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A fast method for particle tracking and triggering using small-radius silicon detectors
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We propose an algorithm, deployable on a highly-parallelized graph computing architecture, to perform rapid
reconstruction of charged-particle trajectories in the high energy collisions at the Large Hadron Collider and

future colliders. We use software emulation to show that the algorithm can achieve an efficiency in excess of
99.95% for reconstruction with good accuracy. The algorithm can be implemented on silicon-based integrated
circuits using field-programmable gate array technology. Our approach can enable a fast trigger for massive
charged particles that decay invisibly in the tracking volume, as in some new-physics scenarios related to partic-
ulate dark matter. If production of dark matter or other new neutral particles is mediated by metastable charged
particles and is not associated with other triggerable energy deposition in the detectors, our method would be

useful for triggering on the charged mediators using the small-radius silicon detectors.

Keywords: charged particle tracking; track trigger; unsu-
pervised machine learning; field-programmable gate array;
electronics

The reconstruction of charged-particle trajectories is one of
the important experimental tasks in collider physics. Most
precision measurements and searches for new physics require
reconstruction of all charged-particle trajectories with trans-
verse momentum above a threshold. This task is usually per-
formed with sophisticated software which requires significant
computing resources. This approach has been successful but
faces challenges on two related fronts. Higher data rates will
require corresponding increases in resources. Secondly, rare
signals involving charged particles may be difficult to identify
rapidly if they are not accompanied by other triggerable en-
ergy deposits in the detectors. Triggering capability for such
events has to rely on fast “track triggers”. We propose an al-
gorithm to perform rapid reconstruction and momentum es-
timation of charged-particle trajectories using the silicon de-
tectors at small radius in collider experiments. The speed is
achieved by embedding the algorithm in a highly-parallelized
graph computing architecture, build using commercial field-
programmable gate arrays (FPGAs).

Any search for new physics which involves rapid identi-
fication of high-momentum charged particles would benefit
from our proposed method. While many final states also con-
tain signatures detectable in the calorimeter and muon detec-
tion subsystems by existing methods, a class of models pre-
dict collision events containing only “disappearing tracks”,
i.e. charged particles that decay upstream of these detector
subsystems and leave no trace in them to enable event identi-
fication. In particular, we are interested in short-lived charged
particles that travel O(30 cm) before decaying invisibly. Such
particles leave a trace only in the small-radius tracking de-
tectors and disappear before even traversing the large-radius
tracking detectors, which extend to O(1 m) radius. In the lat-
ter case our proposed methodology would be most beneficial.

An example is provided by models of particulate dark mat-
ter (DM) whose interaction is mediated by metastable charged
particles. The principles of relativistic quantum field theory
and group theory, embodied in the standard model (SM) of
particle physics [1–3], have been astonishingly successful in

describing all known fundamental particles and their inter-
actions including the spectacular discovery of the Higgs bo-
son [4–7] at the Large Hadron Collider (LHC) [8, 9]. In par-
allel, the discovery of dark matter via its gravitational inter-
actions on the galactic and cosmological distance scales [10–
12] has revolutionized our understanding of large-scale struc-
ture formation since the Big Bang. All cosmological data are
consistent with DM comprising about 84% of the matter in
the universe [13]. Dwarf galaxies, comprising mostly of DM,
have recently been discovered [14]. Since DM cannot be ac-
counted for in the SM, it is plausible that DM comprises of
one or more new species of particles [15]. Production of such
particles at the LHC has been discussed in many theories of
particulate DM [16]. Elastic scattering of DM particles off
atomic nuclei in cryogenic materials, and astrophysical detec-
tion of visible particles produced in the mutual annihilation
of DM particles in outer space, are being pursued by dedi-
cated underground, ground-based and satellite-based experi-
ments [13].

