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Abstract

This paper discusses model-agnostic searches for new physics at the Large Hadron
Collider (LHC) using anomaly-detection techniques for the identification of event sig-
natures that deviate from the Standard Model (SM). We investigate anomaly detection
in the context of machine-learning approaches using autoencoders, and illustrate ex-
pected shapes of invariant masses in the outlier region using Monte Carlo simulations.
Challenges and conceptual limitations of this approach are discussed.
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1. Introduction

Searches for new physics at the Large Hadron Collider (LHC) are typically per-
formed assuming model-dependent techniques based on (1) generations of Monte Carlo
(“background”) events according to Standard Model (SM) predictions and (2) phe-
nomenological models beyond the Standard Model (BSM) for expected “signal events”.
Such simulations help guide analyzers to define the kinematic regions that are affected
by BSM physics. Observations of statistical deviations from the predicted SM back-
ground events can signify the presence of the new physics predicted by such models.

The classic examples of the usage of the techniques mentioned above are searches
for the Higgs boson [1, 2]. However, the success of this approach is more difficult to
quantify for BSM searches since no new physics has been discovered in the last decades.
It is not unreasonable to think that this technique may slow down the pace of discov-
eries compared to the previous decades when Monte Carlo (MC) event generators were
not widely used. For example, the model-specific searches guided by BSM simula-
tions may “lock” the attention of analyzers to a limited parameter domain of some
narrowly-designed models, while BSM physics may appear in regions that have never
been anticipated, or have a subtlety in its signatures that cannot be easily uncovered
by comparing data with SM Monte Carlo simulations (or are below the precision of
such simulations).

Anomaly detection in particle physics has recently been discussed in several papers
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. As an example, the usage of variational autoen-
coders trained on known SM processes that could help identify anomalous events was
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discussed in the context of the inputs for selected classes of event signatures [3]. This
study explores a similar event-based anomaly detection method that utilizes machine
learning (ML), but using the standard autoencoder with the inputs defined without
the assumptions about particular classes of SM or BSM events, i.e. are well suited for
general searches. This feature is important for model-independent searches for signal-
like structures in invariant masses after applying the ML technique since such studies
do not require complex simulations Monte Carlo events.

In this paper we show how a fraction of data (which may include BSM physics) can
be used for training and identification of outlier regions. We also illustrate how the
invariant mass of two jets (mjj) in such outlier regions can be described. Our usage of
the “anomalous“ region for searches in invariant masses is somewhat different compared
to [4] where the neural networks are used to detect data departures from a reference
model. We will use a fit method to find possible deviations from the background, which
is widely accepted method in many experimental publications. Finally, we will show
that the shapes of the invariant masses are not expected to have signal-like distortions
that can be misidentified as possible BSM signals.

2. Strategy for BSM searches using anomaly detection

We approach the question of BSM searches using a model-agnostic method that
builds upon a rather natural assumption that new physics may produce unexpected
signatures (such as peaks in invariant masses) hidden in the large SM backgrounds. To
find such BSM events, one can select uncharacteristic SM events (“outliers”) and look at
their signatures. The used anomaly detection algorithm must not bias the signatures
themselves (i.e. should not create artificial peaks etc.). The proposed strategy is
outlined below:

• Define an input (“feature”) space for ML, assuming that such a feature space is
as general as possible, and can cover a large class of possible BSM signatures;

• Apply an anomaly detection algorithm to this feature space using statistical meth-
ods or ML;

• Define anomalous events (“outliers”). This is the most ambiguous part of this
technique that will be discussed later;

• Study of physics distributions of the events in the outlier regions (“unblind”).

The last step can focus on distributions that may not require a precise knowledge
of SM backgrounds. For example, one can simply look for evidence of contributions
from resonant BSM phenomena. On a technical side, this requires the analysis of
invariant masses. New states with two-body decays may introduce localized excesses
in such distributions, which can be found without using Monte Carlo simulations for
background modeling. In some cases when no model-independent features are expected,
such as invariant-mass peaks, one can use various control regions, or even simulations
for SM events.

