
Jas4pp - a Data-Analysis Framework for Physics and Detector
Studies

S.V. Chekanova, G. Gavalianb, N. A. Grafc

a HEP Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA.
b Jefferson Laboratory, 12000 Jefferson Ave., Newport News, VA 23602

c SLAC Linear Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025

Abstract

This paper describes the Jas4pp framework for exploring physics cases and for detector-
performance studies of future particle collision experiments. Jas4pp is a multi-platform
Java program for numeric calculations, scientific visualization in 2D and 3D, storing
data in various file formats and displaying collision events and detector geometries.
It also includes complex data-analysis algorithms for function minimisation, regres-
sion analysis, event reconstruction (such as jet reconstruction), limit settings and other
libraries widely used in particle physics. The framework can be used with several script-
ing languages, such as Python/Jython, Groovy and JShell. Several benchmark tests
discussed in the paper illustrate significant improvements in the performance of the
Groovy and JShell scripting languages compared to the standard Python implementa-
tion in C. The improvements for numeric computations in Java are attributed to recent
enhancements in the Java Virtual Machine.

Keywords: End-user data analysis, software frameworks, Python, Jython, Java,
Groovy, JVM

IANL-HEP-164101, SLAC-PUB-17569
Email addresses: chekanov@anl.gov (S.V. Chekanov), gavalian@jlab.org (G. Gavalian),

Norman.Graf@slac.stanford.edu (N. A. Graf)

SnowMass21: Snowmass 2021 January 6, 2021

ar
X

iv
:2

01
1.

05
32

9v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 4
 J

an
 2

02
1

Program summary

Program title: Jas4pp
CPC Library link to program files:
Developer’s repository link: https://atlaswww.hep.anl.gov/asc/jas4pp/

Code Ocean capsule:
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: Java, Jython, Groovy
Nature of problem: Develop a platform-independent data-analysis framework for high-
energy and nuclear physics (HEP and NP) with a support of fast dynamically-typed
scripting languages, comprehensive data-visualisation and I/O libraries.
Solution method: The solution adopted here is to use Java and the scripting languages
integrated with Java VM.
Additional comments: All 3rd party Java libraries included with this program are
licensed by GPLv3, GNU Lesser General Public License (LGPL) or by other licenses
compatible with the GPLv3 license, and adhere to Mendeley Data approved open-source
software licenses. These licenses files are includes with the program.

1. Introduction

Software frameworks are central to physics analysis and detector-performance stud-
ies in particle collision experiments. In the past decades such analysis frameworks have
included PAW (“Physics Analysis Work station”) [1] implemented in C/Fortran, ROOT
[2] written in C++, and Jas3 (“Java Analysis Studio”) [3] implemented in Java. The
latter program was developed at the SLAC National Accelerator Laboratory. It was
used for the SiD detector concept [4] of the International Linear Collider (ILC) project
[5], and then it was extended to a more versatile package with downloadable plugins
for various projects beyond high-energy physics (HEP) experiments. For example, such
Java libraries are used in reconstruction, calibration, monitoring and physics analysis
of the CLAS12 and HPS experiments [6, 7] in the experimental Hall B at Thomas
Jefferson National Accelerator Facility (Jefferson Lab).

With an increased interest in other future HEP projects, such as CLIC [8], the high-
energy LHC (HE-LHC), and pp colliders of the European initiative, FCC-hh [9] and
the Chinese initiative (CEPC [10] and SppC [11] experiments), it becomes apparent
that sustainable software packages with easy deployment by end-users are important.
Jas3 was one of the most promising packages to satisfy the above-mentioned sustain-
ability requirement since it was written in Java. This programming language has been
exceptionally successful in business and enterprise computing since the compilation of
Java source code into bytecode makes it ideal for distributed applications. As any
Java application, Jas3 requires low maintenance and does not have platform-specific
installation issues.

In 2016, a program called Jas4pp (“Jas for particle physics”) based on Jas3 was cre-
ated at the Argonne National Laboratory (ANL) to accomplish physics and detector
performance studies using a SiD-derived reconstruction software for the HepSim [12]
repository. As a Java application, Jas4pp runs on any platform with Java installed,

2

https://atlaswww.hep.anl.gov/asc/jas4pp/

including Linux, MacOS and Windows OS. The time of deployment of Jas4pp is com-
patible with the time needed to download this program to a local computer since there
are no platform-specific installation requirements.

This paper gives an introduction to the Jas4pp program. It will discuss multiple use
cases, basic examples that illustrate its use and where to find the needed documentation.
Section 4 will discuss several benchmarks to illustrate the performance of Java and
dynamically-typed programming languages included with Jas4pp. The Appendix of
this paper illustrates several advanced examples with data analysis in particle physics.

2. Main features of Jas4pp

In terms of the software libraries for data analysis in particle physics, Jas4pp goes
much beyond the PAW and ROOT programs. Jas4pp contains a full stack of physics
and detector-related libraries integrated with several programming languages.

The core part of Jas4pp is the package called Jas3 (Java Analysis Studio) [13] devel-
oped at SLAC. It is a flexible Java platform for data analysis that can be configured via
plugins for different experiments. Jas3 is based on JAIDA [14], a Java implementation
of the Abstract Interfaces for Data Analysis (AIDA).

Being backward compatible with the original Jas3, Jas4pp focuses on data analysis
in collider particle physics. One distinct feature of Jas4pp is that it includes HEP
libraries by default instead of requiring additional plugins to be downloaded. This
makes Jas4pp a self-contained program for analysis and event visualization for particle-
collision experiments.

The Jas4pp program consists of: (a) 2D/3D scientific visualization libraries, similar
to ROOT and PAW, (b) data containers and numerical libraries (including non-linear
regressions using an interactive GUI), (c) physics libraries with Lorentz vectors, limit
setting, event-shape studies and jet reconstruction. In particular, the anti-kT algorithm
[15] for analysis of pp events is included, following the algorithmic solutions implemented
in the C++ FastJet package [16]. (c) A full-featured event display and a data-container
browser which can be used to visualize detectors and study collision events after the
Geant4 simulation [17]. Finally, Jas4pp can be used to analyze truth-level events from
the HepSim repository [12] which contains more than 100 scripts executed directly in
Jas4pp.

Jas4pp supports three main programming languages for analysis code: Java, Python
and Groovy. The latter two are implemented in the Java libraries that come with the
Jas4pp package itself. Python and Groovy are dynamically-typed scripting languages,
to be executed on the Java platform. With the increased use of the Python language
in HEP, Jas4pp adopted Jython (version 2.7.2) as the main programming language for
user analysis. This version is compatible with CPython 2.7.2 (implemented in C). It
is supported in the GUI mode (using the built-in editor with the console for outputs),
as well as using the batch (console) mode. In addition, Apache Groovy [18] (version
3.0.6) is supported. Similar to Jython, Groovy is an optionally typed dynamically-typed
language. It allows smooth integration with Java and any third-party library. The main
advantage of Groovy is that the execution speed is significantly faster than that for the
equivalent Jython or CPython codes. Benchmarks indicate that execution of Groovy
code that implements long loops is more than a factor ten faster than the interpretation

3

of the equivalent code implemented in Jython / CPython. Such benchmarks will be
discussed in Sect. 4.