We consider, as an example, the production of the
metastable charged mediators which subsequently decay to
DM particles. The known properties of the weak and electro-
magnetic interactions make it very plausible that, if the DM
particle is the lightest particle in a symmetry group multiplet,
other members of the multiplet carry electric charge [17, 18].
Therefore the LHC may serve as a DM factory through co-
pious production of the heavier, charged partners of the DM
particles. It is expected that the parent and daughter particles
are almost degenerate in mass, therefore the decay produces
negligible associated energy. Should the parent particles be
produced in pairs, as required by known conservation laws,
and they decay to DM within the volume of the experimental
apparatus, the identification of such collision events in a time
interval commensurate with the collision rate is not possible
with current technology. The challenge is the identification
of metastable charged mediators within the short time interval
of O(4µs) which is necessitated by the high collision rate, in
the presence of thousands of other charged particle trajectories
produced simultaneously.

The trajectories of charged particles produced at the LHC
are intercepted by highly granular silicon sensors, which at
central pseudorapidities are placed in concentric cylinders
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surrounding the colliding beams [19, 20]. Starting in the
mid-2020’s, the upgraded LHC running at high luminosity
(HL-LHC) will produce up to 200 proton-proton (pp) colli-
sions every 25 ns [21], each collision producing about seven
charged particles per unit of pseudorapidity [22]. The posi-
tion of each charged particle is recorded by about 10 silicon
sensors along its trajectory [8, 9], resulting in a point cloud of
≈110,000 points recorded every 25 ns in a tracking detector
covering eight units of pseudorapidity.

Reconstruction refers to the task of partitioning the point
cloud into sets of points, one point on each sensor layer, such
that the elements of each set are the points created by a single
charged particle. Ideally, the entire point cloud is partitioned
into the ≈11,000 sets associated with the respective particle
trajectories. Current reconstruction algorithms require ≈ 4
seconds on a single CPU core to reconstruct an event with
20 concurrent pp collisions [23]. With an improved HL-LHC
detector and upgraded software, the CPU time can be reduced
by about a factor of two on the same CPU core, for an event
with 200 concurrent pp collisions [23]. A significantly faster
technique, implemented using associative memories to match
the recorded patterns with stored patterns, is under construc-
tion for ATLAS [24, 25]. Due to its inherent large parallelism,
this custom electronic device has a much shorter latency of 50-
100 µs, which will be reduced further to 24 µs [26, 27]. How-
ever, it requires the simulation and storage of billions of pat-
terns for matching, and is incapable of running on the O(4µs)
time scale. A similar proposal [28, 29] has also been made
for CMS. In the ATLAS proposal [26, 27], the search would
be restricted to regions of interest already defined in the vicin-
ity of other triggerable objects in the event. In another set of
CMS proposals [30–35], a special silicon detector geometry
is exploited by arranging sensor layers as closely-spaced pairs
to obtain track stubs. These stubs are used as local tangents in
the track-finding. These stub-based approaches use the large-
radius (25 < rsensors < 110 cm) silicon detector and cannot be
used to trigger on disappearing tracks. Techniques based on
deep learning [36, 37] are applications of supervised machine
learning and require training data.

We propose an algorithm wherein the logic is executed on
a massively-parallel graph computer [38]. Since this method
requires no training on preclassified data, it represents a type
of unsupervised learning that partitions the input points into
clusters. Compared to certain other methods of unsupervised
learning, our method is not statistical and does not require
large datasets to learn from, does not involve diagonalization
of large matrices (unlike principal component analysis), and
does not require initialization values (unlike k-means cluster-
ing). Furthermore, our method only uses nearest neighbor in-
formation, whereas k-means clustering and the expectation-
maximization algorithm require a global analysis of all data
points. Thus, these unsupervised learning methods cannot be
processed in a parallelized, distributed computing architecture
as our method can. We demonstrate a novel algorithm that can
identify charged particle trajectories in a large point cloud, and
how such an algorithm lends itself to implementation on a sil-
icon integrated circuit using FPGA technology. We verify the
accuracy of the algorithm and the scalability of the FPGA im-

plementation for the task of triggering on metastable charged
mediators.