Input data for anomaly detection algorithms should reflect the fact that collision
events produce various particles (or more complex objects, such as jets or b-jets). The
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lists that hold the information about such particles have variable sizes, i.e. change
from event to event. One possibility to deal with a varying-size list is to “map” it
to the fixed-size data structures. We will use a method based on the rapidity-mass
matrix (RMM) [16, 17] designed to represent a large number of relatively uncorrelated
single and two-particle densities as a fixed-size sparse matrix. Due to the unambiguous
mapping of many popular experimental signatures to the matrix values, the RMM
transformation will allow the usage of a broad range of ML techniques. In the case
when no new physics is found in the outlier region, one significant advantage in using
the variables included in RMM lies in the fact that the calculated 95% confidence level
limits on cross sections of possible new physics in this region will be approximately
Lorentz-invariant with respect to boosts along the beam axis. Alternative to RMM
inputs for ML, such as four-momentum in the detector frame, will be discussed as well.

3. Monte Carlo simulations

3.1. Input for anomaly detection

To explore the anomaly detection method proposed in this paper, we used MC event
simulations. They were taken from the previous studies [17, 18]. Below we give a brief
summary of the definition of these samples.

We use the PYTHIA 8 MC model [19] for the generation of pp-collision events at
a center of mass energy of

√
s = 13 TeV. The NNPDF 2.3 LO [20] parton density

function from the LHAPDF library [21] was used. Two SM processes were generated:
(1) light-flavored QCD dijets, (2) vector and scalar boson production and tt̄ production.
A minimum value of 50 GeV on generated invariant masses of the 2 → 2 system was
set. For each event category, all available sub-processes were simulated at leading-
order QCD with parton showers and hadronization. Stable particles with a lifetime
of more than 3 · 10−10 seconds were considered, while neutrinos were excluded from
consideration. All decays of top quarks, H and vector bosons were allowed.

The charged Higgs boson process (H+t) using the diagram bg → H+t for models
with two (or more) Higgs doublets [22] was used as a benchmark BSM model. All
decays of the top quark and H+ were allowed. In addition to this model, the sequential
SM (SSM) and the simplified dark-matter model (DM) with W production were used.
These BSM models were discussed in [17]. The event simulations were created using
the Z ′ masses in the range of 1 – 6 TeV, generated with a step size of 0.5 TeV. 10k
events were used for each Z ′ mass.

Jets, isolated electrons and muons were reconstructed from stable particles. Jets
were constructed with the anti-kT algorithm [23] as implemented in the FastJet pack-
age [24] with a distance parameter of R = 0.4, which is typically used in the ATLAS
experiment. The minimum transverse energy of all jets was 40 GeV in the pseudorapid-
ity range of |η| < 2.5. Leptons are required to be isolated using a cone of size 0.2 in the
azimuthal angle and pseudo-rapidity defined around the true direction of the lepton.
All energies of particles inside this cone are summed. A lepton is considered to be
isolated if it carries more than 90% of the cone energy. The SM background processes
require simulations of misidentification rates for muons and leptons (“fake rates“). We
use a misidentification rate of 0.1% for muons, and 1% for electrons [17]. This is im-
plemented by assigning the probability of 10−3 (10−2) for a jet to be identified as a
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muon (electron) using a random number generator. The distributions were obtained
for events having at least one isolated lepton with transverse momentum plT > 30 GeV

and two jets with pjT > 30 GeV. The SM background MC samples are available from
the HepSim repository [25].

The events were transformed to the RMMs with five types (T = 5) of the recon-
structed objects: jets (j), b-jets (b), muons (µ), electrons (e) and photons (γ). Up
to ten particles per type were considered (N = 10), leading to the so-called T5N10
topology for the RMM inputs.

