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I. INTRODUCTION

A. Exotic charm spectroscopy

The excitation spectrum of a charm-anticharm state
is well described by a semi-relativistic phenomenolog-
ical potential (Cornell potential) [1], developed in the
70’s after the discovery of the J/ψ and other charmo-
nia states. It comprises a sum of three terms:

V (r) = −4

3

αs(r)

r
+ σr + δ(1/r2), (1)

where the first is a short-distance colour potential,
the second is a long-distance confinement term and
the third includes spin-spin and spin-orbit corrections.
This potential is found to be particularly accurate to
describe the spectrum of excited cc̄ and bb̄ states, as
well as predict new states before their observation.
However, in the last two decades a large number of
states has been discovered, which are compatible with
being composed by - at least- a cc̄ pair as constituent
quarks as they all decay into a final state with a char-
monium; however, they do not fit in the expected
spectrum given their mass and other properties, such
as decay and production rates or quantum numbers,
which would be expected from a pure cc̄ state. All
these states are labelled as exotic states. Fig. 1 shows
the charmonium spectrum, including all exotic states,
as it was in 2017.

B. Multiquark candidates

The first exotic state ever observed is the X(3872)
(recently renamed χc1(3872)), from data analysed by
the Belle experiment, in 2003 [2]. Its mass, 3871.69
MeV/c2, is not close to any predicted cc̄ state. Its
width is extremely narrow, and indeed it is limited by
experimental resolution to be less than 1.2 MeV/c2;
this is unexpected for a cc̄ state above the open charm
mass threshold. Moreover, the measured radiative de-
cay rates seem not match predictions [3], and it has
been observed to decay into two final states with dif-
ferent isospin (J/ψρ0 and J/ψω) with similar rates.
Given its proximity to the D0D̄∗0 mass threshold, it
is believed that the X(3872) is a good candidate for a
bound state of four quarks (tetraquark), although the
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FIG. 65 The current status of the charmonium-like spectrum. The dashed (red) horizontal lines indicate the expected states and their
masses based on recent calculations (39) based on the Godfrey-Isgur relativized potential model (40), supplemented by the calculations
in ref. (332) for high radial excitations of the P-wave states. The solid (black) horizontal lines indicate the experimentally established
charmonium states, with masses and spin-parity (JPC) quantum number assignments taken from ref. (9), and labeled by their spectroscopic
assignment. The open-flavor decay channel thresholds are shown with longer solid (brown) horizontal lines. The candidates for exotic
charmonium-like states are also shown with shorter solid (blue or magenta) horizontal lines with labels reflecting their most commonly
used names. All states are organized according to their quantum numbers given on horizontal axis. The last column includes states with
unknown quantum numbers, the two pentaquark candidates and the lightest charmonium 2−− state. The lines connecting the known
states indicate known photon or hadron transitions between them: dashed-green are γ transitions; (thick E1, thin M1), solid-magenta are
π; thin (thick) dashed-blue are η (φ); dashed-red are p; dotted-blue are ρ0 or ω; and solid-blue other ππ transitions, respectively.

lar states are expected to be near the masses of their
constituent hadrons and have appropriate S-wave JPC

quantum numbers. This is the case for the Zb(10610)
and the Zb(10650), which are within a few MeV of the
BB̄∗ and B∗B̄∗ thresholds, respectively, and applies rea-
sonably well to the Zc(3900) and Zc(4020), which are
' 10 MeV above the DD̄∗ and D∗D̄∗ thresholds, re-
spectively. However, the interpretation of these states
as molecules is controversial. Peaks at masses that are
slightly above threshold are dangerously similar to expec-
tations for kinematically induced cusps (146; 147; 148)
(see Fig. 8b and related text). Anomalous triangle singu-
larities are another mechanism that can produce above-

threshold peaks that are not related to a physical res-
onance (372). Moreover, unlike the X(3872), no evi-
dence for these states have been found in lattice QCD
calculations (373; 374; 375; 376). On the other hand,
detailed studies of the BESIII’s Zc(3900) → J/ψπ and
DD̄∗ signals (149) and Belle’s corresponding Zb sig-
nals (157; 377; 378) show that the observed peaks can
be identified as virtual states with associated poles in
the complex scattering t-matrices.

The JP = 1+ Z(4430) (now with a mass near
4478 MeV) has been proposed as a radial excitation of the
Zc(3900), comprised of a molecule-like DD̄∗(2S) configu-
ration (379; 380), where the D∗(2S) is the radial excita-

FIG. 1: The charmonium spectrum (2017). Black lines
represent observed cc̄ states, blue (magenta) lines are ob-
served neutral (charged) exotics and the red dotted lines
represent predictions according to Eq. 1. Two observed
pentaquark candidates are shown in red. Adapted from [4]

binding mechanism is still unknown (see next section).
Many of the observed exotic states are tetraquark can-
didates, and in particular the Zc states (for instance,
Zc(4430)) which are charged and must have a mini-
mal constituent quarks content of cc̄dū. Similarly, the
charged states discovered by the LHCb experiment
in the J/ψp final state must have a minimal quark
content of uudcc̄; therefore, they are pentaquark can-
didates.

More information on exotic states, along with de-
tails about the models described in the next section,
can be found in Ref. [5].

C. Models for multiquark states

Several models have been proposed to describe the
multiquark candidates. The two main interpretations
are described in this section as an example.

In the compact multiquark picture, the quarks are
tightly bound into a colour-neutral state. Large
widths are expected, as well as many isomultiplet
states with similar mass. While this model can ex-
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plain the large prompt production of some candidates,
it fails to describe the narrow width observed in many
exotic states; furthermore, no isospin partner has ever
been found.