Compared to the original Jas3, the Jas4pp program includes additional Java li-
braries from the DataMelt platform [19], GROOT project [20] developed at JLab,
LCIO [21] and improved LCSIM [22] libraries 1, mathematical libraries from the Apache
foundation and a software library [23] for dealing with Monte Carlo event files from the
HepSim repository [12]. It also includes several other additional libraries for versatile
visualisation of data.

Jas4pp supports a number of I/O file formats discussed in Sect. 6. In addition to
the traditional LCIO file format [21], Jas4pp supports several other new data formats
used in different projects.

The LCSIM library included in Jas4pp was significantly improved to increase the
processing speed of tracking hits when complex events are visualized inside Jas4pp event
display. This was achieved by replacing the standard Java trigonometric functions from
the ”Math” package with their fast implementation using the FastMath Java package
[24]. The result of this replacement is a factor five faster rendering of objects in ”busy”
events with a large number of reconstructed tracks when using previous versions of
Java (version 8 and below).

Jas4pp has a full-featured editor with syntax highlighting (a feature that is missing
in the original Jas3 package). Figure 1 illustrates the editor with an analysis code
written in the Python language, and the result of the execution of the code illustrating
a fit of the Gaussian-distributed data.

3. Running Jas4pp

Jas4pp runs on any operating system that supports the Java Virtual Machine (JVM)
and has been explicitly tested on Linux, MacOS and Windows 10. Typically, 4 GB of
RAM is sufficient. Jas4pp (version 1.5 released in October 2020) requires Java SE
Development Kit 8 (JDK 8) and above. Jas4pp was also tested with OpenJDK 9 and
14.

After downloading the Jas4pp compressed tar file from the official web site [25], the
program should be extracted to the directory “jas4pp”. To start the GUI editor shown
in Fig. 1, the following command should be executed in the Linux console:

bash> source ./setup . sh # setup the environment
bash> jaspp # start the Jas4pp editor

or using the equivalent “jaspp.bat” script for the Windows OS. The last command can
take an arguments (such as a name of the file to be opened).

To process a Jython or Groovy script in batch mode, the following command should
be invoked using ”example.py” (Jython) or ”example.groovy” (Groovy) file with an
analysis code:

1The LCIO and LCSIM libraries were included in Jas3 as downloadable plugins.

4

Figure 1: An illustration of the Jas4pp editor with the result of the code execution. The program is
implemented in Jython.

bash> fpad example.py # process a Jython script
bash> fpad example.groovy # process a Groovy script

Note that Groovy can use the alternative file extensions ”gvy” and ”gy”.
The Jas4pp editor can also be used to edit programs that use the Java or JShell

syntax2.
Another useful command is “fpad edit”. It is a light-weight editor for Jython code.

The editor includes an interactive Jython console with a built-in help system where
the keyboard shortcut [CTRL]+[SPACE] after the dot displays all methods for any
instantiated object/class, i.e:

>>> a=”This is a Python string . It can be a Java class too”
>>> a. # press [CTRL]+[SPACE] to display al l methods of the object ”a”

2JShell is an interactive tool for prototyping Java code. It comes together with the JDK installation.

5

A convenient way to compile and run Java programs using the Linux console is
to add all JAR (Java archive) files from the directory “lib” of the Jas4pp installation
directory to the Java CLASSPATH. The same method can be used for JShell. Examples
of such approaches are available in dedicated books on Java.

Another important directory is called ”examples”. It includes code snippets that
illustrate various aspects of Jas4pp computing. The code examples are implemented in
the Jython and Groovy scripting languages. These examples can straightforwardly be
converted into the Java and JShell programming styles of analysis programs.

4. Benchmarks

Before the introduction of the just-in-time (JIT) compiler, Java was only interpreted
and not compiled, and thus programs implemented in Java were slow compared to
C/C++. Since the introduction of JIT, the performance of the Java Virtual Machine
(JVM) has improved over the years. Even though there are several aspects of Java
that are very appealing for the purposes of physics analysis software there is still a
reservation in the physics community whether Java can be used for writing analysis
code. Java produces platform-independent libraries that can be distributed easier than
large scale C++ frameworks, which require compilation for each machine the analysis
code is deployed to. The reflection mechanism in Java allows writing plugins based on
run-time configurable workflows.

When Java is discussed in the context of data analysis, the main reservation is
the performance of the JVM compared to other widely used languages in nuclear and
high energy physics such as C, C++ and FORTRAN. Slow evaluation of mathematical
functions and large memory footprint were the most significant drawbacks for numeric
computations of the previous versions of JVM. Trigonometric functions are especially
important for track reconstruction software in particle physics and for numeric calcu-
lations in general. Recent enhancements in JVM enable faster evaluations of mathe-
matical expressions in large loops. Some aspects of the JVM performance improvement
using an example based on the “java.lang.Math” package will be discussed later in this
section.

4.1. Java vs other languages

This section will discuss a few benchmark tests implemented in different program-
ming languages to measured computation time.

In the first test, we compute the value of π using a Monte Carlo method. The code
that implements this calculation is illustrated using the Groovy scripting language:

import java . uti l .Random
int nTh = 0; int nSu = 0
double x, y
then = System.nanoTime()
r = new Random()
for (int i = 0; i < (int)1e8 ; i++) {

x = r .nextFloat() ; y = r .nextFloat()
nTh++
i f (x∗x + y∗y<= 1) nSu++ }

itime = ((System.nanoTime() − then)/1e9)

6

println ”Time: ”+itime+” sec , Pi=”+4∗nSu/(double)nTh

Listing 1: Groovy code for the calculation of π.

To run this code using Jas4pp, save these lines in a file with the extension ”groovy”,
”gvy” or ”gy”, and process it as described in Sect. 3.

The results of this test are shown in Figure 2. Java (running on OpenJDK 11
x64) performed better than C++ and FORTRAN for this test. These benchmarks are
performed on an AMD EPYC 7502 (32-core) machine, using single-threaded code. The
time measured was for 108 iterations. CPython (Python implemented in C) was also
used in the benchmarks, but it is omitted from the graph because of the large execution
time (75 seconds). This image was programmed using Jython and the Jas4pp program
as shown in Appendix A.1.

CINT C++ C++O2 Fortran Java Groovy

Languages

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Figure 2: Calculations of π using Monte-Carlo method, using random number generator. The plot was
obtained using the Jython example in Appendix A.1.

In the second test, we ran a simple analysis code, on real experimental data, where
particle and corresponding detector information is read from a data stream and photons
are reconstructed and counted based on their response in an electromagnetic calorime-
ter. The same code was written in C++ and Java, and the Java code was run through
JShell and Groovy to measure the performances of Java’s scripting environments. The
results of this test are shown in Figure 3.

The test shows that the performance of Java is very similar to the C++ code per-
formance. What is interesting in these tests is that JShell, which is the Java interactive
shell provided with JDKs starting from version 9, performs very well for an interpreted
scripting language. It is worth mentioning that Java shows the best performance when
there is complex Object Oriented Code, where the JIT compiler is most effective in
identifying hot spots and in-lining function calls during run-time to achieve the best
performance.

