, where CMS physicists are identified as users who forked

cms-sw/cmssw (link to full analysis). (A similar analysis of GitLab usage would be

limited by GitLab’s long-term availability of private repositories.) Python usage in

CMS has been steadily growing and surpassed C++ in 2019. GitHub’s language
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Figure 1: Timeline of developments in scientific Python (dashed green outline),

big data (orange), GPUs and machine learning (magenta), and data science in HEP

(blue), overlaid on the LHC, HL-LHC, HSF, DIANA/HEP, and IRIS-HEP timelines.

Figure 2: Relative Google search volume (from trends.google.com) for “Python,”

“R,” and “Java” in the same search string with “analytics” (top) and “machine

learning” (bottom).

assignment is exclusive—each repository is considered entirely Python or entirely

C++, but in reality most are mixed—so we can investigate with more precision by

counting repositories that match search terms, such as “numpy,” “matplotlib,” and

“pandas.” In Figure 4, we see the use of these libraries steadily increasing (long before
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HSF

DIANA/HEP IRIS-HEP

Figure 3: Number of GitHub repositories created by CMS physicists by language

(exclusive categories), showing the rise of Python and Jupyter. CMS physicists

are identified as users who fork cms-sw/cmssw. HSF, DIANA/HEP, and IRIS-HEP

timelines are overlaid (top-right).

HSF

DIANA/HEP IRIS-HEP
correlated and all
represent ROOT

Figure 4: Number of GitHub repositories, created by CMS physicists (same analysis

as in Figure 3), that match search strings (non-exclusive categories). This shows the

rise of Pythonic data analysis (NumPy, Matplotlib, Pandas), with ROOT (C++ and

Python, also increasing) for scale.

“uproot”). Now they appear in repositories as often as ROOT-related terms, such

as “TFile” and “import ROOT” (“from ROOT import” is less common and highly

correlated with the 3 ROOT-related terms shown on the plot). Similar conclusions

can be drawn from an analysis survey run within LHCb in 2018.

A pre-workshop survey sent to the PyHEP 2020 workshop [10] registrants also in-
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Figure 5: Survey results from 406 registrants of PyHEP 2020 [10] illustrating the

mix of C++ and Python (and no other language) among physicists, and the use of

Python primarily for analysis.

dicated that the HEP community is using an even mix of C++ and Python. Figure 5

shows responses to basic questions and Figure 6 shows the registrants’ familiarity and

usage of popular data science and HEP tools.

Clearly, HEP analysis culture is in the midst of a transition, perhaps as significant

as the transition from Fortran to C++ and object oriented programming in the

1990’s [11]. The programming languages and software library choices plotted above

are the most quantifiable aspects of this transition, but other changes are indicated

by the words physicists use to describe their analysis or analysis software:

• HEP data analysts are becoming averse to monolithic frameworks. “Frame-

work” (or “platform”) used to be a more positive word: ROOT and col-

laboration software are self-described as frameworks, and even small analysis

groups develop(ed) frameworks for their own ntuple’s schemas. A framework,

in this sense, provides all the essentials in one package but requires users to fit

their workflows into the application. Data science “libraries” (or “toolkits”),

however, have a very modular mindset, in which narrow scope and interoper-

ability with the rest of the “ecosystem” are major selling points for a new tool.

This mindset is becoming ever more popular in HEP as well, among established

tools as well as new ones. New developments in ROOT, for instance, emphasize

interoperability [12] and ease of installation [13] (e.g. in conda-forge). It’s be-
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Figure 6: Familiarity and usage of data science tools (top) and HEP data analysis

tools (bottom) from the same survey as Figure 5.

coming an expectation that a new library can be added to an existing analysis

without disturbing the workflow.

• Following the Pandas DataFrame model (originally from R), columns—named,

typed attributes of all entries in a dataset—are becoming more visible in analy-

sis at the expense of rows, which are instances of identically typed data, usually

collision events in HEP. The word “columnar analysis” is frequently applied

to emphasize column-granularity, whether it is for internal data engineering

(transferring less data or vectorizing a calculation) or it is highly visible to

users as array-at-a-time operations [14]. Array-at-a-time interfaces bridge the

gap between interactive tinkering (in the style of Pandas or TTree::Draw) and

production-ready analysis scripts.