Charged particles traversing an axial magnetic field in a
cylindrical detector execute a helical trajectory, parameterized
by functions φ(r) and z(r), where φ denotes the azimuthal
angle around the cylinder axis, and z and r denote the lon-
gitudinal and radial coordinates respectively. The particle’s
momentum perpendicular to the beam (z) direction, pT ∝ BR

where B denotes the strength of the magnetic field and R is
the helix radius. Defining the curvature c = (2R)−1 and φ0

denoting the particle’s azimuthal angle at emission, we have

sin(φ −φ0) = cr (1)

If each point is recorded by a two-dimensional pixel detector,
the measurement is denoted by h with attributes of φ and z

respectively. The z coordinate is given by

z− z0 =
λ

c
(φ −φ0) =

λ

c
sin−1(cr) (2)

where the constants λ and z0 specify the cotangent of the po-
lar angle and the z-position of the particle at emission, re-
spectively. It is convenient to normalize z by the longitudi-
nal length of the sensor layers in order to convert it to a di-
mensionless angle commensurate with the azimuthal angle φ .
Upon reconstruction, the points associated with each particle’s
trajectory can be used to calculate λ , z0, φ0 and c (equiva-
lently, R), and the latter yields a measurement of the particle’s
pT using the knowledge of B.

I. GRAPH COMPUTING ALGORITHM

The point cloud may be represented by a two-dimensional
matrix of points hi,l where l denotes the sensor layer and i de-
notes the point’s ordinal number in that layer. For simplicity
we assume that all charged particles create energy deposits in
all sensor layers. In future work, we will investigate relax-
ing this assumption so that multiple charged particles may be
associated with the same point in a given layer (i.e. particle
trajectories may intersect at any sensor layer). Each point hi,l

is associated with a φ measurement coordinate (in the case of
one-dimensional sensors) or (φ ,z) measurement coordinates
(in the case of two-dimensional sensors). These coordinates
represent the silicon pixel clusters to be provided a priori

by the detector readout, similar to the scheme proposed for
CMS [30]. A cluster is defined as a group of neighbouring
pixels having energy deposits above some threshold.

One may convert the hi,l matrix into a graph by associating
links wi j,l between each point hi,l and all possible points h j,l+1

in the adjacent outer layer of sensors. According to the pro-
cedure of Ref. [38] for computing derivatives on a graph, the
values of the link weights are set to be inversely proportional
to the radial distance between consecutive layers. The combi-
natorial problem of reconstruction is equivalent to pruning the
wi j,l matrix (i.e. eliminating all spurious links) until the sur-
viving links partition the point cloud into sets of linked points
and each set is associated with a physical particle trajectory.
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Viewing each point as a node in the graph, we postulate that
a massively-parallel graph computer can be constructed using
modern FPGA technology. Each node has a small, dedicated
processor that stores a slice of the matrix hi,l , and is optimized
for addition, multiplication and sorting operations.

The solution to the combinatorial problem is obtained by
considering the graph operator�i jk,l at each node (i, l), which
is a function of first and second derivatives computed using the
triplet of points hi,l , h j,l+1 and hk,l−1. From Eqn. 1 we find

φ ′ ≡
dφ

dr
= csec(φ −φ0)

φ ′′ ≡
d2φ

dr2
= tan(φ −φ0)(φ

′)2 (3)

Particles of interest have high pT (c → 0), implying φ ′ → c

and φ ′′ → rc3. Therefore, [φ ′′−r(φ ′)3]→ 0. Similarly, Eqn. 2
yields

z′ ≡
dz

dr
= λ [1− (cr)2]−

1
2

z′′ ≡
d2z

dr2
= rc2λ [1− (cr)2]−

3
2 (4)

Therefore z′ → λ and z′′ → rc2λ for high-pT particles, and
[z′′− r(φ ′)2z′]→ 0.