In the molecular picture, the exotic state is de-
scribed by a mesonic - or baryonic - molecule. The
bound state is expected to have mass a little be-
low the mass threshold necessary to decay strongly
into its components; therefore, at least one couple of
quarks must change their confining partners before the
molecule can decay, and this leads to long-lived states
(i.e. narrow widths). Few states are predicted, due to
the low binding energy required to form them, which
allows the existence of only low orbital momentum
states, perhaps only S-wave. It is believed that the
binding energy is too small to account for the large
prompt production in colliders. Other models are in
principle allowed, as well as mixture of different mod-
els.

II. FIRST OBSERVATION OF
PENTAQUARKS IN Λ0

b → J/ψK−p DECAYS

A. Direct observation

The LHCb experiment has analysed Λ0
b → J/ψK−p

decays from pp collisions using the full Run 1 dataset,
which comprises 3 fb−1 of data collected at 7 and 8
TeV during 2011 and 2012 [6]. This channel is ex-
pected to be dominated by resonant Λ∗ → K−p de-
cays; however, a large structure is visible also in the
mJ/ψp spectrum. In order to investigate the nature
of said structure, it is necessary to chech whether
this can be a result of reflections in the Dalitz plot
caused by the expected Λ∗ activity. In order to do
so, 14 well established Λ∗ are taken into account in
building a six-dimensional amplitude model, which in-
cludes 5 decays angles in the helicity formalism [7]
and mKp. The amplitude fit is performed following
two strategies: first, a sum of a double-sided Hypatia
function [8] and a background component, modeled
on sidebands, is fit to the Λ0

b peak. From this fit, sig-
nal weights are extracted with the sP lot method [9].
The full amplitude model is then fit to background-
subtracted data, obtained by applying the aforemen-
tioned weights. The fit to the Λ0

b peak is shown in
Fig. 2. For the second strategy, the amplitude model
is fit to unweighted data, with an additional back-
ground component, within ±2σ of the Λ0

b mass peak.
The two strategies give compatible results.

By studying the mJ/ψp projection of the six-
dimensional fit, shown in Fig. 3, it is observed that
the fit does not describe the data well unless two more
contributions are added: a broad state, Γ = 205± 18
MeV, with mass 4380 MeV/c2, and a narrow state,
Γ = 39 ± 5 MeV, with mass 4450 MeV/c2. These
two states are labelled, respectively, Pc(4380)+ and

and pT > 250 MeV for hadrons. Each hadron must have an
impact parameter χ2 with respect to the primary pp
interaction vertex larger than 9, and must be positively
identified in the particle identification system. The K−p
system must form a vertex with χ2 < 16, as must the two
muons from the J=ψ decay. Requirements on the Λ0

b
candidate include a vertex χ2 < 50 for 5 degrees of free-
dom, and a flight distance of greater than 1.5 mm. The
vector from the primary vertex to the Λ0

b vertex must align
with the Λ0

b momentum so that the cosine of the angle
between them is larger than 0.999. Candidate μþμ−
combinations are constrained to the J=ψ mass for sub-
sequent use in event selection.
The BDTG technique involves a “training” procedure

using sideband data background and simulated signal
samples. (The variables used are listed in the
Supplemental Material [20].) We use 2 × 106 Λ0

b →
J=ψK−p events with J=ψ → μþμ− that are generated
uniformly in phase space in the LHCb acceptance, using
PYTHIA [21] with a special LHCb parameter tune [22], and
the LHCb detector simulation based on GEANT4 [23],
described in Ref. [24]. The product of the reconstruction
and trigger efficiencies within the LHCb geometric accep-
tance is about 10%. In addition, specific backgrounds from
B̄0
s and B̄0 decays are vetoed. This is accomplished by

removing combinations that when interpreted as J=ψKþK−

fall within�30 MeV of the B̄0
s mass or when interpreted as

J=ψK−πþ fall within �30 MeV of the B̄0 mass. This
requirement effectively eliminates background from these
sources and causes only smooth changes in the detection
efficiencies across the Λ0

b decay phase space. Backgrounds
from Ξb decays cannot contribute significantly to our
sample. We choose a relatively tight cut on the BDTG
output variable that leaves 26 007� 166 signal candidates
containing 5.4% background within �15 MeV (�2σ) of
the J=ψK−p mass peak, as determined by the unbinned
extended likelihood fit shown in Fig. 4. The combinatorial
background is modeled with an exponential function and
the Λ0

b signal shape is parametrized by a double-sided
Hypatia function [25], where the signal radiative tail
parameters are fixed to values obtained from simulation.
For subsequent analysis we constrain the J=ψK−p four-
vectors to give theΛ0

b invariant mass and the Λ0
b momentum

vector to be aligned with the measured direction from the
primary to the Λ0

b vertices [26].
In Fig. 5 we show the “Dalitz” plot [27] using the K−p

and J=ψp invariant masses-squared as independent vari-
ables. A distinct vertical band is observed in the K−p
invariant mass distribution near 2.3 GeV2 corresponding to
the Λð1520Þ resonance. There is also a distinct horizontal
band near 19.5 GeV2. As we see structures in both K−p
and J=ψp mass distributions we perform a full amplitude
analysis, using the available angular variables in addition
to the mass distributions, in order to determine the

resonances present. No structure is seen in the J=ψK−

invariant mass.
We consider the two interfering processes shown in

Fig. 1, which produce two distinct decay sequences:
Λ0
b → J=ψΛ�, Λ� → K−p and Λ0

b → Pþ
c K−, Pþ

c → J=ψp,
with J=ψ → μþμ− in both cases. We use the helicity
formalism [28] in which each sequential decay A → BC
contributes to the amplitude a term