In total, about 1 million Monte Carlo events for SM processes were generated.
About 100k events were used for ML training. This sample was divided into 70k events
for training and 30k for validation. The trained neural network was applied to 900k
SM events and BSM samples to illustrate the separation between these samples in the
“loss” phase space of the trained neural network.

3.2. ML architecture

An autoencoder is used with the RMM inputs. The RMM input dimension is 51x51,
thus leading to 2601 inputs. After removing cells with 0 cell values for all events, 750
input columns were retained. This number defines the number of input neurons. Note
that the reduction of inputs should be determined using the full sample of events or
even several BSM models, to avoid situations when events with large multiplicities do
not fit in the input layer. Alternatively, a topology was tested with exactly 2601 inputs,
keeping columns with 0 values for all events. In this case, the results were very similar
since autoencoder dismisses inputs that have columns with 0 values. However, this
method of training will require more computational memory to load the “wide” input
layer.

The scaling of input values to the range [0 – 1] has been applied for comparisons
with an alternative ML feature space to be considered later. For the RMM, such
transformations of input data are unnecessary since the RMM values are already re-
scaled by definition. Our tests indicate that the results are nearly identical when using
the RMM inputs without additional transformations. In addition, the standardization
of the input was tested (before rescaling to the range [0 – 1]), but the results were found
to be similar.

The autoencoder is implemented in the Keras package with the TensorFlow backend
[26]. It compresses the inputs into lower dimensions and then decodes the data in
order to reconstruct the original input. The latent (“bottleneck”) layer with 5 neurons
holds the compressed representation of the input data. The network had 2 hidden
layers before the latent layer, with 20 and 10 neurons (“encoder”). After the latent
layer, 2 hidden layers with 20 and 10 neurons are added. The output layer has the
same number of neurons as the input layer. This architecture leads to about 32,000
trainable parameters. The model used the efficient Adam optimizer to minimize the
mean squared error between the input and decoded output. The reconstruction errors
are used as the anomaly scores.

In addition, a network was tested by varying the number of neurons in the hidden
and latent layers. The outcome was found to be similar to the results of the ML
architecture described above.
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Figure 1: Loss as a function of epochs using the RMM inputs when using (a) only SM events; (b) using
SM events plus 1,000 BSM events described in the text.

The ReLU activation function was used for all layers. As a test, sigmoid activation
was also used for the input and output layers, but it was found that this choice leads to
a slower training. In addition, the performance (in terms of SM and BSM separation)
is worse than for the ReLU activation.

3.3. Training

The autoencoder training was performed on the SM Monte Carlo events that consist
of multi-jet QCD events selected with at least one lepton, tt̄ and W+jet events (added
according to their rates). The selection cuts of MC objects were described above. The
training batch size was 100. The training is stopped when the validation sample stops
showing improvements after 30 epochs. Figure 1(a) shows the values of the loss as a
function of epochs. This learning curve is used to diagnose the training, i.e., a model’s
learning performance over time. A good fit of the input data by the autoencoder was
observed.

In real situations, BSM models can contribute to a fraction of data used in training.
Figure 1(b) shows the loss values as a function of epochs for MC simulations using SM
events plus additional BSM events (assuming 1,000 BSM events for each masses of
Z ′/W ′ bosons in the range 1 – 6 TeV, with a 1 TeV step size). This number of events
corresponds to a cross section of about 7 fb for the LHC Run2 data. The results show
that the loss values are larger compared to the SM-only training scenario. This is due
to the fact that the SM+BSM events lead to a large number of non-zero RMM cells,
compared to the SM-only events. The learning curve can be effectively minimized after
a few hundred epochs, similar to the SM-only events used for the training.