• It has also become common for developers in HEP to describe their tools as

“declarative” (or “functional”). In computer science, a declarative language

(like SQL) describes calculations independently of the order in which they

would be calculated [15]. In HEP, this can mean a complete separation of code

and data, such as FAST-carpenter [16], which specifies cuts and quantities to

plot using YAML. It can also refer to domain-specific languages that are as

declarative as YAML, such as ADL [17], CutLang [18], and func adl [19]. At

the very least, it means a separation of the event loop as a Directed Cyclic
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Graph (DAG) from the calculations performed on each event, as in ROOT’s

RDataFrame [20], or on a partition of events, as in Coffea’s Processor. Since

HEP collision events can almost always be processed in any order, a declarative

DAG for the event workflow is sufficient to plug HEP analyses into a distributed

scheduler, such as Spark, Dask, or Ray.

3 The future of HEP analysis tools

The previous section describes the past and present of HEP (and particle physics)

software. It would be dangerous to extrapolate through the trends: for instance,

Figures 3–6 indicate that Python and Pythonic data analysis tools (NumPy, Mat-

plotlib, and Pandas) were not widely used in HEP 5 years ago, but now they are

as widely used as C++ and ROOT. That does not mean, however, that the trend

will continue to rise: there are good reasons to believe that it will level out, with

physicists using Python as an interface and C++ for performance and accelerator

access (e.g. GPUs), freely mixing HEP-specific ROOT routines with machine learn-

ing, distributed schedulers, visualization, and other general-purpose tools from the

data science world.

This “mixed future” is a safe bet because it is how most other scientific fields

that adopted Python earlier than HEP operate. AstroPy (2011) is a Pythonic hub

for astronomy, but it wraps older C libraries such as WCSLIB, FITS, and HDF5.

Geospatial analysis uses a variety of Python tools, but it is largely based on GDAL

(2000) and CGAL (1996), both written in C++. Scikit-Learn (2007) and SciPy

itself (2001) are primarily wrappers of legacy C and Fortran routines. Unlike Java,

Python mixes well with C++, owing to a single, prominent implementation target

(CPython) that shares a memory heap with libc/malloc, a well-documented C API,

and active C++ binding projects—Cython and pybind11.

3.1 File formats

File formats tend to be conservative. The following widely used formats for the

sciences are decades old:

• generic: JSON (2002), XML (1998), XLS (1997), HDF5 (1992), NetCDF (1990),

CSV (1972)

• Astronomy: VOTable (2002), FITS (1981)

• Geospatial: GeoTIFF (1994), Shapefiles (1990)

• Genetics: FASTA (1985)

• Chemistry: ChemML (1999), GROMACS (1991), CHARMM (1983), PDB (1976)

We can therefore expect ROOT files to continue to play a major role in HEP. How-

ever, this is only half of the story: interoperability is a key value in the culture of

– 9 –



data science software development. With sufficient interoperability, data file formats

do not dictate which tools can be used to analyze them. Astronomers, for instance,

routinely copy FITS telescope images and VOTable legacy data into machine learn-

ing libraries on the fly with NumPy or through on-disk HDF5 files. Geneticists and

climate scientists are mixing their old software stacks with xarray (2014), a Pandas-

like library for larger-than-memory N -dimensional tensors, and Zarr (2015), an array

format described as “cloud-ready NetCDF.”

For many years, ROOT TTrees had been unique in their ability to efficiently store

(i.e. usually columnar) nested, variable-length data structures with an immediate

interpretation in C++ [21]. Now, Apache Arrow [22] (2016) can efficiently represent

(always columnar) nested data structures in memory, in a language-independent and

interprocess-shareable way. Moreover, Apache Parquet [23] (2013) can efficiently

store (always columnar) these language-independent, nested data structures on disk.

As non-domain-specific formats, Arrow and Parquet are recognized across scientific

fields and are supported by interdisciplinary libraries like Pandas, Scikit-Learn, and

TensorFlow. ALICE’s O2 analysis framework [24] uses Arrow as its primary data

model for Run 3.

But that doesn’t mean that HEP should “switch” from ROOT to Parquet. It

means that data analysts will want to mix ROOT, Arrow, Parquet, and HDF5 or

even ASDF (2015) in their analysis workflows, and lightweight software needs to

be on hand to accommodate that. Uproot is a Python implementation of ROOT

I/O, capable of reading and writing TTree data that are sufficiently independent of

C++ that they can even have an Arrow/Parquet interpretation [25]. Using Awkward

Array, Uproot can avoid creating Python objects for every entry of a TTree during a

conversion, which impacts the conversion rate by a factor of hundreds [26]. Uproot

is also fairly well established among HEP physicists (Figures 4 and 6).