HA→BC
λB;λC

DJA
λA;λB−λCðϕB; θA; 0Þ�RAðmBCÞ

¼ HA→BC
λB;λC

eiλAϕBdJAλA;λB−λCðθAÞRAðmBCÞ; ð1Þ

where λ is the quantum number related to the projection of
the spin of the particle onto its momentum vector (helicity)
and HA→BC

λB;λC
are complex helicity-coupling amplitudes

describing the decay dynamics. Here, θA and ϕB are the
polar and azimuthal angles of B in the rest frame of A (θA is
known as the “helicity angle” of A). The three arguments of
Wigner’s D matrix are Euler angles describing the rotation
of the initial coordinate system with the z axis along the
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FIG. 2: Fit to the Λ0
b peak, used to extract signal weights.

higher mass states are 9 and 12 standard deviations,
respectively.
Analysis and results.—We use data corresponding to

1 fb−1 of integrated luminosity acquired by the LHCb
experiment in pp collisions at 7 TeV center-of-mass
energy, and 2 fb−1 at 8 TeV. The LHCb detector [13]
is a single-arm forward spectrometer covering the
pseudorapidity range, 2 < η < 5. The detector includes a
high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region [14],
a large-area silicon-strip detector located upstream of a
dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes
[15] placed downstream of the magnet. Different types of
charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors [16]. Muons are
identified by a system composed of alternating layers of
iron and multiwire proportional chambers [17].

Events are triggered by a J=ψ → μþμ− decay, requiring
two identified muons with opposite charge, each with
transverse momentum, pT , greater than 500 MeV. The
dimuon system is required to form a vertex with a fit
χ2 < 16, to be significantly displaced from the nearest pp
interaction vertex, and to have an invariant mass within
120 MeV of the J=ψ mass [12]. After applying these
requirements, there is a large J=ψ signal over a small
background [18]. Only candidates with dimuon invariant
mass between −48 and þ43 MeV relative to the observed
J=ψ mass peak are selected, the asymmetry accounting for
final-state electromagnetic radiation.
Analysis preselection requirements are imposed prior to

using a gradient boosted decision tree, BDTG [19], that
separates the Λ0

b signal from backgrounds. Each track is
required to be of good quality and multiple reconstructions
of the same track are removed. Requirements on the
individual particles include pT > 550 MeV for muons,
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FIG. 3: Distribution of mJ/ψp (black) and fit projection
(red). The two shaded histograms represent the pen-
taquarks contributions.

Pc(4450)+. Their favourite JPC assignment is 3/2−

and 5/2+, though combinations (3/2+, 5/2−) and
(5/2+, 3/2−) are also possible. The singificance of
each contribution is, respectively, 9σ and 12σ.

B. Model-independent confirmation

The analysis described in Section II A is repeated
using a different, model-independent approach [10].
This consists in describing the bidimensional plane
(mKp,cos θΛ∗) by expanding the helicity angle θΛ∗ in
Legendre polynomials,

dN

d(cos θΛ∗)
=

lmax∑
l=0

alPl(cos θΛ∗), (2)

where Pl is the Legendre polynomial of order l and
the coefficients of the expansion (Legendre moments)

TueB1430
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Dalitz variables, ðm2
Kp;m

2
J=ψpÞ, or equivalently, in

ðmKp; cos θΛ� Þ, where θΛ� is the helicity angle of the
K−p system, defined as the angle between the ~pK and
−~pΛ0

b
(or −~pJ=ψ ) directions in the K−p rest frame.

The ðmKp; cos θΛ� Þ plane is particularly suited for
implementing constraints stemming from the H0 hypoth-
esis by expanding the cos θΛ� angular distribution in
Legendre polynomials Pl,

dN=d cos θΛ� ¼
Xlmax

l¼0

hPU
l iPlðcos θΛ� Þ;

where N is the efficiency-corrected and background-
subtracted signal yield, and hPU

l i is an unnormalized
Legendre moment of rank l,

hPU
l i ¼

Z þ1

−1
d cos θΛ�Plðcos θΛ� ÞdN=d cos θΛ� :

Under the H0 hypothesis, K−p components cannot con-
tribute to moments of rank higher than 2Jmax, where Jmax is
the highest spin of any K−p contribution at the given mKp

value. This requirement sets the appropriate lmax value,
which can be deduced from the lightest experimentally
known Λ� resonances for each J, or from the quark model,
as in Fig. 1. An lmaxðmKpÞ function is formed, guided by
the values of resonance masses (M0) lowered by two units
of their widths (Γ0): lmax ¼ 3 for mKp up to 1.64 GeV, 5 up
to 1.70 GeV, 7 up to 2.05 GeV, and 9 for higher masses as
visualized in Fig. 1.
Reflections from other channels, Λ0

b → Pþ
c K−, Pþ

c →
J=ψp or Λ0

b → Z−
csp, Z−

cs → J=ψK−, would introduce both
low and high rank moments (see the Supplemental Material
[16] for an illustration). The narrower the resonance,
the narrower the reflection, and the higher the rank l of
Legendre polynomials required to describe such a structure.
Selection criteria and backgrounds can also produce

high-l structures in the cos θΛ� distribution. Therefore, the
data are efficiency corrected and the background is sub-
tracted. Even though testing the H0 hypothesis involves
only two dimensions, the selection efficiency has some
dependence on the other phase-space dimensions, namely
the Λ0