3.4. Results using ML

The trained autoencoder was used to process the rest of the SM events (900k) and
BSM events (that were not used in training). The event samples were reconstructed
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Figure 2: Distributions of the loss values for the trained autoencoder with (a) 10% of SM events and
(b) 10% of SM and BSM models. The BSM models used in training had 1,000 events for each mass
point in the range 1 – 6 TeV. The BSM models are shown for Z′/W ′ heavy bosons using the same
mass (shown with different lines of the same color). The distributions are normalized to 1. The larger
the mass of the resonance, the further away the line is from the SM distribution. For the comparison,
the black dashed line shows the SM events when using 10% of the event samples without BSM events.

with at least one lepton (plT > 30 GeV), before being processed by the network. Fig-
ure 2(a) shows the loss values for these samples. It can be seen that there is a good
separation between the SM events and the BSM events.

As mentioned before, BSM physics, if exists, may contribute to the data used in
training. Therefore, it is important to verify the effect of BSM events on the perfor-
mance of the trained autoencoder. Figure 2(b) shows the same MC simulations after
applying the autoencoder trained using SM events plus additional BSM events (assum-
ing 1,000 BSM events for each mass point used in the training). For the comparison,
the dashed black line shows the SM events when using 10% of SM events for training
(without BSM models). Some effect on the autoencoder from BSM models is observed,
but the effect is not significant when it comes to the separation of the SM from BSM.
The largest effect from the inclusion of the BSM models in the training process was
found on the BSM models themselves, rather than on the bulk of events dominated by
the SM.

One of the important questions concerning anomaly detection is how to define the
“anomalous” region in terms of the ln(Loss) values. One option is to define the upper
value on BSM cross sections for a specific region of the invariant mass of two jets,
mjj , which will be analyzed in the outlier region. This cross section can be converted
to the number of collision events which can be used to define the selection cut C on
the ln(Loss) values. The cut C will ensure that the outlier region will likely contain
the BSM models without reducing their acceptance. We do not define such a cut in
this paper since it has to be estimated using BSM MC generators after a full detector
simulation and acceptance cuts. For the truth-level cross sections reported by the BSM
MC generators used in this paper, the selection ln(Loss) > C where C is a value in
the range (−6,−5). Another option is to use published experimental limits obtained
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using dijet masses, and calculate the upper range for such limits. This value can be
transformed into the number of collision events that will define the value C for a given
integrated luminosity. This “data-driven” selection of the outlier region makes sure
that the outlier is sensitive to physics at the statistics precision level where data are
not well explored.

It should be pointed out that a requirement on the loss value to separate SM events
from BSM events does not directly translate to the equivalent signal-over-background
separation for invariant masses. This is because invariant-masses distributions for large
masses of BSM particles (such as Z ′) can be dominated by the SM background which has
similar loss values as for these BSM models. For example, SM events at ln(Loss) > −6.5
corresponds to low invariant masses of two jets, and such SM events can already be far
away from the search mass region of Z ′. Therefore, the signal-over-background ratios
should be evaluated on a case-by-case basis. Some of such cases will be shown later.

When using the proposed anomaly detection method it is important to understand
biases arising in invariant-mass distributions after applying a requirement on the re-
construction loss. In particular, one should answer the following question: can such a
selection of outlier events create artificial structures that can be viewed by analyzers
as possible evidence for signal events?

To answer this question, the next step is to verify that the outlier regions do not
contain any deviations in two-body invariant masses that can be interpreted as signals
due to new BSM phenomena. Therefore, the mjj were reconstructed in the outlier
region with ln(Loss) > −6.5. The following fit hypothesis [27, 28] is used to establish
the fact that the autoencoder selection does not introduce any spurious bumps:

f(x) = p1(1− x)p2xp3+p4 lnx+p5 ln
2 x, (1)

where x ≡ mjj/
√
s and the pi are five free parameters to be obtained from likelihood

or χ2 minimisation fits.
Figure 3 shows the invariant masses of light-flavor jets and b-jets in the SM MC

simulations for the events in the outlier region ln(Loss) > −6.5 together with the χ2/ndf
fit using the analytic function shown above. The bottom parts of the plots show the
pull values of the fit. Good agreement with the function was found, without significant
deviations in the pulls. This study confirms that the outlier regions do not contain
biases that may distort the invariant masses (for the statistics of the MC events used
in this paper).