7

C++ C++O2 Java JShell Groovy
Languages

0

5

10

15

20

25

30

35

40
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

analysis
I/O

Figure 3: Benchmark of physics analysis codes similar to typical analysis done in nuclear physics.

Designing and testing large-scale applications in many languages is difficult, but
even these simple tests indicate that over the years Java performance has significantly
improved and can be considered as a good choice for writing data analysis software for
nuclear and high energy physics.

4.2. Jas4pp-supported scripting languages

Jas4pp supports the Java, Python/Jython and Groovy programming languages.
Comparisons of the execution time for Java and Groovy were shown in the previous
section. In this section we will discuss the performance of Jython (Python) and Groovy
due to the importance of Python in the modern data-analysis environment.

The code used to calculate the value of π using a Monte Carlo technique can be
written in Python as follows:

import time ,random
nTh,nSu = 0,0
then = time . time()
for i in xrange(int(1e8)) :

x,y = random.random() ,random.random()
nTh +=1
i f (x∗x + y∗y<= 1) : nSu+=1

itime = time . time() − then
print (”Time ” , itime ,” sec , Pi=”,4∗nSu/float (nTh))

Listing 2: Python code for the calculation of π.

To run this code using Jas4pp, save these lines in a file with the extension ”py” and
process it as described in Sect. 3. The processing time for the above calculation in
Jas4pp is 36 seconds using Jython 2.7.2 employing the same CPU and JDK as for the
previous tests. 40 seconds was obtained for CPython 2.7.2, and 46 seconds for CPython
3.4.3 (after replacing the function xrange() with range()). The PyPy interpreter for
the Python language required about 5 seconds for the same code.

The same algorithm implemented using Groovy was discussed before (see Listing 1).
The execution speed for Groovy was 4 seconds. Thus the gain in the speed of Groovy

8

can be as large as a factor 10 compared to CPython. Removing the explicit declarations
(int, float) at the beginning of the Groovy code leads to an execution time of about 20
seconds.

The benchmarks were repeated using OpenJDK 13 (x64) and an Intel(R) Core(TM)
i5-4690K CPU @ 3.50GHz. Although this combination of such CPU and JDK showed
overall better performance for the benchmark codes, the conclusion about the relative
difference in execution time for different scripting languages was similar to the tests
based on the AMD EPYC CPU.

In conclusion, Jython execution of the benchmark code is similar to CPython2
(implemented in C). The performance of CPython3 interpreter is surprisingly worse
than CPython2, and is significantly worse than for Jython. The Groovy scripting
language supported by Jas4pp showered a significant improvement in execution time
compared to the equivalent code implemented in the Python language (CPython or
Jython). The improvement factor depends on how variables are defined (explicit vs
implicit declarations). The performance of Groovy is also better than for the PyPy
interpreter.

4.3. Evaluation of trigonometric functions

It should be noted that our conclusion about the speed of Python code execution in
the previous section is obtained using the specific algorithm, i.e. the evaluation of the
value of π using a Monte Carlo technique. It is possible that a different result may be
obtained for other benchmark algorithms or different implementations. However, our
example is quite common for a typical numeric calculation involving random numbers
and non-linear transformations.

Fast implementation of trigonometric functions is one of the areas where the Java-
implemented Python interpreter may still be behind C/C++. There is no immediate
answer to the question on code execution speed for every possible situation since such
benchmarks depend on specific algorithms. For example, Listing 3 shows the situation
when processing speed of Jython is about a factor 2 slower than for CPython.

import math, time
then = time . time()
x=0
for i in xrange(int(1e8)) :

x=x+math. sin(i)/math. cos(i)
itime = time . time() − then
print(”Time:” , itime ,” (sec) result=” ,x)

Listing 3: Python code with trigonometric functions

The above code was processed using Jas4pp with OpenJDK 13 (x64). The same
algorithm re-written in the Groovy language shown in Listing 4 is a 10% (30%) faster
than for CPython2 (CPython3).

import java . lang .Math
long then = System.nanoTime()
double x=0

9

for (int i = 0; i < 1e8 ; i++)
x=x+Math. sin(i)/Math. cos(i)

itime = ((System.nanoTime() − then)/1e9)
println ”Time: ” + itime+” (sec) result=”+x

Listing 4: Same code as in Listing 3 but implemented in Groovy

The same algorithm re-implemented in Java and processed using OpenJDK 13 (x64)
further increases the execution speed by a factor 2 compared to the Groovy dynamic
language.

Similar benchmarks of the Java code have been carried out by repeating the cal-
culation using Java SE 8 (JDK 1.8 from Oracle) released in March 2014, and using
Linux Ubuntu 20.04 LTS (x64). The computation on the JDK 1.8 is about a factor 8
slower compared to OpenJDK 13. The difference in the speed is reduced from 8 to 3
for the AMD EPYC CPU, indicating that the improvement in speed depends on the
CPU architecture. Similar improvements in the speed compared to the JDK 1.8 were
observed for other trigonometric functions of the “java.lang.Math” package.

Thus the benchmark tests illustrate significant progress in effectiveness of modern
JVM for numeric computations. It was found that OpenJDK 11 and above has a per-
formance similar to the “FastMath” package from the Apache Common Math project
[24] or Jafama [26]. They heavily rely on optimizing compilers to native code, and
use of large tables for mathematical functions. Therefore, even applications compiled
to the bytecode using older Java versions should show improvements for large-scale
numeric computation on modern JVM. This progress in the performance of JVM is
expected to contribute to speed improvements for Monte Carlo simulations and event
reconstruction software used in nuclear and particle physics that heavily utilize loops
with trigonometric functions.

The algorithm shown in Listing 4 but implemented in C++ was about 30% faster
than for the Java code processed with OpenJDK 11 (13). The C++ code was compiled
using GCC 9.3 on Ubuntu 20.04. Although the compiled C++ code shows a better
overall performance, the difference between C++ and OpenJDK 11/13 is significantly
smaller than for C++ vs JDK 1.8. For end-user analysis, several tens of percent slower
processing speed of Java compared to C++ is a small price to pay when it comes to the
Java advanced features, such as user friendliness, platform independence, automatic
memory management, built-in multithreading support and the reflection technology.

The question of code profiling using different implementations is a complex prob-
lem, and we do not plan to explore all possible scenarios for this article. The main
conclusion we want to draw in this section is that the processing speed of the code that
implements large loops with numeric calculations is substantially better for Groovy
than for CPython (or Jython). The speed improvement for Groovy (which is closer in-
tegrated with Java than Jython) is attributed to the recent performance enhancements
in JVM.

We should remind that the execution speed of a CPython code can significantly
be increased using NumPy [27] or similar external libraries implemented in C/C++
and compiled to object files. This question is outside the scope of this section dealing
with implementations of analysis code in dynamically typed languages. However, here
we should mention that applications used in particle and nuclear physics typically deal

10

with manipulations of complex custom-designed objects. Therefore, the usage of general
third-party libraries called by CPython, such as NumPy, is limited. In the situation
when the bulk of the calculations are implemented in external libraries, the speed of
algorithms implemented in C/C++ libraries should be compared with the speed of
execution of Java bytecode libraries (see the discussion in Sect.4.1). The latter can
be called from Jython, Groovy or JShell in the same way as CPython calls 3rt-party
libraries implemented in C/C++.