b and J=ψ helicity angles, as well as angles between
the Λ0

b decay plane and the J=ψ and Λ� decay planes.
Averaging the efficiency over these additional dimensions
(Ωa) would introduce biases dependent on the exact
dynamics of the Λ� decays. Therefore, a six-dimensional
efficiency correction is used. The efficiency parametriza-
tion, ϵðmKp; cos θΛ� ;ΩaÞ, is the same as that used in the
amplitude analysis and is described in Sec. V of the
supplement of Ref. [3].
In order to make the analysis as model independent as

possible, no interpretations are imposed on the mKp
distribution. Instead, the observed efficiency-corrected

and background-subtracted histogram of mKp is used.
To obtain a continuous probability density function,
F ðmKpjH0Þ, a quadratic interpolation of the histogram
is performed, as shown in Fig. 2. The essential part of
this analysis method is to incorporate the l≤lmaxðmKpÞ
constraint on the Λ� helicity angle distribution:
F ðmKp; cos θΛ� jH0Þ ¼ F ðmKpjH0ÞF ðcos θΛ� jH0; mKpÞ,
where F ðcosθΛ� jH0;mKpÞ is obtained via linear inter-
polation between neighboring mKp bins of

F ðcos θΛ� jH0; mKp
kÞ ¼

XlmaxðmKp
kÞ

l¼0

hPN
l ikPlðcos θΛ� Þ;

where k is the bin index. Here, the Legendre moments hPN
l ik

are normalized by the yield in the corresponding mKp bin,
since the overall normalization ofF ðcos θΛ� jH0; mKpÞ to the
data is already contained in the F ðmKpjH0Þ definition. The
data are used to determine

hPU
l ik ¼

Xncandk

i¼1

ðwi=ϵiÞPlðcos θiΛ� Þ:

Here, the index i runs over selected J=ψpK− candidates in
the signal and sideband regions for the kth bin of mKp
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FIG. 1. Excitations of the Λ baryon. States predicted in Ref. [8]
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b → J=ψpK− decays is shown by long horizontal
lines (blue). The lmaxðmKpÞ filter is shown as a stepped line (red).
All contributions from Λ� states with JP values to the left of the
red line are accepted by the filter. The filter works well also for
the excitations of the Σ baryon [8,12] (not shown).

PRL 117, 082002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
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FIG. 4: Definition of lmax, used in the Legendre ex-
pansion, as function of both predicted (black) and well-
established (green) Λ∗ resonances available for a certain
value of mK−p. The blue lines define the mass range. The
red line shows the lmax filter.

are defined as

al =
2l + 1

2

∫ +1

−1

dN

d(cos θΛ∗)
Pl(cos θΛ∗) d cos θΛ∗ . (3)

The moments al are extracted from efficiency-
corrected, background-subtracted data by quadrati-
cally interpolate the mKp histogram. Under the hy-
pothesis that all Λb → J/ψpK− decays proceeds via
intermediate Λ+, Σ∗ or non resonant K−p, each com-
ponent cannot contribute to moments of rank higher
than 2Jmax, where Jmax is the highest spin of any
K−p contribution at a given mKp value; therefore,
lmax in Eq. 2 depends on the spin of the intermediate
resonances that might be available at a certain value
of the K−p mass. This is summarised in Fig. 4.

If exotic contributions are present, then the hypoth-
esis under which the calculation of the Legendre mo-
ments has been performed will not be valid; therefore,
the mJ/ψp distribution will not be well described by
the expansion. This is indeed what is observed, as
can be seen in Fig. 5: the discrepance is calculated
using a second Legendre expansion with an unphys-
ically large lmax = 31 which describes the statistical
significant features of data; its significance is calcu-
lated to be 9σ, thus confirming the presence of contri-
butions to Λb → J/ψpK− decays, either due to exotic
resonances or rescattering effects. The latter are in-
vestigated and excluded in separate results, described
in the next Section.

(ncandk is their total number), ϵi ¼ ϵðmKp
i; cos θΛ� i;Ωa

iÞ is
the efficiency correction, and wi is the background sub-
traction weight, which equals 1 for events in the signal
region and −βnsigcand=nsidecand for events in the sideband region.
Values of hPU

l ik are shown in Fig. 3.
Instead of using the two-dimensional (2D) distribution of

ðmKp; cos θΛ� Þ to evaluate the consistency of the data with
the H0 hypothesis, now expressed by the l ≤ lmaxðmKpÞ
requirement, it is more effective to use the mJ=ψp (mJ=ψK)
distribution, as any deviations fromH0 should appear in the

mass region of potential pentaquark (tetraquark) resonan-
ces. The projection of F ðmKp; cos θΛ� jH0Þ onto mJ=ψp

involves replacing cos θΛ� with mJ=ψp and integrating over
mKp. This integration is carried out numerically, by
generating large numbers of simulated events uniformly
distributed in mKp and cos θΛ� , calculating the correspond-
ing value of mJ=ψp, and then filling a histogram with
F ðmKp; cos θΛ� jH0Þ as a weight. In Fig. 4, F ðmJ=ψpjH0Þ is
compared to the directly obtained efficiency-corrected and
background-subtracted mJ=ψp distribution in the data.
To probe the compatibility of F ðmJ=ψpjH0Þ with the

data, a sensitive test can be constructed by making a
specific alternative hypothesis (H1). Following the method
discussed in Ref. [14], H1 is defined as l ≤ llarge, where
llarge is not dependent on mKp and large enough to
reproduce structures induced by J=ψp or J=ψK contribu-
tions. The significance of the lmaxðmKpÞ ≤ l ≤ llarge
Legendre moments is probed using the likelihood ratio
test,

Δð−2 lnLÞ ¼
Xnsigcandþnsidecand

i¼1

wi ln
F ðmJ=ψp

ijH0Þ=IH0

F ðmJ=ψp
ijH1Þ=IH1

;

with normalizations IH0;1
determined via Monte Carlo

integration. Note that the explicit event-by-event efficiency
factor cancels in the likelihood ratio, but enters the like-
lihood normalizations. In order for the test to have optimal
sensitivity, the value llarge should be set such that the
statistically significant features of the data are properly
described. Beyond that the power of the test deteriorates.
The limit llarge → ∞ would result in a perfect description of
the data, but a weak test since then the test statistic would
pick up the fluctuations in the data. For the same reason,
it is also important to choose llarge independently of the
actual data. Here, llarge ¼ 31 is taken, one unit larger
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FIG. 5: Efficiency-corrected and background-subtracted
mJ/ψp distribution, with the Legendre expansion (blue)
and the second unphysical expansion with lmax = 31
(black dotted).