4. Using alternative inputs

We also tested other classes of the input variables for the ML algorithm, in addition
to the RMM. As an example, we used the four-momentum variables (Px, Py, Pz, E) for
each object and missing transverse momentum. Such inputs, or similar inputs converted
to the (pT , η, φ, E) space, were chosen in [4, 10, 6]. The approach [10, 6] of “image-like”
fixed-size data structures with ordering in transverse momentum of jets/particles and
zero-padding is almost identical to that proposed in [16] for RMM.

In order to have a fixed size input for (Px, Py, Pz, E) inputs, we considered up to 10
jets/particles per event (i.e., similar to the RMM) plus the missing momentum. In the
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Figure 3: Invariant masses in the outlier region with ln(Loss) > −6.5. The masses were reconstructed
for light-favor jets and b-jets using SM Monte Carlo simulations. The blue line is the fit function (see
the text).

case where an event does not fill all 10 positions, we fill the missing values with 0. This
leads to the arrays with 5× (10× 4) + 1 = 201 values. As in the case of RMM, many
values of these arrays have 0 values for all events. Then the input was re-scaled to the
range [0 – 1]. The autoencoder had 20, 10 neurons for the hidden layers and 5 neurons
for the latent layers. The input and output layers had 201 neurons. As before, ReLU
activation was used. The training is performed using 10% of events with the SM and
BSM models. The training is terminated when the validation sample stops showing
improvements after 30 epochs.

Figure 4(a) shows the loss values as a function of epochs during training. It can be
seen that improvements in the loss values have steps, unlike a smooth decrease in the
case of the RMM. This may indicate the lack of stability in the training. Repeating
the training showed that the exact epoch at which the training should be stopped is
hard to reproduce. The results of the training are shown in Figure 4(b). This figure
should be compared with the Fig. 2(b) in the case of the RMM. One can see that the
separation between SM and BSM models is possible when using a list of jets/particles
with four-momentum, but the latter shows a narrower numeric range for the loss values.
Since the SM shows the very narrow loss distribution, close to the BSM signal models,
this can be a disadvantage since the exact overlap of SM and BSM is more difficult to
predict assuming realistic uncertainties for this distribution. For example, a repeated
training showed the height of the narrow SM histogram randomly changes in the range
0.4 – 0.7.

It is worth mentioning that the compression factor for the four-momentum input
is more than a factor four smaller than for the RMM inputs since the same ML archi-
tecture was used for a lesser number of the inputs (201 versus 750 in the case of the
RMM after the 0-value trimming). Reducing the number of neurons in the layer by a
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Figure 4: The loss values as a function of epochs using arrays with four-momenta using training of the
autoencoder. The BSM models used for training had 1,000 events for each mass point in the range 1
– 6 TeV. The right-hand figure shows the results of the trained network applied to the SM and BSM
models. The BSM models are shown for Z′/W ′ heavy bosons in the mass range 1 – 6 TeV (shown with
different lines of the same color).

factor 2 leads to a sharper peak for the SM, and more unstable results. Although it is
conceivable to obtain good training results for the four-inputs, as shown in Fig. 2(b),
which is likely due to variations in the multiplicity of objects affecting the number of
columns with zero-padding, the lack of a stable behavior and reproducibility are the
main disadvantages of the four-momentum inputs. A possible reason for this training
instability is in the difficulties to predict the mean of the Lorentzian-shaped distribu-
tions of the Px, Py and Pz variables. The autoencoder learns the peaks at 0.5 (after the
re-scaling to the [0 – 1] range), but not the precise shape of the fast falling “wings” of
such distributions, which are affected by the trivial symmetry in the azimuthal angle
that introduces additional smearing of relevant features. In contrast, the RMM values
have smoothly falling distributions which can be easier reproduced by the autoencoder.
Other advantages of the RMM are automatic rescaling and normalization, visual de-
bugging of inputs in the form of images and an approximate Lorentz invariance with
respect to the boosts along the beam axis.