It is also important to note that ROOT data will not always be TTrees. The

ROOT team is developing a replacement for the TTree class called RNTuple, which

addresses TTree’s shortcomings relative to Parquet [27]. In particular, RNTuple

data are always columnar, little-endian, decouple page boundaries (equivalent to

TBasket boundaries) from entry/event boundaries, and have a language-independent

interpretation in addition to their C++ interpretation. To achieve the same fluency

between RNTuples and Arrow/Parquet as we currently have between TTrees and

Arrow/Parquet, either (1) a Python implementation of the RNTuple format must

be developed in the style of Uproot, or (2) the still-developing RNTuple libraries

must maintain their independence from the ROOT codebase to such a degree that

a small, RNTuple-only library may be wrapped in Python and distributed on PyPI

(with pip). IRIS-HEP’s Nebraska team is pursuing option (2), but progress has been

slow. If RNTuple becomes a widely used format without a pip-installable library to

read and write it, more effort will be needed in this area.
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3.2 Databases

The most common patterns for data access in physics analysis are actually more

suited to databases than files. Typically, experimental collaborations centrally pro-

duce analysis datasets with basic physical quantities stored as primitive types. Many

analyses will share some subset of these quantities, but each analysis may also re-

quire specific variables that are not computed by default. Because of the difficulty

and tedium involved in modifying or extending the binary files that compose the

centrally-produced datasets, analysts will rerun the entire dataset production just

to add their variables in a consistent and usable way. In contrast, a database al-

lows storing and accessing each variable independently, eliminating any duplication

of effort, processing, or disk space. A companion product to such a database system

is a query language that can succinctly express typical data projections and filters.

Commercial data offerings aimed at “big data” have reached similar data scales as

HEP; however, they are not yet competitive with HEP domain-specific tools with

respect to query language quality or query performance [28].

The Striped project [29, 30] implemented a successful prototype of database-

style analysis. Along the way, the project developed one of the first non-trivial

implementations of columnar analysis in the scientific Python ecosystem, including

automatic scaling in batch systems, which grew into Coffea. A mature framework for

the usage of databases for analysis has the potential to provide many benefits. Each

collaboration could centralize its analysis data in a global, federated, and extensible

database, with automatic replication, caching, versioning, provenance tracking, and

improved metadata handling. These features, which naturally arise from database-

style analysis, would significantly improve both the time to insight and analysis

reproducibility. However, because this mode of analysis data management is radically

different from what experimental collaborations have pursued to date, it will require

a higher level of dedicated effort to put into production.

There are a few projects that are picking up where Striped left off:

• ServiceX [31] provides the ability to fill databases directly with derived vari-

ables.

• SkyhookDM [32] is pursuing database storage for analysis data.

• Coffea’s columnservice [33] provides a demonstration of useful configurations

and interfaces based on analyst feedback.

• Tiled aims to provide a unified API for data access, which would ease the

transition from file-based analysis to broader usage of databases.

Given the many advantages of this approach, described above, increasing effort

in this area should be considered high priority.
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3.3 Distributed computing

The first highly visible data analysis software products from industry addressed the

problem of scaling to large datasets, under the catchphrase “big data.” A MapReduce

framework developed by Google [34] (2004) was reimplemented in open-source Java

as Apache Hadoop [35] (2006) and was generalized beyond “map” and “reduce” to a

full suite of functional programming primitives in Apache Spark [36] (2014). These

software products differ from anything used in HEP, other than ROOT’s PROOF

system [37], in that they mix data analysis logic with scale-out. Traditional batch

queue systems run encapsulated code, such as a shell script, that is opaque to the

scheduler, so although systems like HTCondor’s DAGMan [38] have map/reduce and

task retry features, those features were disconnected from the analysis logic. Big data

frameworks can repartition and shuffle intermediate data because the data types in

which users write their analyses are a part of the scheduler.

Apache’s decisions to write Hadoop and Spark in Java/Scala made sense be-

cause most corporations have a Java-based intranet for business intelligence. It

proved difficult for HEP to adopt these frameworks because the Java Virtual Ma-

chine (JVM) does not mix well with C++, and therefore any of our tools. Not only

are the in-memory data formats different, but Java manages a separate heap from

the libc/malloc-based world, freely moving data in RAM (i.e. invalidating pointers)

as a JVM-dependent detail. Defensively copying data between Java and any Python

or C++ process is still slow and brittle.