III. RESCATTERING EFFECTS

The narrow structure observed by LHCb with mass
4450 MeV/c2 happens to be located exactly at the
χc1p mass threshold. This can be a signal of a kine-
matic enhancement due to rescattering effects [11, 12],
which can happen if the Λ0

b decays to χc1Λ∗, and then
the proton from Λ∗ → K−p scatters with the χc1 via
photon exchange, forming the J/ψp final state. In
order to have a threshold enhancement all interme-
diate particles (Λ∗, p, χc1) must be on shell; further-
more, the Λ∗ mass must lie within a kinematically
allowed range and amongst the excited Λ states, one
happens to satisfy this requirement: Λ(1890). The
LHCb Collaboration has published two papers aiming
at confirming or denying this effect regarding the pen-
taquark candidate P+

c (4450), and they are described
below.

A. Search for P+
c → χc1p

If P+
c (4450) is a real resonance, then it could in

principle decay to χc1p, thus neglecting final-state in-
teractions between χc1 and p. The LHCb Collabo-
ration has analysed the full Run 1 dataset search-
ing for resonant structures in Λ0

b → χc1pK
− de-

cays [13]. The number of observed signal decays,
N(Λ0

b → χc1pK
−) = 453 ± 25, is not large enough to

allow an analysis of the mχc1p spectrum; this will be
updated with the addition of Run 2 data. The fit used
to extract the signal yield is shown in Fig 6. Nonethe-
less, this first investigation on this channel lead to the
first observation of the decays Λ0

b → χc1,2pK
− and

TueB1430



4 Flavor Physics and CP Violation Conference, Victoria BC, 2019

Prior to the training, several modifications are made to
the simulated samples to better match the kinematic
distributions observed in data. First, the simulated Λ0

b →
J=ψpK− events are weighted according to the six-dimen-
sional amplitude model developed in Ref. [4]. Second, a
multidimensional gradient-boosting algorithm [36] is used
to weight the simulated Λ0

b → J=ψpK− decays such that
the distributions of Λ0

b pseudorapidity, the number of
tracks in the event, and the GBDT training variables (apart
from those related to particle identification) match those
observed in the preselected background-subtracted Λ0

b →
J=ψpK− data sample. These weights are also applied to the
simulated Λ0

b → χcJpK− samples. Finally, the simulated
distributions of the particle identification variables for the
muon, proton, and kaon candidates are resampled from
data calibration samples (D�þ → Dπþ, J=ψ → μþμ−,
Λ → pπ−, and Λþ

c → pK−πþ decays) in bins of track p,
pT and the number of tracks.
The optimal working point for the GBDT response is

chosen by maximizing a figure of merit, S=
ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where

S ¼ S0ϵ and B are the expected signal and background
yields within �20 MeV=c2 of the known Λ0

b baryon mass
[33], S0 is the signal yield determined from data without
any cut on the GBDT response, and ϵ is the relative
efficiency of the GBDT selection, evaluated using the
simulated sample. The Λ0

b mass sidebands from the data
are used to estimate B. The same GBDTand working point
are used for the Λ0

b → J=ψpK− normalization mode. The
GBDT selection efficiencies are 78%, 75%, and 68% for
the Λ0

b → χc1pK−, Λ0
b → χc2pK−, and Λ0

b → J=ψpK−

channels, respectively.
After applying the GBDT requirement, ð2.9� 0.4Þ% of

the selected events contain multiple Λ0
b → χcJpK− candi-

dates. In approximately 80% of these cases, the same
J=ψpK− combination is combined with an additional,
unrelated, photon in the event. The results reported in this
Letter retain all candidates and the reported branching
fractions are corrected to account for this. The correction
factor is 0.993� 0.006 (0.986� 0.009) for Λ0

b → χc1pK−

(Λ0
b → χc2pK−) decays, which is evaluated using a combi-

nation of the simulated samples and pseudoexperiments.
The larger width of the Λ0

b → χc2pK− component leads to
the larger uncertainty on the correction factor. For the
selected Λ0

b → J=ψpK− sample, ð0.75� 0.05Þ% of the
events have multiple candidates.
Extended unbinned maximum-likelihood fits are per-

formed to the distributions ofmðχc1pK−Þ andmðJ=ψpK−Þ
for the signal and normalization modes, respectively. The
fit models consist of signal components, each described
by the sum of two Crystal Ball (CB) functions [37] with a
common mean and power-law tails on both sides, and a
linear combinatorial background component. Because of
the small χc0 → J=ψγ branching fraction [33] the contri-
bution from the χc0 mode is negligible. Several parameters
of the signal shapes are determined from fits to simulated
samples. These include the tail parameters of the CB
functions, the ratio of the widths of the two CB functions,
and their relative normalizations. The Λ0