The graph operator �i jk,l can be computed at each node
(i, l) (starting at l = 2 because the first layer has no preceding
layer to compute derivatives with respect to) for all combina-
tions of links to the previous and the next layer,

�i jk,l = φ ′′
i jk,l − rl(φ̄ ′

i jk,l)
3 + z′′i jk,l − rl(φ̄ ′

i jk,l)
2z̄′i jk,l (5)

where the first derivatives are computed as the link-weighted
differences of φ or z values at the two nodes connected by the
link,

φ ′
i j,l = wi j,l(φ j,l+1 −φi,l) ; φ ′

ki,l = wki,l−1(φi,l −φk,l−1)

z′i j,l = wi j,l(z j,l+1 − zi,l) ; z′ki,l = wki,l−1(zi,l − zk,l−1)

φ̄ ′
i jk,l = (φ ′

i j,l +φ ′
ki,l)/2 ; z̄′i jk,l = (z′i j,l + z′ki,l)/2 (6)

and the second derivatives are computed as the respective dif-
ferences of first derivatives at the middle (shared) node,

wi jk,l = 2/(w−1
i j,l +w−1

ki,l−1) (7)

φ ′′
i jk,l = wi jk,l(φ

′
i j,l −φ ′

ki,l) ; z′′i jk,l = wi jk,l(z
′
i j,l − z′ki,l)

We find the criterion for valid trajectories to be �i jk,l → 0 for
both one- and two-dimensional sensors, at each point of the
graph. In case the measurement resolutions in the two direc-
tions are unequal, Eqn. 5 can be optimized by de-weighting
the terms with the worse resolution.

Eqn. 5 encodes the list of all combinatorial trajectories
through node (i, l). Valid local trajectories will produce small
values of �i jk,l while invalid trajectories will produce large
values of �i jk,l . Each node is equipped with a sorting unit
that ranks the values of �i jk,l over the triplets (i, j,k) in as-
cending order. Using the sorted list of triplets, we produce a

sorted list of links such that the rank of a link is given by the
order in which the link appears for the first time in the ordered
list of triplets. The higher the rank of a link, the larger the
values of �i jk,l it contributes in combination with any other
link. Invalid links are iteratively removed by pruning the link
(either i j or ik) with the highest rank (i.e. the worst link). The
iterations at each node (i, l) are terminated when the node is
left with one link each to the next and previous layer.

For N charged particles, the computational time cost of this
algorithm involves O(N) iterations, each iteration removing
the worst link at each node. Finding the worst link requires
sorting O(N2) terms. The sorting is performed once before
the iterations, as each iteration simply drops the last link in the
list. In future work, the iterations will be optimized to prune
the worst percentile in each iteration, reducing the number of
iterations to O(logN). Note that initially there were O(N2M)
links to be pruned, where M represents the number of sensor
layers. The hardware cost is the number NM of graph nodes,
each equipped with the calculator-sorter unit.

Specialized algorithms and FPGA implementations for
sorting large lists and finding the minimum or maximum in
a list exist [39–42]. Since our algorithm can proceed from
course-grained to fine-grained sorting to find the best link
combinations, we can process 16k numbers in k sequential
steps using a 16-input sorter. It has been shown [43] that a 16-
input sorter for 32-bit integers can be implemented on a Xil-
inx Spartan 6 LX45 FPGA using 5% of its logic resources. In
comparison to this FPGA’s 43,000 logic cells, a more modern
Virtex-7 2000T FPGA has 4.4 million logic cells, a factor of
100 increase in available hardware resources. Thus, modern
FPGAs can accommodate O(2k) sorter units, which we show
below to be adequate for our implementation. The exponential
growth of data processing worldwide has created a growing
field of R&D into FPGA-based co-processors and accelera-
tors for data sorting and ranking, to augment traditional CPU-
based search algorithms. Our methodology is well-situated
to take advantage of these technical developments in FPGA
sorter architectures.

Additional hardware will be required for reading out and
pre-processing the raw detector hits into clusters and routing
this information to the track-finding circuits. We expect these
tasks to be similar to the readout and routing requirements of
the other proposals for ATLAS and CMS track triggering [24–
35, 44], and synergistic solutions for these requirements can
be pursued.