5. Usage of Jas4pp

As mentioned in the introduction, Jas3 was extensively used for the SiD detector
concept [4] of the ILC project. Jas4pp still maintains the required libraries for analysis
of collision events created by the ILC community. In particular, Jas4pp natively reads
the ”miniDST” events in the LCIO file format used for e+e− studies. Such examples
are available from the Jas4pp web page.

Jas4pp has also been used in several other detector studies focused on future exper-
iments. For example, it was used for designing a silicon tracker for the future Circular
Electron Positron Collider (CEPC) experiment [10], as an alternative option to the
time projection chamber (the so-called “TPC”) tracker. Calorimeter studies for the
FCC-hh [28, 29, 30, 31] future experiment were largely conducted using this program.
The Java libraries included in Jas4pp were used for studies of crystal calorimeters for
future lepton colliders [32]. Jas4pp was the main framework for the initial develop-
ment of the TOPSiDE detector of the Electron-Ion Collider (EIC) collider [33]. It was
also used for HL-LHC and HE-LHC studies [34] based on HepSim Monte Carlo event
samples.

The Java libraries included with Jas4pp libraries were also used for several ongoing
experiments. For example, the plotting libraries included with Jas4pp were used for
detector studies of the hadronic calorimeter and the event display of the ATLAS ex-
periment [35] at the LHC. The libraries (such as the ones that come with the GROOT
package) are currently used at Jefferson Laboratory for monitoring, reconstruction,
calibration and physics analysis of the CLAS12 and HPS experiments [6, 7].

Applications that use graphics and numeric computations implemented in C/C++
are especially challenging for maintenance over many years due to changes in the
C/C++ compiled libraries included with the Linux operating system used in parti-
cle physics. This is much less of an issue for Java. As a Java package, Jas4pp is
expected to require low maintenance over the years. It was verified that version 0.4 of
the Jas3 program developed in 2003 can run on modern computers with OpenJDK 14
(released in March 2020) without problems. Thus, Java-based end-user environments
can be the optimal solution for experiments to be built in 20-30 years from now due
to strong backward compatibility of Java and low requirements for maintenance of this
application.

The following section will discuss different uses of Jas4pp for physics analysis and
detector visualization.

5.1. Validation of Monte Carlo events
Jas4pp can be used for validation of Monte Carlo generators as discussed in [23].

This functionality includes running analysis scripts and checking histograms with en-

11

tries of different kinematic quantities. In particular, it allows jet algorithms to be run
on input Monte Carlo data from the HepSim repository [12]. The coding can be im-
plemented in either Java, Groovy or Jython. Since this topic was extensively discussed
in Ref.[23], we will skip any further discussion.

5.2. Browsing event containers

Jas4pp, as its predecessor, Jas3, can be used to browse event containers stored in
the LCIO files. This functionality is almost unchanged in Jas4pp program.

5.3. Interactive fit of data

Jas4pp, as its predecessor, Jas3, can be used for interactive fitting of data. This
feature is quite unique: a user can adjust initial parameters of fit functions by dragging
the mouse pointer, before a minimization operation is applied. This significantly sim-
plifies fitting complex functions since the initial parameters can be set visually following
the shape of the data. This functionality is almost unchanged in the Jas4pp program.
In addition to the standard method of fitting, Jas4pp allows calling the interactive fit
program directly from user analysis codes. Some examples of such fits are given in the
directory ”examples”.

5.4. Visualisation of detector geometry

Jas4pp preserves the standard Jas3 method to visualise detector geometry in 2D or
3D. It can open HepRep geometry files [36] using the menu [File]-[Open data source]-
[HepRep]. A collection of HepRep geometry files for different collider experiments can
be found in the HepSim repository.

5.5. Event display

Event display is another feature inherited from Jas3. The original implementation
is based on the Wired4 event display [37, 38]. It is used for event visualization of data
stored inside LCIO files. The event display relies on the LCSIM java reconstruction
software, which was improved in terms of speed by replacing the trigonometric functions
used for tracking with a fast implementation from the Apache Common Math library.
As the result of this, the speed for event rendering has significantly improved.

Jas4pp creates detector rendering graphics after opening a LCIO file with truth-
level and detector-level information, and downloading detector geometry files based on
the name of the detector simulation used to create the LCIO file. Unlike Jas3, Jas4pp
downloads detector geometries from the HepSim repository.

Figure 4 shows a complex collision event of two high-energy muons. The centre-
of-mass energy of the collision is sufficient to create a hypothetical particle Z ′ with
the mass of 20 TeV decaying to a pair of quarks (qq̄), which are then decaying to two
hadronic jets. The event display shows the particle-flow objects (created from charged
tracks and calorimeter clusters) and an outgoing reconstructed muon crossing the muon
detector. Other detector-level objects (tracking hits, clusters, etc.) are deselected for
better visibility. The detector geometry corresponds to the SiFCC detector [28].

12

Figure 4: An illustration of the Jas4pp event display of a collision event with the process Z′ → qq̄ →
2 jets, assuming the mass of 20 TeV for Z′. The event display corresponds to the SiFCC detector [28].

5.6. Data analysis using scripting languages

Jas4pp supports different styles for data analysis, such as (1) JAIDA style using
Java factories; (2) DataMelt style that uses short notations for histograms and arrays;
(3) GROOT style that resembles the pyROOT syntax. In order to illustrate these
different styles of programming, we will give three code examples that show how to fill
a 1D histogram with random numbers using a Gaussian distribution:

Using the JAIDA style [14]:

from hep. aida import ∗
from java . uti l import ∗
fac = IAnalysisFactory . create ()
hf = fac . createHistogramFactory(None)
h1 = hf .createHistogram1D(”Example”,10,−2,2)
r = Random()
for i in xrange(100) :

h1. f i l l (r .nextGaussian())
c1 = fac . createPlotterFactory() . create(”plot”)
c1 .show()
c1 . createRegions(1 ,1)

13

c1 . region(0) . plot(h1)

Using the DataMelt style [19]:

from jhplot import ∗
from java . uti l import ∗
c1 = HPlot()
c1 . visible ()
c1 .setAutoRange()
h1 = H1D(”Example”,10,−2,2)
rand = Random()
for i in xrange(100) :

h1. f i l l (rand.nextGaussian())
c1 .draw(h1)

Using the GROOT style [20]:

from org . jlab . groot .data import ∗
from org . jlab . groot . ui import ∗
from java . uti l import ∗
c1 = TCanvas(’c ’ ,500,500)
h1 = H1F(’h ’ ,100,−5.0,5.0)
rand = Random()
for i in xrange(100) :

h1. f i l l (rand.nextGaussian())
c1 .draw(h1)

The latter code has a large similarity with the pyROOT equivalent code (but the
packages are imported from the GROOT Java library).

Another data-plotting example used to create a chart shown in Fig. 2 can be found
in Appendix A.1. More examples with data visualisation that cover histograms, data
shown as symbols and error bars, 2D scatter plots and density plots, can be found in
the directory “examples” of the Jas4pp installation.