b → χc2pK− signal
component is shifted to a lower mass in mðχc1pK−Þ due to
the χc1 mass constraint. The signal and background yields,
the gradient of the background shape, and the mean of each
signal component are free parameters in the fit to data. In
addition, the widths of the χc1 and χc2 components in the fit
to mðχc1pK−Þ are allowed to differ from simulation by a
common scaling factor, while the width of the narrower CB
function in the Λ0

b → J=ψpK− signal component is a free
parameter in the fit to data. The results of these fits are
shown in Fig. 2. The measured yields are 453� 25,
285� 23, and 29815� 178 for the χc1, χc2, and J=ψ
modes, respectively. The significance of each of the signal
components in the fit to mðχc1pK−Þ is calculated using
Wilks’ theorem [38]. This gives statistical significance of
29 and 17 standard deviations for the decay modes with χc1
and χc2, respectively.
Simulated samples are used to determine, for each decay

mode, the reconstruction and selection efficiency as a
function of the Dalitz plot coordinates [39], m2ðpK−Þ
and m2ð½cc̄�pÞ. This approach focuses on the dimensions
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FIG. 6: The mχc1pK− distribution with overlaid fit (blue)
and its components. Notice that, due to the χc1 mass
constraint, the Λ0

b peak is shifted towards low masses when
decaying via a final state containing a χc2.

first measurement of their relative branching fraction:

B(Λ0
b → χc1pK

−)

B(Λ0
b → J/ψpK−)

= 0.242± 0.014± 0.013± 0.009,

B(Λ0
b → χc2pK

−)

B(Λ0
b → J/ψpK−)

= 0.248± 0.020± 0.014± 0.009.

B. Analysis of the Cabibbo-suppressed channel

An observation of the Pc(4450)+ → J/ψp decay
from Λ0

b → J/ψpπ− decays would not only confirm
the existence of an unexpected contribution, but also
its exotic nature. In fact, while the Cabibbo-favoured
channel is dominated by Λ∗ → pK− decays, the
Cabibbo-suppressed channel is dominated by inter-
mediate excited nucleons decays, N∗ → pπ−. The
masses of the known excited nucleons all lie outside
the range that would allow a kinematic enhancement
due to rescattering; therefore, this mechanism would
be much harder to accommodate in this picture.

The analysis is performedy with the full LHCb
Run 1 dataset [14]. The analysis strategy is similar to
the one described in Section II A: 14 well established
N∗ resonances are used to build a six-dimensional
amplitude model, using five decay angles in the he-
licity formalism and the π−p invariant mass; thanks
to the ∆I = 1/2 rule [15], the Λ∗ → pπ− contri-
butions are suppressed. This model is then fit to
background-subtracted data, obtained by extracting
signal weights with the sP lot technique via a fit to
the Λ0

b peak. Analogously to the Cabibbo-favoured
case, the amplitude fit is found to be significantly im-
proved when the two previously observer pentaquark
candidates, Pc(4380)+ and Pc(4450)+, along with a
Zc(4200)− → J/ψπ− contribution, are added to the
fits. The fit is shown in Fig. 7, including the cut

analysis by the Bonn-Gatchina group [22,23] and is used to
estimate systematic uncertainties.
The limited number of signal events and the large

number of free parameters in the amplitude fits prevent
an open-ended analysis of J=ψp and J=ψπ− contributions.
Therefore, the data are examined only for the presence of
the previously observed Pcð4380Þþ, Pcð4450Þþ states [5]
and the claimed Zcð4200Þ− resonance [16]. In the fits, the
mass and width of each exotic state are fixed to the reported
central values. The LS couplings describing Pþ

c → J=ψp
decays are also fixed to the values obtained from the
Cabibbo-favored channel. This leaves four free parameters
per Pþ

c state for the Λ0
b → Pþ

c π
− couplings. The nominal

fits are performed for the most likely ð3=2−; 5=2þÞ JP

assignment to the Pcð4380Þþ, Pcð4450Þþ states [5]. All
couplings for the 1þ Zcð4200Þ− contribution are allowed to
vary (ten free parameters).
The fits show a significant improvement when exotic

contributions are included. When all three exotic

contributions are added to the EM N�-only model, the
Δð−2 lnLÞ value is 49.0, which corresponds to their
combined statistical significance of 3.9σ. Including the
systematic uncertainties discussed later lowers their sig-
nificance to 3.1σ. The systematic uncertainties are included
in subsequent significance figures. Because of the ambi-
guity between the Pcð4380Þþ, Pcð4450Þþ and Zcð4200Þ−
contributions, no single one of them makes a significant
difference to the model. Adding either state to a model
already containing the other two, or the two Pþ

c states
to a model already containing the Zcð4200Þ− contribution,
yields significances below 1.7σ [0.4σ for adding the
Zcð4200Þ− after the two Pþ

c states]. If the Zcð4200Þ−
contribution is assumed to be negligible, adding the two Pþ

c
states to a model without exotics yields a significance of
3.3σ. On the other hand, under the assumption that no Pþ

c
states are produced, adding the Zcð4200Þ− to a model
without exotics yields a significance of 3.2σ. The signifi-
cances are determined using Wilks’ theorem [24], the
applicability of which has been verified by simulation.
A satisfactory description of the data is already reached

with the RMN� model if either the two Pþ
c , or the Z−

c , or all
three states, are included in the fit. The projections of the
full amplitude fit onto the invariant masses and the decay
angles reasonably well reproduce the data, as shown in
Figs. 2–5. The EM N�-only model does not give good
descriptions of the peaking structure in mJ=ψp observed for
mpπ > 1.8 GeV [Fig. 3(b)]. In fact, all contributions to
Δð−2 lnLÞ favoring the exotic components belong to this
mpπ region. The models with the Pþ

c states describe the
mJ=ψp peaking structure better than with the Zcð4200Þ−
alone (see Supplemental Material [25]).
The model with all three exotic resonances is used when

determining the fit fractions. The sources of systematic
uncertainty are listed in Table II. They include varying the
masses and widths of N� resonances, varying the masses
and widths of the exotic states, considering N� model
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FIG. 7: Distribution of mJ/ψp for and overlaid fits, with
(red) and without (green dotted) the exotic contributions.
The contribution from the two pentaquarks are shown as
shaded, while the Zc(4200)− as the purple histogram.

mpπ− > 1.8 GeV/c2 in order to enhance the exotic
components. The combined significance obtained by
adding the three exotic contributions is calculated to
be 3.1σ. The production rates are found to be com-
patible with expectations based on the analysis of the
Cabibbo-favoured channel.