II. RESULTS

The success of this algorithm is demonstrated by the fol-
lowing emulation. We generate point clouds, shown in Fig. 1,
from the intersections of 100 particles traversing five silicon
sensor layers spaced 5 cm apart in a 2 T magnetic field, over an
azimuthal domain of width one radian. This detector geome-
try is representative of the upgraded ATLAS [45] silicon pixel
barrel detector for the HL-LHC, which will be placed at the
center of a cylindrical magnetic spectrometer of approximate
radius 1 m. The CMS tracking volume is smaller but with a
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higher magnetic field of 3.8 T [46]. Since the pp collision
region has a relatively small longitudinal length of ≈ 0.5 cm,
a projective slice of the silicon detector of longitudinal width
15 cm would certainly contain a particle’s complete trajectory
in the z-direction. Therefore, a cylindrical detector of length
1.5 m (approximately the length of the HL-LHC ATLAS pixel
barrel detector, covering four units of central pseudorapidity)
illuminated by 5,600 particles would result in about 100 par-
ticles contained in a wedge of azimuthal width one radian and
longitudinal width of 15 cm.

The transverse momentum (pT ) spectrum in the emulation
is realistically soft, modelled as an exponentially-falling dis-

tribution in p2
T , dN

d p2
T

∼ e−(pT /β )2
. The coefficient β is cho-

sen so that the pT spectrum peaks at pT = 250 MeV [47],
as shown in Fig. 2. This model is in reasonable agreement
with the measured pT spectrum [22] of soft particles from
minimum-bias pp collisions, but does not provide enough
statistics for studying the algorithm performance at high pT .
Therefore we embed a second distribution of the form dN

d pT
∼

p−2
T for pT > 500 MeV, which is also soft but with a harder tail

to model high-pT particles. The combined spectrum enables
the study of the algorithm as a function of pT .

In this first study, we have not included noise hits, sensor
inefficiencies and sensor resolution, in order to understand the
viability of our approach with a perfect pixel detector. In sub-
sequent studies we plan to investigate the impact of these ef-
fects on algorithm performance.

For simplicity we show the results of the emulation using
the azimuthal point coordinates only. The reconstructed tra-
jectories found by the algorithm are shown in Fig. 1. All 100
trajectories are reconstructed, and the high quality of recon-
struction is demonstrated in Figs. 3 and 4. Each point on a
reconstructed trajectory is compared to its progenitor particle
trajectory, and the number of correctly and wrongly assigned
points per track are shown in Figs. 3 and 4 respectively. These
rates as functions of curvature are shown in Fig. 5. These re-
sults are averaged over 160 emulated events.

We conclude that the track-finding efficiency exceeds
99.95%. The probability per track to lose a correct point
is < 0.1% and to have a spurious point assigned is (1.6 ±
0.3)%, with no significant momentum dependence. Thus, in
the unique cases mentioned in the introduction, where new
physics manifests as “disappearing tracks” with no identifi-
able signatures at radii beyond ≈ 30 cm, our methodology
can identify such tracks with high efficiency using the small-
radius tracker only. The tracks will be robust, with only about
one in 100 tracks having a spurious hit assigned. Since there
are five sensor layers, the rate of hit loss is < 0.02% and the
rate of spurious hit assignment is (0.32± 0.06)%.