Meanwhile, Python became the leading data analytics language and dominant

machine learning platform (Figure 2), and Hadoop/Spark-like tools were developed

for Python. Dask [39] (2015) takes a highly modular/non-framework approach to this

problem: it is primarily a DAG of generic operations, methods to optimize DAGs,

and secondarily a scheduler to distribute computations represented by those DAGs.

Dask’s most popular applications are a distributed array (adhering to NumPy’s API)

and a distributed DataFrame (adhering to Pandas’s API), but the collection types

and the distributed processor are built on top of Dask’s core—the DAG is the foun-

dation of the library.

In HEP, the Coffea developers experimented with big data scale-out mechanisms,

including Striped [29, 30] (an in-house Fermilab project), Spark, Parsl, Work Queue,

Dask, and Tiled. Of these, Dask has been the most successful so far, with more

analyses opting to use the Dask backend than the others. However, this is a case in

which fitness for present-day problems might not be sufficient for the HL-LHC: the

Dask scheduler is designed for single-user clusters with a single point of failure in the

scheduling node, and the largest clusters that have been tested have only involved

tens of thousands of nodes.

Fortunately, Dask is modular and other schedulers may be used with it, without

interfering with Coffea or physics code. Ray (2017) looks promising: it is poised as
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a Python-based successor to Apache Spark with significant industry support. Ray

lacks a single point of failure, and Dask-Ray integrations are being developed at

AnyScale, the company that commercializes Ray.

High-throughput data processing is a generic problem that we can and should

solve with open source industry tools. Data delivery is less generic, in that HEP

datasets have specialized formats, considerable tooling, and optimizable properties,

such as statistically independent events and the columnar layouts of TTrees. Three

IRIS-HEP projects, namely ServiceX [31], SkyhookDM [32], and coffea-casa [40], use

generic data science tools to build HEP-specific workflows. These are good examples

of the “mixed future,” in which Docker Kubernetes, Helm, Minio, Flask, RabbitMQ,

Kafka, Ceph, and Gandiva are used alongside ROOT, Rucio, XCache, and Uproot to

deliver columns of data to analyses as Arrow or Awkward Array buffers, Parquet or

ROOT files. The data science components and the HEP components can fit together

because they share values of modularity, sharply defined interfaces, and columnar

data granularity.

3.4 Acceleration

It may be surprising that Python emerged as the language of choice for large-scale

data analysis, especially machine learning, when it has so many language features

that prevent fast computation: runtime type checking, garbage collection, boxing

numbers as objects, no value types or move semantics at all (all Python references

are “pointer chasing”), virtual machine indirection, and a Global Interpreter Lock

(GIL) that prevents threads from running in parallel. Some features are particular

to the CPython implementation, but this is by far the most commonly used: most

extensions written in C or C++ don’t work with alternatives. Python is popular

for performance-demanding applications despite these handicaps because developers

have learned to split programs into a fast, simple part (in a compiled extension)

and a slow, complex part (in pure Python). Python’s dynamic features make it

easier to deal with complexity, and the number-crunching can always be extracted

from Python into a compiled extension, or even expressed in primitives provided by

existing compiled extensions, such as NumPy.

The separation into fast-simple versus slow-complex is a good one to make even

if not forced to do so by the language. Legacy C++ applications are often difficult

to port to GPUs because their number-crunching logic is mixed with “bookkeeping,”

for instance as a suite of interacting class instances, which can prevent SIMD-friendly

refactoring.

Software developers can write compiled extensions, but data analysts need lower

barriers to optimizing their code—not every script justifies a new Python extension

module. Numba [41] (2012) provides the lowest barrier to compilation, since it

Just-In-Time (JIT) compiles Python code for CPU and GPU backends. The effect

is immediate: prepending a function definition with “@numba.jit” compiles that
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function so that it runs up to hundreds of times faster. Many HEP packages use

Numba to accelerate Python code, including Scikit-HEP’s Awkward Array, Hist,

and Vector, as do some collaboration frameworks, such as Xenon1T’s trigger pipeline.

Numba’s drawback is that it implements a subset of Python to allow static typing,

and it can be confusing when code that works in Python doesn’t compile in Numba.

ROOT has offered JIT-compilation of C++ for a long time as Cling [42] (re-

placing its former CINT interpreter), as well as dynamic Python/C++ bindings as

PyROOT/Cppyy [43]. Just as Numba allows physicists to JIT-compile a Python

function, ROOT JIT-compiles a string of C++ code with automatic bindings. On

the one hand, physicists must understand two languages, but on the other, this C++

is not a restricted subset, but the full C++ language, including CUDA for GPUs

and any hardware accelerator with a C++ interface. RDataFrame is a particularly

good interface for organizing and distributing tasks written in C++ (on Spark and

Dask).