IV. RECENT SEARCHES FOR STRANGE
AND BEAUTY PENTAQUARKS

In principle, pentaquarks can exist also in the
strange and the beauty sector. The most recent
searches are presented in the following sections.

A. Search for s-flavoured pentaquarks

The Belle Collaboration has analysed 915 fb−1

of data collected at the Υ(4S) and Υ(5S) peaks
to search for strange-flavoured pentaquarks in the
strange-flavour analogue channel of the P+

c discovery,
i.e. Λ+

c → φpπ0 [16]. The hypothetic P+
s could be ob-

served as a peak in the mφp spectrum, provided that
the same production mechanism as the charm pen-
taquarks holds and if its mass is mP+

s
< mΛ+

c
−mπ0 .

To extract the signal yield, a bidimensional fit to the
variables mK+K−pπ0 and mK+K− is performed. The
number of signal events is found to be 148.4±61.8. A
sum of a relativistic Breit-Wigner and a phase space
distribution determined from simulation is then fitted
to the background-subtracted mφp spectrum, in a 20
MeV/c2 mass window around the φ peak, in order to
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of the pK−πþ candidates is shown in Fig. 3. The signal is
modeled with the sum of three Gaussian functions, and the
combinatorial background is modeled with a linear func-
tion. There are 1468435� 4816 signal candidates and
567855� 815 background candidates in the Λþ

c signal
region.
The ratio of branching fractions is calculated as

BðΛþ
c → final stateÞ

BðΛþ
c → pK−πþÞ ¼ YSig=εSig

YNorm=εNorm
; ð2Þ

where Y represents the observed yield in the signal region
of the decay of interest and ε corresponds to the recon-
struction efficiency as obtained from the MC simulation.
For the ϕpπ0 final state, we include Bðϕ → KþK−Þ ¼
ð48.9� 0.5Þ% [17] in εsig of Eq. (2). The reconstruction
efficiencies are ð2.165� 0.007Þ%, ð2.291� 0.008Þ%, and
ð16.564� 0.023Þ% for ϕpπ0, nonresonant KþK−pπ0, and
pK−πþ final states, respectively, where the errors are due to
MC statistics only. The ratio εSig=εNorm is corrected by a
factor 1.028� 0.018 to account for small differences in
particle identification efficiencies between data and simu-
lation. This correction is estimated from a sample ofD�þ →
D0ð→ K−πþÞπþ decays. For the ϕpπ0 final state, the
ratio is

BðΛþ
c → ϕpπ0Þ

BðΛþ
c → pK−πþÞ ¼ ð1.538� 0.641þ0.077

−0.100Þ × 10−3:

Whenever two or more uncertainties are quoted, the
first is statistical and the second is systematic. Using
BðΛþ

c → pK−πþÞ ¼ ð6.46� 0.24Þ% [20], we obtain

BðΛþ
c → ϕpπ0Þ ¼ ð9.94� 4.14þ0.50

−0.65 � 0.37Þ × 10−3;

where the third uncertainty is that due to the branching
fraction BðΛþ

c → pK−πþÞ.
Since the significances are below 3.0 standard deviations

for both ϕpπ0 signal and KþK−pπ0 nonresonant decays,
we set upper limits on their branching fractions at 90% con-
fidence level (C.L.) using a Bayesian approach. The limit is
obtained by integrating the likelihood function from zero to
infinity; the value that corresponds to 90% of this total area
is taken as the 90% C.L. upper limit. We include the
systematic uncertainty in the calculation by convolving the
likelihood distribution with a Gaussian function whose
width is set equal to the total systematic uncertainty. The
results are

BðΛþ
c → ϕpπ0Þ < 15.3 × 10−5;

BðΛþ
c → KþK−pπ0ÞNR < 6.3 × 10−5.

These are the first limits on these branching fractions.
To search for a putative Pþ

s → ϕp decay, we select
Λþ
c → KþK−pπ0 candidates in which mðKþK−Þ is within

0.020 GeV=c2 of the ϕ meson mass [17] and plot the
background-subtracted mðϕpÞ distribution (Fig. 4). This
distribution is obtained by performing 2D fits as discussed
above in bins of mðϕpÞ. The data shows no clear evidence
for a Pþ

s state. We set an upper limit on the product
branching fraction BðΛþ

c → Pþ
s π

0Þ × BðPþ
s → ϕpÞ by fit-

ting the distribution of Fig. 4 to the sum of a RBW function
and a phase space distribution determined from a sample of
simulated Λþ

c → ϕpπ0 decays. We obtain 77.6� 28.1 Pþ
s

events from the fit, which gives an upper limit of

BðΛþ
c → Pþ

s π
0Þ × BðPþ

s → ϕpÞ < 8.3 × 10−5

at 90% C.L. This limit is calculated using the same
procedure as that used for our limit on BðΛþ

c → ϕpπ0Þ.
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FIG. 8: Fit to the mφp spectrum for background-
subtracted Λ+

c → φpπ0 decays in a mass window of 20
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while the phase space component in red.

search for a putative P+
s peak. No clear evidence is

found, and an upper limit at 90% CL is set on the
product of the branching fractions, normalised using
Λ+
c → pK−π+ decays,

B(Λ+
c → P+

s π
0)× B(P+

s → φp) < 8.3× 10−5.