Jas4pp enables analysis code dealing with reconstructed events to be easily written.
All such examples are located in the directory “examples” of the installation package.
Appendix A gives code snippets showing how to analyse LCIO files containing Monte
Carlo events. Appendix A.2 shows how to run over an LCIO file and extract truth-level
information from the ”MCparticle” table used to keep particles created by Monte Carlo
generators. This example also shows how to fill a histogram with the pz momentum
component of particles and display it in a canvas. Appendix A.3 shows how to process
reconstructed tracks from collision events, and fill Lorentz-vector particle objects. Ap-
pendix A.4 shows how to create anti-KT jets from calorimeter clusters. The execution
speed for these examples is typically slower by a factor of 3-6 than the equivalent codes
implemented in Java since Jython is a scripting language.

14

6. Supported data formats

Similar to Jas3, Jas4pp fully supports the LCIO [21] I/O library developed for
ILC studies. Some examples of reading LCIO files using Jython code can be found in
Appendix A.2 (and in the following sections).

There are many data formats used for storing experimental data by different exper-
iments. Usually the file format changes from the data acquisition stage to final data
summary tapes (DST) output for physics analysis. This can represent some challenges
when data is translated from one format to another spending empty CPU cycles. A
new data format was developed in Hall-B (Jefferson Lab, CLAS12 Detector) to address
these issues. The High Performance Output (HiPO) data format [39] was developed
to be used in all stages of data processing, starting from raw data going to DSTs.
The main advantage of the HiPO data format is a fully indexed layout that allows
chunk reading from disks, avoiding many IOPs, and the data structure (record based)
is very well suited for parallel data processing. HiPO is using the LZ4 data compres-
sion algorithm, which is the fastest at present. It also supports GZIP if needed. In
recent developments the HiPO library was also complemented with an XRootD [40]
driver allowing HiPO files to be read from XRootD servers. This Java-based XRootD
protocol was developed at JLab since there were no existing Java libraries supporting
the XRootD client functionality. To accommodate the diverse needs of the CLAS12
collaboration, the HiPO library was also implemented in C++ and FORTRAN.

The HiPO and XRootD protocol libraries are fully available in the Jas4pp distri-
bution via the GROOT library. Some examples of the usage of such libraries can be
found in the “examples” directory.

Jas4pp also supports the ProMC [41] and ProIO [42] file formats based on the
Google Protocol buffers library where data can be encoded using Google’s platform-
neutral, extensible mechanism for serializing structured data. These data formats can
include the “varints” types that allow serializing integers using one or more bytes. The
ProMC and ProIO libraries are used in the HepSim repository [12] with Monte Carlo
files. Jas4pp can stream ProMC data over the https protocol. A number of such
examples can be found in the ”examples” directory of Jas4pp installation.

Jas4pp can be used to store data in a serialized form (in XML or binary formats),
leveraging the native Java or Python API. Many Jas4pp objects extend the stan-
dard Java ”Serializable” interface. This feature enables the straightforward storage
of many complex objects using the standard Java serialization mechanism. A simple
Jython/Python example of such an approach using the DataMelt ”wrappers” class
“HFile” is given below:

from jhplot import H1D
from jhplot . io import HFile
h=H1D(”Histogram” ,10 ,0 ,1)
f=HFile(”test . ser” ,”w”)
f . write(h)
f . close ()

15

In this example, a histogram object “h” is serialized to a compressed file “test.ser”.
Changing ”HFile” to ”HFileXML” will allow storing this histogram object in a human-
readable XML file. The histogram can be read back using the same classes and the
method “read()”. The method allows to add keys to access particular objects.

Finally, Jas4pp has a limited support for reading ROOT files. Currently, only a few
basic ROOT structures (histograms and TGraph) can be imported by Jas4pp.

7. Documentation

The Jas4pp package includes example codes implemented in Java, Groovy and
Jython. Examples dealing with 2D/3D data visualization can be found from the “Wel-
come” screen of the Jas4pp editor. More complex examples are located in the directory
”examples” of the Jas4pp installation directory.

The API documentation of the main Java classes included with Jas4pp can be
accessed from the web site [25] of this project.

Jas4pp libraries can be used in combination with any advanced integrated devel-
opment environment (IDE), such as Eclipse, NetBeans, IntelliJ IDEA and other IDE.
Their setups should point to the directory “lib” of the Jas4pp installation. Java re-
flection used by such IDEs provides the ability to inspect classes, interfaces, enum etc.
Such IDEs can also use the HTML documentation of Java classes to provide more infor-
mation on the implementation of such classes. Note that introspection of Java classes
is also possible using the Jython shell as described in Sect. 2.

It should be pointed out that Jython and Groovy can also be used to list methods
of any given object initiated inside a user code. To print the values stored inside an
object, one can use the method “toString()”. In Jython, the method “dir(obj)” is used
to learn about all the methods of an instantiated class “obj”, following the standard
Python approach. Here is the example:

from jhplot import H1D
h=H1D(”Histogram” ,10 ,0 ,1)
print h. toString() # print what is inside of this histogram
print dir (h) # print al l methods of the Java class jhplot .H1D

The names of the printed methods are usually self-explanatory.
In Groovy (or Java, JShell), the method “toString()” can also be used, but it is

not implemented in a consistent way across all Java classes. Instead, one can use the
method “inspect()” to obtain the information about the name of the class and the
values of its fields.

Here is a Groovy example that shows several alternative methods to inspect Java
objects:

import jhplot .H1D
h=new H1D(”Histogram” ,10 ,0 ,1)
println h. inspect ()
// access more information on its values

16

println h. properties
// Java style to show methods of the class jhplot .H1D
println h. getClass() .getMethods()

Jas4pp is licensed under the GNU General Public License (GPLv3). The 3rd party
Java libraries included with this program are licensed by GPLv3, GNU Lesser General
Public License (LGPL) or by other licenses compatible with the GPLv3 license.

8. Summary

This paper describes the Jas4pp framework [25] designed for physics and detector
studies of current and future particle-collision experiments. Although this framework
has been used in several studies dealing with physics and detector performance studies,
there are no publications describing this program. This paper is the first overview of
the main features of Jas4pp.

Several examples given in this paper illustrate the simplicity of this program for
data analysis when using the Jython and Groovy scripting languages. The Groovy
language included with this framework shows a significant improvement in the perfor-
mance for numeric computations compared to the standard CPython. JShell (from
JDK) is another fast and friendly environment that can call the Java libraries included
with Jas4pp. The observed performance improvements in dynamically-typed languages
implemented in Java are due to the recent enhancements in the modern JVMs, leading
to a significant increase in the speed of evaluations of mathematical functions. This
progress will contribute to a wider usage of Java for numeric calculations. In the con-
text of particle physics, this should improve processing speed for detector reconstruction
software and Monte Carlo simulations that heavily use trigonometric functions.

The Jas4pp program can easily be extended by adding JAR files to the ”lib/user”
directory. Such libraries will be immediately available for user analysis programs imple-
mented in Java, JShell, Jython/Python and Groovy, without additional modifications
for specific operating systems.

Due to its low maintenance, easy installation, convenient programming using script-
ing languages and high performance for numeric calculations, the Jas4pp program can
be a promising computing environment for physics analysis and detector studies of
future experiments in particle and nuclear physics.