As mentioned earlier, another possible feature space is the fixed-size data structures
with (pT , η, φ, E) variables for each object after applying the zero-padding, or some
variation of “pick and choose” variables. Three variables, E, pT and η belong to the
RMM data structure. The φ variable is not too useful due to the flat distribution of
the azimuthal angles in the detector frame1.

We did not consider particular sets of “pick and chose” variables discussed in the
literature cited before since such selections suffer from the lack of generality, and are
usually considered for particular types of BSM signatures.

1Indirectly, the RMM includes the information about the difference φ1 − φ2 via the two-body in-
variant masses.
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Figure 5: Distribution of the loss values for SM and H+ events using 10% of SM events and 10% of
H+ for training (see the text).

5. Example for wide resonances

As a further example, we consider the situation where BSM models do not show
sharp peaks in invariant masses, therefore, the outlier region should be studied using
Monte Carlo simulations. For example, the H+ model does not exhibit sharp peaks
in invariant masses, thus it is a special case compared to the previous discussion. We
assumed that the mass of the H+ boson is 0.5 TeV. 10,000 H+ events were generated
as described above in all decay modes. As before, one million SM events were created
using PYTHIA 8 (selected with an isolated lepton) were used.

We prepared a sample of simulated data using 10% of the available events (i.e.
1k for H+ and 100k randomly selected SM events), converted to RMMs, and trained
the same autoencoder as described previously. Figure 5 shows the loss values for the
trained network. A good separation between the H+ events and the SM simulation is
observed.

The invariant masses for SM and H+ were reconstructed before and after the re-
quirement ln(Loss) > −6. Figure 6 shows that the selection cut can significantly
increase the signal-over background ratio. For large invariant masses of two b-jets, mbb,
the H+ events dominate the distribution.

6. Discussion

The most important question for the anomaly-detection style analysis follows: what
does it mean to observe new physics in the outlier events, assuming that the reliance
on SM backgrounds and signal Monte Carlo simulations is not strictly required? One
of the most straightforward ways to detect a signal without knowing the shape and
normalization of the SM background is to observe signal-like enhancements on smoothly
falling background distributions. One can construct 14 invariant masses from the five
objects (as used in this analysis) by selecting objects with the largest transverse energies
using the RMM inputs. This “bump-hunter” approach does not rely on the precise
knowledge of SM backgrounds, which is expected to be described by a smoothly falling
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Figure 6: The distributions of the invariant masses in the outlier region with ln(Loss) > −6. The masses
were reconstructed for light-favor jets (left) and for b-jets (right) using SM Monte Carlo simulations.
The blue line is the fit function (see the text).

curve. On a technical side, this would require an analysis of the top-right corner of the
RMMs in the outlier sample.

It should be noted that, since a significant number of invariant masses should be
inspected, the criteria for an observation of new physics should be higher than for
the standard observations of “bumps” in histograms. The number of invariant masses
that are included in the right-top corner of the RMM can be as large as several hun-
dred. Therefore, the look-elsewhere-effect contributing to the statistical significance
of an observation can be non-negligible. The strength of this effect should be calcu-
lated depending on how many invariant masses will be analyzed. The most sensible
approach is to start with the analysis of several invariant masses on the left side of the
RMM columns (for a given object type), which corresponds to objects with the largest
transverse momentum.

One of the main conclusions of this paper is that applying a selection based on the
trained autoencoder with the RMM inputs does not bias the shapes of invariant masses
in the outlier region. This feature can be used for model-independent searches of signals
in invariant masses of the outlier region. Therefore, the studies presented in this paper
make a strong case for using RMM with autoencoders for general event-based anomaly
detection in invariant masses.

As we discussed in Sect. 5, enhancements in invariant masses may not be always re-
liable signatures to detect new physics since BSM particles may have too broad widths.
In this case, SM Monte Carlo models can be utilized to compare with the rate of events
in the outlier region, or even a simple visual event scan of the outlier region can be
adopted.
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