The fit to the mφp spectrum is shown in Fig. 8. As a
reference, for the Pc(4450)+ discovery the analogous
quantity reads:

B(Λ0
b → P+

c K
−)×B(P+

c → J/ψp) = (1.3±0.4)×10−5.

B. Search for b-flavoured pentaquarks

According to the Skyrme model [17], the heavier
the consituent quarks are, the more tightly bound
the pentaquark state is; furthermore, no search for b-
flavoured pentaquark exists in literature. The LHCb
Collaboration has analysed the full Run 1 dataset to
search for four possible, weakly-decaying b-flavoured
pentaquarks [18]. The weak decay channels, quark
contents and mass search windows are summarised in
Tab. I. The mass windows are chosen to be below the
strong decays thresholds, and the subscript on each
state indicates the final state the pentaquark would
predominantly decay into if it had sufficient mass to
decay strongly in those states. While there are many
possible decay modes of these states, the analysis is
focussed only on b → cc̄s processes in order to have
a J/ψ in the final state, for which the LHCb experi-
ment has large reconstruction efficiencies and reduced
backgrounds.

No signal is observed for any of the final states
considered, and upper limits at 90% CL are set on
the products of the production cross sections and the

TABLE I: Quark content of the b-flavoured pentaquarks,
weak decay modes and mass search windows (in MeV/c2)

Quark content Decay Mode Search window

b̄duud P+
B0p
→ J/ψK+π−p 4668-6220

būudd P−
Λ0
b
π− → J/ψK−π−p 4668-5760

bd̄uud P+

Λ0
b
π+ → J/ψK−π+p 4668-5760

b̄suud P+
B0

sp
→ J/ψφp 5055-6305
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Figure 6: Upper limits on R at 90% CL for (a) J/ψK+π−p, (b) J/ψK−π−p, (c) J/ψK−π+p,
and (d) J/ψφp final states.
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FIG. 9: Upper limits at 90% CL on σ × B for the four b-
flavoured pentaquarks as a function of the invariant mass
of their respective final state.

branching ratios, normalised using Λ0
b → J/ψpK− de-

cays. The upper limits as a function of the invariant
masses in the search windows are shown in Fig. 9.

V. OBSERVATION OF PENTAQUARKS IN
Λ0
b → J/ψK−p DECAYS (RUN 1 AND RUN 2)

The analysis presented in Section II A, published in
2015, was updated including the full LHCb Run 2
dataset collected in the period 2015-2018 with a
centre-of-mass energy of 13 TeV, resulting in a total
integrated luminosity of 9 fb−1 [19]. The threefold in-
crease in luminosity, an improved data selection and
the increase in the production cross-section passing
from 7-8 TeV to 13 TeV gives a ninefold increase in
statistics. The same amplitude model used in the 2015
analysis is fit to the new dataset, with the new data

TABLE II: Pentaquarks properties, from the fit in Fig. II.

State Mass [MeV/c2] Width [MeV/c2]

Pc(4312)+ 4311.9± 0.7+6.8
−4.5 9.8± 2.7+3.7

−4.5

Pc(4440)+ 4440.3± 1.3+4.1
−4.7 20.6± 4.9+8.7

−10.1

Pc(4457)+ 4457.3± 0.6+4.1
−1.7 6.4± 2.0+5.7

−1.9
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selection, and the results are found to be compatible;
however, the increase in available statistics allows for
new features to be observed in the mJ/ψp spectrum.

A new narrow structure emerges at 4.3 GeV/c2, and
the former Pc(4450)+ peak is resolved into two narrow
peaks.

The new structures are so narrow that they cannot
be caused by artificial reflections in the Dalitz plot; for
this reason, they are analysed with a one-dimensional
fit rather than full amplitude fit. The latter is still nec-
essary to measure the quantum numbers, and it will
be done in a separate study given the computational
difficulties linked with the level of precision required.
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FIG. 10: Fit to the weighted mJ/ψp distribution. The
vertical lines indicate the two mass thresholds.

The fit model is a sum of three Breit-Wigner func-

tions and a sixth-order polynomial background. To
enhance the signal sensitivity in data, weights are ap-
plied to the cos θPc (cosine of P+

c helicity angle) of
each candidate: they are calculated as the inverse
of the expected background at each value of cos θPc ,
which is approximately the inverse of the candidates
density as the signal represents just a few percent of
the whole dataset. This is justified by noticing that
candidates with Λ∗ will have predominantly positive
cos θPc

. The fit results are shown in Table II and in
Fig. 10. The latter shows also the mass thresholds
of the Σ+

c D̄
(∗)0 systems, and it can be noticed that

the masses of the narrow peaks are just below these
thresholds, which is what the molecular interpretation
of these states would predict.

VI. CONCLUSIONS

The field of exotic spectroscopy is extremely rich
and productive. Several observations and searches for
pentaquark states have been performed in the last 4
years. This is still quite a recent discovery, and pos-
sibly the beginning of a new era in both observation
of new states and understanding of the QCD binding
mechanisms.

Finally, regarding the interpretation of the pen-
taquark states, although their real nature is still un-
known and the compact pentaquark model is still
strictly not ruled out, the LHCb Run 2 update mea-
surement provides the strongest evidence so far to-
wards a molecular interpretation of the P+

c states,
given by their narrow widths and masses close to the
relative thresholds.
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