Acknowledgments

We thank Marco Lucchini for help with debugging the Jas4pp program. We grate-
fully acknowledge the computing resources provided on a high-performance computing
cluster operated by the Laboratory Computing Resource Center at Argonne National
Laboratory. The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department
of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare

17

derivative works, distribute copies to the public, and perform publicly and display pub-
licly, by or on behalf of the Government. The Department of Energy will provide pub-
lic access to these results of federally sponsored research in accordance with the DOE
Public Access Plan. http://energy.gov/downloads/doe-public-access-plan. Ar-
gonne National Laboratory’s work was funded by the U.S. Department of Energy, Office
of High Energy Physics under contract DE-AC02-06CH11357.

[1] R. Bock, et al., PAW — Towards a physics analysis workstation, Comp. Phys.
Commun. 45 (1) (1987) 181 – 190. doi:https://doi.org/10.1016/0010-

4655(87)90154-8.

[2] I. Antcheva, et al., ROOT: A C++ framework for petabyte data storage, statistical
analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499–2512. doi:

10.1016/j.cpc.2009.08.005.

[3] A. Johnson, A Java-based analysis environment JAS, http://jas.freehep.org/
jas3/ (1996).

[4] H. Abramowicz, et al., The International Linear Collider Technical Design Report
- Volume 4: Detectors, Tech. Rep. ILC-REPORT-2013-040 (2013). arXiv:1306.

6329.

[5] T. Behnke, et al., The International Linear Collider Technical Design Report -
Volume 1: Executive SummaryarXiv:1306.6327.

[6] V. Burkert, et al., The CLAS12 Spectrometer at Jefferson Laboratory, Nu-
clear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment 959 (2020) 163419,
10.1016/j.nima.2020.163419.

[7] N. Baltzell, et al., The Heavy Photon Search beamline and its performance,
Nuclear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment 859 (2017) 69 – 75.
doi:https://doi.org/10.1016/j.nima.2017.03.061.
URL http://www.sciencedirect.com/science/article/pii/

S0168900217304175

[8] L. Linssen, A. Miyamoto, M. Stanitzki, H. Weerts, Physics and Detectors at CLIC:
CLIC Conceptual Design Report, CERN Yellow Reports: Monographs, CERN,
Geneva, 2012, comments: 257 p, published as CERN Yellow Report CERN-2012-
003. doi:10.5170/CERN-2012-003.
URL http://cds.cern.ch/record/1425915

[9] M. Benedikt, The Global Future Circular Colliders EffortCERN-ACC-SLIDES-
2016-0016. Presented at P5 Workshop on the Future of High Energy Physics,
BNL, USA, Dec. 15-18, 2013.
URL http://cds.cern.ch/record/2206376

18

http://energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/https://doi.org/10.1016/0010-4655(87)90154-8
http://dx.doi.org/https://doi.org/10.1016/0010-4655(87)90154-8
http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://jas.freehep.org/jas3/
http://jas.freehep.org/jas3/
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1306.6329
http://arxiv.org/abs/1306.6327
http://www.sciencedirect.com/science/article/pii/S0168900217304175
http://dx.doi.org/https://doi.org/10.1016/j.nima.2017.03.061
http://www.sciencedirect.com/science/article/pii/S0168900217304175
http://www.sciencedirect.com/science/article/pii/S0168900217304175
http://cds.cern.ch/record/1425915
http://cds.cern.ch/record/1425915
http://dx.doi.org/10.5170/CERN-2012-003
http://cds.cern.ch/record/1425915
http://cds.cern.ch/record/2206376
http://cds.cern.ch/record/2206376

[10] CEPC Study Group, CEPC Conceptual Design Report: Volume 2 - Physics &
DetectorIHEP-CEPC-DR-2018-02, IHEP-EP-2018-01, IHEP-TH-2018-01. arXiv:
1811.10545.

[11] J. Tang, et al., Concept for a Future Super Proton-Proton Collider (2015). arXiv:
1507.03224.

[12] S. V. Chekanov, HepSim: a repository with predictions for high-energy physics
experiments, Advances in High Energy Physics 2015 (2015) 136093, http://

atlaswww.hep.anl.gov/hepsim/ (accessed on Feb. 1st, 2019). arXiv:1403.1886,
doi:10.1155/2015/136093.

[13] JAS3. Java Analysis Studio, http://jas.freehep.org/jas3/, accessed: 2020-05-
25.

[14] M. Donszelmann, T. Johnson, V. Serbo, M. Turri, JAIDA, JAS3, WIRED4 and
the AIDA tag library: Experience and New Developments, J. Phys. Conf. Ser. 119
(2008) 032016. doi:10.1088/1742-6596/119/3/032016.

[15] M. Cacciari, G. P. Salam, G. Soyez, The anti-kt jet clustering algorithm, JHEP 04
(2008) 063. arXiv:0802.1189, doi:10.1088/1126-6708/2008/04/063.

[16] M. Cacciari, G. P. Salam, G. Soyez, FastJet User Manual, Eur. Phys. J. C
72 (2012) 1896, http://fastjet.fr/. arXiv:1111.6097, doi:10.1140/epjc/

s10052-012-1896-2.

[17] J. Allison, et al., Recent developments in Geant4, Nuclear Instruments and Meth-
ods in Physics Research A 835 (2016) 186.

[18] Groovy. A multi-faceted language for the Java platform , Web page.
URL https://groovy-lang.org/

[19] S. Chekanov, Numeric Computation and Statistical Data Analysis on the Java
Platform, (Book), Springer, London, 2016.
URL https://datamelt.org

[20] G. Gavalian, GROOT: Java Data Visualization library,
https://github.com/gavalian/groot/wiki, accessed: 2020-05-25.

[21] F. Gaede, T. Behnke, N. A. Graf, T. Johnson, LCIO - A persistency framework
for linear collider simulation studies, 2003. arXiv:0306114.

[22] N. A. Graf, J. McCormick, LCSIM: A detector response simulation toolkit, in:
2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record
(NSS/MIC).

[23] S. Chekanov, I. Pogrebnyak, D. Wilbern, Cross-platform validation and analysis
environment for particle physics, Comp. Phys. Commun. 220 (2017) 91–96. arXiv:
1510.06638, doi:10.1016/j.cpc.2017.06.017.

19

http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1507.03224
http://arxiv.org/abs/1507.03224
http://atlaswww.hep.anl.gov/hepsim/
http://atlaswww.hep.anl.gov/hepsim/
http://arxiv.org/abs/1403.1886
http://dx.doi.org/10.1155/2015/136093
http://jas.freehep.org/jas3/
http://dx.doi.org/10.1088/1742-6596/119/3/032016
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://fastjet.fr/
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
https://groovy-lang.org/
https://groovy-lang.org/
https://datamelt.org
https://datamelt.org
https://datamelt.org
http://arxiv.org/abs/0306114
http://arxiv.org/abs/1510.06638
http://arxiv.org/abs/1510.06638
http://dx.doi.org/10.1016/j.cpc.2017.06.017

[24] Apache Software Foundation, Apache Commons Math 3.3,
https://commons.apache.org/proper/commons-math, accessed: 2020-05-25.