However, Cling’s JIT-compilation facility is currently maintained as part of the

ROOT project, when it should be upstreamed to LLVM as part of Clang. Princeton’s

Compiler-as-a-Service (CaaS) project [44] is working on integrating Cling’s LLVM

patches into the main LLVM project, where they can be maintained by the larger

community. The same project is also making PyROOT/Cppyy’s dynamic language

bindings, currently unique to HEP, into a standalone project that can be adopted

by data scientists beyond HEP.

In principle, the Julia language [45] would be ideal for HEP, as it combines

Python’s dynamism with C++’s speed by JIT-compiling every expression in the lan-

guage. Whereas Numba can only JIT-compile a subset of Python and both Python

and C++ struggle with adding autodifferentiation (using JAX in Python and CaaS’s

Clad in C++), this is a built-in feature of Julia. Julia lacks the very large world-wide

community of both Python and C++, though Python and C++ interoperability is

very active in the Julia community. Small groups of physicists have been investigat-

ing Julia for years—it could develop into a third HEP language on the HL-LHC’s

timescale.

3.5 Histogramming

Whereas the previous two sections, distributed computing and acceleration (horizon-

tal and vertical scaling), are general concerns beyond HEP and should be addressed

by non-HEP software products, histogramming is more HEP-specific. The statistical

concept of approximating a distribution with binned counts is generic, but the way

that physicists use histograms as fillable, mergeable objects, is unique. Most plot-

ting libraries provide a histogram function to plot data as a binned histogram, but

HEP users expect to be able to fill histogram objects, save them to disk, add them,

weight them e.g. by relative luminosities, and fit them with parameterized curves

or more general statistical methods. All of the software products we know of with
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these features have some connection to HEP—developed for HEP or by a physicist

who has left the field.

Histogram additivity is useful because we are interested in distributions of enor-

mous numbers of statistically independent events, which isn’t true of all fields of data

analysis. This paradigm is general enough to think that our histogram-centric way

of doing analysis might catch on beyond HEP, but only if our tools can be easily

installed and used in the wider ecosystem.

Until recently, histogramming in Python was too fractured to be productive.

There were at least 21 pip-installable packages for histogramming on PyPI before

April 2019, not counting major projects like ROOT and YODA (not pip-installable).

None had wide adoption within the community. All of these implement basic func-

tionality, some with fast filling performance, but none were a “complete” package

for HEP analysis. The most complete, Physt, couldn’t handle negative weights, for

instance. It is not difficult to create a basic histogramming library in Python, but it

is difficult to make it general enough for all use-cases.

The inclusion of a C++ histogram library into Boost (by a HEP physicist)

and a Python wrapper for this library in late 2019 within the Scikit-HEP project

changed the situation by providing a “nucleation site” for histogram development.

As a focused, single-purpose high-performance library, Boost-histogram [46] fits the

data science ideal of modularity, and its association with Boost ensured a longevity

that incentivized building on top of this library, rather than competing with it by

building new libraries from scratch. As a case in point, the Hist [47] library adds

analyst-friendly features (such as plotting) that the no-frills Boost-histogram lacks,

but it does so as a subclass of the Boost-histogram type. Two libraries with the same

functionality can be complementary if one uses the other to provide a different level

of abstraction.

Beyond packaging, the increasing use of template fits in HEP analysis is changing

how histograms are used. Traditionally, histograms have represented data that a

human might inspect and fit with a parameterized curve. Template fits use the

histograms themselves as the curve and tune weights required to fit one weighted

sum of histograms to another. Data in many signal and background samples must

be subdivided into signal, control, and validation regions, and they must be filled

under thousands of systematic variations. The data for these fits may be thought

of as weighted event counts in voxels of a many-dimensional space, usually more

than the 3 dimensions that a human can inspect, and some of these dimensions

are not continuous, such as “number of b-tags.” Binning dimensions for systematic

variations represent a function, rather than a distribution, which differs from the

original purpose of histogramming, but is well-defined if applied consistently.