III. DISCUSSION

Our algorithm can be implemented on a single FPGA in-
tegrated circuit containing an array of 100 × 5 arithmetic-
sorter units, capable of processing 100 tracks in a wedge with
5 points per track. The implementation is eminently possi-

ble on modern FPGAs containing billions of transistors. As
mentioned above, a Virtex-7 2000T FPGA with its 6.8 billion
transistors can accomodate O(2k) arithmetic-sorter units, ad-
equate for the 500 units needed for this implementation. Fur-
thermore, in comparison with the 28 nm transistor feature size
used in the manufacture of the Virtex-7 series, the latest Ver-
sal series of FPGAs from Xilinx are manufactured using 7 nm
feature size, and contain 50 billion transistors. The steadily
increasing logic resources available can only increase the pro-
cessing speed and versatility of our method’s implementation.
To process 1002 = 10,000 link pairs would require running
the 16-input sorters for four sequential iterations, which is ac-
ceptable from the latency perspective. According to Ref. [48],
the latency for a 16-input sorter is 40 ns for a 220 MHz clock
frequency on a Xilinx Virtex-5 FX130T FPGA, leading to an
estimate of 160 ns for a progressive course- to fine-grained
search for the best links.

Following the task of track pattern recognition, triggering
schemes typically require a second step of track-fitting and
momentum estimation [24–35, 44]. In our approach, momen-
tum estimation is already completed since the evaluation of
the derivatives in Eqn. 6 provides an estimate of each track’s
curvature. Therefore, subsequent processing steps for track-
fitting and momentum estimation are not required. The trigger
curvature threshold could be stored in the FPGA and applied
on the found tracks to produce a trigger decision directly.

We also note that O(120) such FPGA chips will be able to
perform full particle reconstruction for the LHC experiments,
since one FPGA is used to process a pseudorapidity interval of
≈ 0.4 and 1/6 of the azimuth. Currently, traditional software
codes running on computer clusters are expected to require
a factor of five more computing power than the budget al-
lows [49]. Our approach provides a promising solution to this
significant problem, in addition to providing track-triggering
capability.

The event-processing time for our FPGA circuit implemen-
tation can be reduced dramatically if the task is restricted to
higher pT particles. If the minimum pT of reconstructed par-
ticles was raised to 1 GeV, the width of the azimuthal wedge
processed can be reduced by a factor of 10, to 0.1 radians, and
still contain the complete trajectory of the particle. This re-
duces the number N of tracks to be processed by a factor of
10, thereby reducing the number of combinations to be sorted
by a factor of 100 at each processing node. The number of
nodes required is also reduced by a factor of 10. Thus our al-
gorithm and processing circuit has the flexibility to optimize
speed versus pT threshold in order to meet timing and FPGA
requirements.

We obtain processing-time estimates using the studies in
Ref. [48], which were based on the Xilinx Virtex-5 FX130T
FPGA. For an even-odd/bitonic merge sorting network, an
FPGA implementation has the number of stages S(n) =
O(log2 n), where n = N2 integers are completely sorted. In
Ref. [48], a latency of 100 ns was achieved for n = 64 32-bit
integers and clock frequency fclk = 220 MHz. For a triggering
device with a particle pT > 1 GeV threshold, N = 10, n= 100
and the latency extrapolates to 130 ns, which is significantly
smaller than the 4 µs upper limit set by the LHC experiments.
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FIG. 1: (left) Two examples of the point cloud generated by 100 particles in an azimuthal sector of the silicon pixel detector of width one
radian. The silicon sensors are placed in concentric circles with radial separation of 5 cm. (right) The reconstruction of 100 tracks from the
respective point clouds.
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pT ), for five sensor layers.

Thus, from the timing perspective, our approach is viable as
a high−pT triggering device for disappearing tracks. For a
pipelined implementation, the latency scales as S(n)/ fclk [48]
and can be extrapolated to other FPGA clock frequencies. The
speed is achieved by sorting directly in hardware and by the
highly parallelized, distributive nature of this method’s com-
putations.

In subsequent studies we plan to investigate the effects of
noise hits, sensor inefficiencies and sensor resolution. We em-
phasize that the algorithm has no tunable or initialization pa-
rameters and requires no training, unlike other methods of su-
pervised or unsupervised machine learning. Our approach can
be described as the partitioning of a point cloud into graphs
which minimize the total Dirichlet energy. This approach is
viable for finding all tracks using only the small-radius silicon
pixel detectors, and for fast triggering on the high momentum
ones, including those that decay and disappear immediately
thereafter.
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