[25] JAS4pp. Java Analysis Studio for Particle Physics, https://atlaswww.hep.anl.
gov/asc/jas4pp/, accessed: 2020-05-25.

[26] J. Gilman, Improving Java Math Performance with Jafama,
https://www.element84.com/blog/improving-java-math-performance-with-
jafama, accessed: 2020-05-25.

[27] C. R. Harris, et al., Array programming with NumPy, Nature 585 (7825) (2020)
357–362. doi:10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2

[28] S. Chekanov, et al., Initial performance studies of a general-purpose detector for
multi-TeV physics at a 100 TeV pp collider, JINST 12 (06) (2017) P06009. arXiv:
1612.07291, doi:10.1088/1748-0221/12/06/P06009.

[29] C. Yeh, et al., Jet Substructure Variables with the SiFCC Detector at 100 TeV,
PoS ICHEP2018 (2019) 905. arXiv:1811.12805, doi:10.22323/1.340.0905.

[30] C.-H. Yeh, et al., Studies of granularity of a hadronic calorimeter for tens-of-TeV
jets at a 100 TeV pp collider, JINST 14 (05) (2019) P05008. arXiv:1901.11146,
doi:10.1088/1748-0221/14/05/P05008.

[31] S. Chekanov, A. Kotwal, C.-H. Yeh, S.-S. Yu, Physics potential of timing layers
in future collider detectors, ANL-HEP-159872, contribution to Snowmass 2021.
arXiv:2005.05221.

[32] M. T. Lucchini, et al., New perspectives on segmented crystal calorimeters for
future colliders, JINST 15 (2020) P11005. arXiv:2008.00338.

[33] TOPSiDE CONCEPT GROUP Collaboration, J. Repond, TOPSiDE: Concept
of an EIC Detector, PoS DIS2018 (2018) 179, XXVI International Workshop on
Deep-Inelastic Scattering and Related Subjects (DIS2018) 16-20 April 2018 Kobe
University, Kobe, Japan. doi:10.22323/1.316.0179.

[34] S. V. Chekanov, Imaging particle collision data for event classification using ma-
chine learning, Nucl. Instrum. Meth. A 931 (2019) 92–99, ANL-HEP-144006.
arXiv:1805.11650, doi:10.1016/j.nima.2019.04.031.

[35] The ATLAS Collaboration 3 (08) (2008) S08003–S08003. doi:10.1088/1748-

0221/3/08/s08003, [link].
URL https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003

[36] J. Perl, HepRep: a Generic Interface Definition for HEP Event Display Repre-
sentables, 2000, SLAC-PUB-8332.

[37] A. Ballaminut, et al., WIRED — World Wide Web interactive remote event dis-
play, Comp. Phys. Commun. 140 (1) (2001) 266 – 273, cHEP2000. doi:https:

//doi.org/10.1016/S0010-4655(01)00277-6.

20

https://atlaswww.hep.anl.gov/asc/jas4pp/
https://atlaswww.hep.anl.gov/asc/jas4pp/
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1612.07291
http://arxiv.org/abs/1612.07291
http://dx.doi.org/10.1088/1748-0221/12/06/P06009
http://arxiv.org/abs/1811.12805
http://dx.doi.org/10.22323/1.340.0905
http://arxiv.org/abs/1901.11146
http://dx.doi.org/10.1088/1748-0221/14/05/P05008
http://arxiv.org/abs/2005.05221
http://arxiv.org/abs/2008.00338
http://dx.doi.org/10.22323/1.316.0179
http://arxiv.org/abs/1805.11650
http://dx.doi.org/10.1016/j.nima.2019.04.031
http://dx.doi.org/10.1088/1748-0221/3/08/s08003
http://dx.doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(01)00277-6
http://dx.doi.org/https://doi.org/10.1016/S0010-4655(01)00277-6

[38] M. Dönszelmann, WIRED 4 - A generic Event Display plugin for JAS 3, SLAC-
PUB-10809 (2005). doi:10.5170/CERN-2005-002.369.
URL https://cds.cern.ch/record/865605

[39] HIPO-4: High Performance Input/Output, https://github.com/gavalian/

hipo4, accessed: 2020-10-25.

[40] XRootD for high performance access to data, https://xrootd.slac.stanford.
edu/, accessed: 2020-10-25.

[41] S. Chekanov, K. Strand, P. Van Gemmeren, E. May, ProMC: Input-output data
format for HEP applications using varint encoding, Comput. Phys. Commun. 185
(2014) 2629–2635. arXiv:1311.1229, doi:10.1016/j.cpc.2014.06.016.

[42] D. Blyth, J. Alcaraz, S. Binet, S. V. Chekanov, ProIO: An Event-Based I/O Stream
Format for Protobuf Messages, Computer Physics Communications 241. doi:

10.1016/j.cpc.2019.03.018.

[43] JFreeChart library, http://www.jfree.org/, accessed: 2020-05-25.

21

https://cds.cern.ch/record/865605
http://dx.doi.org/10.5170/CERN-2005-002.369
https://cds.cern.ch/record/865605
https://github.com/gavalian/hipo4
https://github.com/gavalian/hipo4
https://xrootd.slac.stanford.edu/
https://xrootd.slac.stanford.edu/
http://arxiv.org/abs/1311.1229
http://dx.doi.org/10.1016/j.cpc.2014.06.016
http://dx.doi.org/10.1016/j.cpc.2019.03.018
http://dx.doi.org/10.1016/j.cpc.2019.03.018
http://www.jfree.org/

Appendix A. Examples of JAS4pp analysis codes

In this section we will consider several examples of reading LCIO files and accessing
stored containers. If you test these examples without using the Jas4pp editor, you
should setup Jas4pp on Linux/Mac with ”bash setup.sh” and then run ”fpad script.py”.
If you use the Jas4pp GUI, copy and paste the code shown below, save it in a file with
the extension ”.py” and run it using the pop up window that appears after clicking the
mouse button.

All these examples are written using the Python syntax. However, they can be
trivially re-written in Groovy, JShell or Java.

Appendix A.1. A simple chart

This example implemented in Jython is used to create the bar chart shown in Fig. 2.
It uses the DataMelt Java class (HChart) and the JFreeChart library [43] included with
the Jas4pp program. When setting the bar values, we use the category ”1” (can be an
arbitrary string). This example also illustrates how to export the image to a PDF file.
If you need to highlight a separate bar, replace ”1” with any string.

from jhplot import HChart
c1 = HChart(””)
c1 . visible ()
c1 .setNameX(”Languages”)
c1 .setNameY(”Execution time (sec)”)
c1 . setChartBar()
xaxis = [”CINT” ,”C++” ,”C++O2” ,”Fortran” ,”Java” ,”Groovy”]
data = [1.348 , 2.096, 1.474, 1.65 , 1.211, 1.472]
for i in range(len(xaxis)) :

c1 .valueBar(data [i] , xaxis [i] , ”1”)
c1 .update()
c1 . setLegend(False)
c1 . export(”pi results .pdf”)