Modern histogramming libraries, such as Boost-histogram and ROOT’s v7 his-

tograms, allow arbitrarily many dimensions with different dimension types (cate-

gorical and continuous), but they do not manage filling a distribution along some
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dimensions and functional variations along others. Special tools like HistFitter [48],

TRexFitter, cabinetry [49], and FAST-carpenter fill this niche with a higher level of

abstraction above histograms. Declarative configurations (usually YAML) describe

how to subdivide the data into regions, how to bin axes, and how to vary systematics.

Template fitters like Combine [50], HistFactory [51], and pyhf [52] perform the fits,

make plots, and set statistical limits.

While these developments are improving the statistical reach of LHC analyses,

the histograms that comprise the template data are not often serialized efficiently.

Thousands of histograms in a template-set have the same or mostly the same axes:

the usual approach of saving them as separate histogram objects in a ROOT file

duplicates the axis metadata in independently compressed buffers. The common

structure of template-sets would benefit from a columnar approach, in which all

or large chunks of the numeric data are stored in contiguous buffers and shared

metadata (axes, labels, etc.) are stored exactly once. HDF5 and Zarr are well-suited

to efficiently store and retrieve a many-dimensional array like this.

In addition to efficient serialization, histogram formats (Boost Histogram, ROOT,

YODA, HEPData YAML) and views, such as plottable histograms, components of

a template-set, raw arrays, and tables such as Pandas and xarray, need to be more

interconvertible. Each of these formats and views have distinct benefits. Being

able to fluidly convert among them all would have a multiplying effect on analysis

productivity.

3.6 Fitting and statistics

Software that performs fits and reveals statistical limits or measurements with uncer-

tainties needs to be even more customized for HEP use-cases than histogramming.

Even the traditional case of fitting to a parameterized curve is not entirely com-

mon beyond HEP, since first-principles or approximate functional forms are more

often achievable in HEP and related fields than those that study human behavior

(e.g. targeted advertising). Today, HEP analysts engage in much more refined—and

specialized—fits than traditional curve-fitting, and the development of new statistical

techniques is often viewed as a part of the process of doing analysis in HEP.

As such, there are a lot of small, focused packages in this area. The most foun-

dational is iminuit [53] (2015), following the now-deprecated pyminuit (2008), which

provides Minuit [54] minimization in Python so that users can build binned and un-

binned fits from the ground up. Scikit-HEP’s iminuit is a good example of the “mixed

future,” in which a decades-old algorithm developed in HEP (Minuit, 1975) is fully

integrated into NumPy, SciPy, Jupyter, Numba, JAX, and Matplotlib. iminuit has

a larger userbase among astronomers than physicists because astronomers adopted

Python earlier than HEP. Packages like probfit (2012, now deprecated) and zfit [55]

(2019) provide high-level curve-fitting interfaces, with zfit leveraging TensorFlow and

using a variety of minimizers as backends: iminuit, nlopt, TensorFlow, and SciPy.
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Whereas Minuit focuses on detailed few-parameter fits (fewer than 100), optimizers

for deep learning like TensorFlow can optimize thousands of parameters at once, but

provide less detail about the shape of the minimum for uncertainty bands.

For template binned fits, Scikit-HEP’s pyhf (2018) is a major project, also with a

variety of backends: NumPy, TensorFlow, PyTorch, and JAX. Two of these, Tensor-

Flow (through an explicit DAG) and JAX (through autodifferentiation) differentiate

the objective function for faster convergence, and all but NumPy can take advan-

tage of GPUs. pyhf is implemented in Python without ROOT dependencies, but is

typically much faster than ROOT-based template fitters, such as HistFitter, because

it is leveraging exact derivatives and hardware acceleration through its backends.

For example, one fully optimized model took 10 hours to compute in HistFitter and

30 minutes in pyhf, and another took 20 minutes in HistFitter and 10 seconds in

pyhf. pyhf is (so far) cited in 19 publications and is regularly used to derive limits in

ATLAS, 18 of which are published as full likelihood functions [56] in the HEPData

repository, which allows the experimental result to be applied to new theoretical

models in the future.

Statistical inference is such a broad field that there is a long tail of specialized

packages. To get a sense of the variety, here are a few from PyPI:

• Visualization with statistical interpretation: quickstats, heppi, hep spt, scikit-

validate (comparison with baseline), ClusterKinG (cluster analysis), hepstats

(Bayesian Blocks for histogram optimization, hypothesis tests, splot genera-

tors)

• Steps in an analysis: PyOD (outlier detection), raredecay (reweighting and clas-

sification), PynFold (unfolding), selanneal (optimizing cuts), pyBumpHunter

(bump hunting), simplify (simplifying likelihood functions), fastjet (Python

wrapper of the FastJet library)

• HEP-specific interfaces to data science tools: MadMiner (machine learning

inference), Hepynet (deep neural networks)

• Physics-specific generators and optimizers: dEFT-HEP (fitting Effective Field

Theories), smelli (likelihoods for Standard Model Effective Field Theory), wil-

son (running Standard Model Effective Field Theories), minimal-lagrangians

(for dark matter models), mt2 (stransverse mass variable), Hazma (dark mat-

ter limits), PhaseSpace (phase space generation using TensorFlow).

The small, specialized package approach can be contrasted with distributing

statistical tools within a framework like ROOT. The advantage of creating a new

package and putting it on PyPI, which makes it pip-installable by anyone with a

Python distribution, is that the developer completely controls the timescale in which
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updates can be distributed to users. This is particularly useful for statistical tech-

niques that develop rapidly, and for correcting bugs discovered by users. The same

procedure, distributed as a class in ROOT, would involve a pull review/merging pro-

cess before it can be accepted into the main codebase and would only reach users

(other than hand-picked testers) on ROOT’s deployment timescale, which is once

every 1–5 months and can also depend on constraints imposed by the LHC experi-

ments. Moreover, if the original developers abandon a Python package, it can simply

be ignored, but an abandoned class in ROOT has to be maintained indefinitely by

the ROOT developers.

On the other hand, independent packaging puts the onus of good packaging prac-

tices on the developers, who would often rather focus on physics or statistics. Good

packaging is more difficult than it at first appears: it’s easy to assume (explicitly or

implicitly) that the user’s computer is set up like the developer’s, often through un-

listed dependencies, leading to installation problems. Modern packaging tools guard

against this, but outdated instructions that don’t use the new tools are easy to find

online, making it hard for new developers to know what to do.

Scikit-HEP, originally conceived as a metapackage for HEP, evolved quickly to-

wards a community-oriented and community-driven project providing a collection

of well-scoped libraries that form a ”Big Data” analysis ecosystem for HEP (to-

gether with common libraries beyond HEP). As a GitHub organization, Scikit-HEP

adopts well-maintained repositories contributed by independent developers so that

they are mutually discoverable, and it enforces high standards for packaging, testing,

documentation and software architecture. To promote quality packaging, the scikit-

hep/cookie package provides a recipe for cookiecutter, which uses command-line ques-

tions to generate a package skeleton with the current best practices: declarative con-

figuration (setup.cfg, pyproject.toml, MANIFEST.in), automatic version-generation

(setuptools scm), compiler tools for extensions (pybind11 and cibuildwheel), sim-

plified environments for pure Python packages (filt and poetry), automated testing

(pytest and GitHub Actions), dependency updates (Dependabot), formatting and

linting (pre-commit, MyPy, Flake8, Black, isort, PyUpgrade), and documentation

stubs (Sphinx and ReadTheDocs). It is much easier to use a generated template,

even if an existing package has to be ported into it, than it is to follow a list of rules.

What this does not solve, however, is the problem of discovery. Physicists of-

ten create packages without knowing that they duplicate functionality, or without

reaching potential users, or without knowing packaging best practices that would

solve many common installation issues. This is a general non-HEP-specific problem

of building a community: with a well-defined community, a physicist who wants to

share a statistical technique as a package would have heard of similar projects and

would be aware of where to look for guidance. The HSF PyHEP Working Group and

its events have increasingly been filling that role, with hundreds of attendees at the

2020 and 2021 workshops, Module of the Month demos and active Gitter channels.
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IRIS-HEP is also an intellectual hub for analysis tool development, mainly through

its very active Slack workspace. However, the nature of analysis tool development is

very distributed, and these support networks haven’t permeated through the entire

HEP community.

3.7 Relationship to the community outside of HEP

As described above, we don’t expect all of our software needs to be satisfied by the

data science industry, nor should all the software we use be written by physicists.

In general, software functionality fits into the following categories, with a spectrum

between them:

1. The functionality in question is not at all HEP-specific and is well-developed

outside of HEP, such as machine learning foundations, distributed computing,

JIT-compilation, autodifferentiation, and computing interfaces such as note-

books and other code editors.

2. The functionality is in principle not HEP-specific, but also not well-developed

outside of HEP. Examples include Cling (the C++ JIT-compiler), Awkward

Array (for manipulation of irregularly shaped data), histograms-as-objects, and

some statistical techniques like template fits and unfolding.