22

Appendix A.2. Running over truth-level Monte Carlo events

As a simple example of Jas4pp usage, we will illustrate how to read truth-level
information on particles created by Monte Carlo simulations. Here is an example of
how to extract the ”MCParticle” container, loop over events, and fill a histogram with
the z component of momenta. The input file used by this example can be downloaded
from the HepSim repository [12]. This code is written in Jython. As usual in Python,
use the method “type(obj)” and “dir(obj)” to learn about the type of the object “obj”
and its methods.

from hep. lcio . implementation . io import LCFactory
from jhplot import H1D,HPlot # import graphics
f i l e s=[”gev250ee pythia6 zpole ee . s lc io”]
factory = LCFactory. getInstance()
nEvent=0
h1=H1D(”Mass”,70,50,120)
for f in f i l e s :

print ”Open f i l e=” , f
reader = factory .createLCReader()
reader .open(f)
while(1) :

evt=reader .readNextEvent()
i f (evt == None) : break
nEvent=nEvent+1
print ” f i l e event : ” ,evt .getEventNumber() , ” run=” ,evt .getRunNumber()
col = evt . getCollection(”MCParticle”)
nMc=col .getNumberOfElements()
for i in range(nMc) : # loop over al l particles

par=col .getElementAt(i)
i f (par . getGeneratorStatus() == 1 and par .getCharge() !=0) :

vertex = par . getVertex() ;
pdg=par .getPDG()
momentum = par .getMomentum()
ee=par .getEnergy()
mass=par .getMass()
px,py,pz=momentum[0] ,momentum[1] , momentum[2]
h1. f i l l (pz)

del col , evt
reader . close () # close the f i l e
del reader

c1=HPlot()
c1 . visible ()
c1 .setAutoRange()
c1 . setMarginLeft(100)
c1 .setNameX(”Pz [GeV]”)
c1 .setNameY(”Events”)
c1 .draw(h1)
c1 . export(”mc truth .pdf”)

23

Appendix A.3. Running over reconstructed tracks

Another example deals with an analysis of reconstructed tracks. The LCIO input
files used by this example can be downloaded from the HepSim repository [12]. Unlike
the previous example, this code runs over a number of files in a directory. It accesses
“track” containers, and prints the 4-momentum of tracks using the 4-Lorentz vector
(based on the LParticle Java class).

from hep. lcio . implementation . io import LCFactory
from org . lcsim . event .base import BaseTrackState
from hephysics . particle import LParticle
from math import sqrt
import glob
f i l e s=glob . glob(” f i l e s /∗ . s lc io”)
factory = LCFactory. getInstance()
nEvent=0
for f in f i l e s :

print ”Open f i l e=” , f
reader = factory .createLCReader()
reader .open(f)
while(1) :

evt=reader .readNextEvent()
i f (evt == None) : break
nEvent=nEvent+1
print ” f i l e event : ” ,evt .getEventNumber() , ” run=”,evt .getRunNumber()
i f (nEvent%100==0): print ”# Event: ” ,nEvent
strVec = evt .getCollectionNames()
i f nEvent == 1:

for col in strVec : print col
col = evt . getCollection(”Tracks”)
ntracks = col .getNumberOfElements()
Bfield=5.0 # B−f ie ld of sidloi3 detector
particles=[]
for i in range(ntracks) :

track=col .getElementAt(i)
trk=BaseTrackState()
trk . setZ0(track .getZ0())
trk . setPhi(track . getPhi())
trk .setOmega(track .getOmega())
trk .setD0(track .getD0())
trk .setTanLambda(track .getTanLambda())
charge=1
i f (track .getOmega()<0): charge=−1

mom=trk .computeMomentum(Bfield) # B fi led in Z
px,py,pz=mom[0] ,mom[1] ,mom[2]
ee=sqrt(px∗px+py∗py+pz∗pz)
p=LParticle(”track” ,px,py,pz , ee ,0)
print(p)

del col , evt
reader . close () # close the f i l e
del reader

24

Appendix A.4. Running over calorimeter clusters and constructing anti-KT jets

This example deals with the construction of anti-kT jets from calorimeter clusters
using particle-flow algorithm objects (PFO). We read a list of files from the directory
“files”, access the container called ”PandoraPFOCollection”, fill the list of PFO objects
and reconstruct the anti-kT jets [15]. The LCIO input files used by this example can
be downloaded from the HepSim repository [12]. The Java implementation of this jet
algorithm is described in [23]. Then we print the jet collections and fill a histogram
with the jet transverse momentum. The canvas is saved to an image file.

from java . uti l import ArrayList
from hep. lcio . implementation . io import LCFactory
from jhplot import H1D
from hephysics . jet import ParticleD
from hephysics . jet import JetN2

import glob # make l i s t of f i l e s . .
f i l e s=glob . glob(” f i l e s /∗ . s lc io”)
factory = LCFactory. getInstance()

h1=H1D(”jet pt”,100,0 ,20)
ktjet=JetN2(0.5 ,”antikt” ,20) # antiKT with R=0.5, E−mode, anti−KT,min pT=20
print ktjet . info () # print its settings
nEvent=0
for f in f i l e s :

print ”Open f i l e=” , f
reader = factory .createLCReader()
reader .open(f)
while(1) :

evt=reader .readNextEvent()
i f (evt == None) : break
nEvent=nEvent+1
i f (nEvent%50==0): print ”# Event: ” ,nEvent
strVec = evt .getCollectionNames()
i f nEvent == 1:

for col in strVec : print col
col = evt . getCollection(”PandoraPFOCollection”)
nPFA = col .getNumberOfElements()
a l l j ets =[] # make a new l i s t with jets
particles=ArrayList() # l i s t of particles
for i in range(nPFA) :

pa=col .getElementAt(i)
p4=pa.getMomentum()
ee=pa.getEnergy()
p=ParticleD(p4[0] ,p4[1] ,p4[2] , ee) ;
particles .add(p) # add particle to the l i s t

ktjet . buildJets(particles)
jets=ktjet . getJetsSorted() # get a l i s t with sorted jets
i f (len(jets)>0):

print ”pT of a leading jet =” , jets [0] . perp() ,” GeV”
h1. f i l l (jets [0] . perp())

25

del col , evt
reader . close () # close the f i l e
del reader

c1=HPlot(”pT”)
c1 . visible ()
c1 .setAutoRange()
c1 . setMarginLeft(90)
c1 .setNameX(”pT(jet)”)
c1 .setNameY(”Events”)
c1 .draw(h1)
c1 . export(”mc jets antiKT.pdf”)

26

	1 Introduction
	2 Main features of Jas4pp
	3 Running Jas4pp
	4 Benchmarks
	4.1 Java vs other languages
	4.2 Jas4pp-supported scripting languages
	4.3 Evaluation of trigonometric functions

	5 Usage of Jas4pp
	5.1 Validation of Monte Carlo events
	5.2 Browsing event containers
	5.3 Interactive fit of data
	5.4 Visualisation of detector geometry
	5.5 Event display
	5.6 Data analysis using scripting languages

	6 Supported data formats
	7 Documentation
	8 Summary
	Appendix A Examples of JAS4pp analysis codes
	Appendix A.1 A simple chart
	Appendix A.2 Running over truth-level Monte Carlo events
	Appendix A.3 Running over reconstructed tracks
	Appendix A.4 Running over calorimeter clusters and constructing anti-KT jets