3. The functionality is and will likely always be HEP-specific, such as tools for

manipulating Lorentz vectors (Vector) or for applying energy corrections (cor-

rectionlib), tools dealing with particle information (Particle) and decay files

and chains (DecayLanguage).

Given the upcoming computational challenges of the HL-LHC and the maturity

of data science software today, it would be prudent to adopt data science solutions

in category (1), and to contribute back or proselytize HEP-developed solutions in

category (2), so that they can be maintained by the larger community as well. In

category (2), a project like Cling has the LLVM community to receive it, once tech-

nical issues are overcome, but a project like Awkward Array or Hist would have

to convince data scientists beyond HEP that non-tabular data or histogram objects

are useful concepts before we can expect collaboration. Better interoperability be-

tween HEP tools and data science tools aids sharing in both directions: generic tools

become usable in HEP (so that we do not need to maintain them) and HEP-style

techniques may become common beyond HEP (so that we do not need to maintain

them). In both directions, the key ingredient is interoperability.

4 Management, risk assessment, and the Grand Challenges

The use of data science software in HEP is not centrally managed, but HSF/PyHEP,

IRIS-HEP, and major community projects such as Scikit-HEP and Coffea, and pack-
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age developers, have a strong influence on its direction and priorities. IRIS-HEP, in

particular, is funding the development of core pieces of the ecosystem. Development

goals are incremental and adjust to what developers of related packages are working

on. Through constant communication in the community HSF and PyHEP Gitter

channels, as well as other, smaller-scoped channels and the IRIS-HEP Slack project,

these teams have a shared idea of what data science/HEP interoperability would and

should look like, and are collaboratively building up that ecosystem. Different teams

and individuals may have slightly different goals—for instance, Coffea users need

to analyze present-day (CMS) data and IRIS-HEP is focused on the HL-LHC—but

these kinds of differences can be accommodated. For example, Coffea needed his-

togram and Lorentz vector objects on a shorter timescale than IRIS-HEP developers

could produce a future-proof foundation, so both teams agreed for Coffea to de-

velop “quick and dirty” components that were later replaced by the IRIS-HEP ones.

Coffea’s implementation of both served as prototypes that informed the IRIS-HEP

development.

Communication through PyHEP Gitter, IRIS-HEP Slack, and issues/pull re-

quests in GitHub is more frequent and a denser network between teams than the

conventional HEP style of slide-presentations in weekly meetings. However, the

problem of discoverability is as prevalent as ever: software developers have to “find”

this network to get oriented. It is still the case that physicist-developers build pack-

ages in isolation, only to find out that they could have multiplied their effectiveness

if they had been plugged into this ecosystem earlier.

Progress is generally measured in terms of physics analysis productivity in cur-

rent LHC analyses, which is not the same thing as raw computational performance.

Given the way that development self-adjusts to present conditions, the risk is that

scaling to the HL-LHC will be ignored. For this reason, IRIS-HEP is conducting an

institute-wide “Grand Challenge” as an integration test of all its components [57].

The data processing component of this challenge, conducted with the U.S. LHC Op-

erations program, the ATLAS and CMS collaborations, and the WLCG, is a series

of global processing tasks in 2021, 2023, 2025, and 2027 that slowly scale up to the

throughput and features expected of HL-LHC data processing: an exabyte of raw

data in 100 days.

The analysis component of this challenge stresses both computational perfor-

mance and tool integration. Analysis systems start with the output of the data

processing step, about 200 TB of analysis-ready data per physics study, with many

studies requesting overlapping subsets of the data. Perhaps more importantly, an

analysis workflow integrates many of the services and software libraries described

above, so the Analysis Grand Challenge will focus on interoperability. The Challenge

will reproduce a standard analysis, such as the H → 4` discovery, with all corrections

and systematics studies performed by the Python/data science toolchain, presented

in Figure 7. In addition, the Analysis Grand Challenge will include autodifferentia-
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Figure 7: Analysis system workflow for IRIS-HEP’s Analysis Grand Challenge: how

the software libraries fit into an “end user” analysis, from analysis-ready data to final

results and reinterpretations.

tion as a test of novel techniques.

By testing all of the services and software libraries in a combined workflow, the

IRIS-HEP Grand Challenges demonstrate that no major capabilities are missing,

verify that each component can efficiently hand off data to the next, and determine if

they can, indeed, perform at HL-LHC scales. Starting these challenges now ensures

that the developer community has enough time to respond to any issues that it

reveals.
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