LCLS Beam Diagnostics

International Beam Instrumentation Conference 2014

Henrik Loos
September 17, 2014
• Overview
• LCLS accelerator diagnostics
• LCLS-II
• Charge and beam position
• Beam profile measurement
• Bunch length diagnostics
• Summary
LCLS and LCLS-II Beam Parameters

<table>
<thead>
<tr>
<th></th>
<th>LCLS</th>
<th>LCLS-II</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>2856 MHz</td>
<td>1300 MHz</td>
<td>MHz</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>120 Hz</td>
<td>1 – 120 Hz</td>
<td>10^6 Hz</td>
</tr>
<tr>
<td>Electron energy</td>
<td>4.3 – 13.6 GeV</td>
<td>2.4 – 15.4 GeV</td>
<td>4 GeV</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>200 & 1000 pC</td>
<td>20 – 250 pC</td>
<td>10 – 100 pC</td>
</tr>
<tr>
<td>Bunch length</td>
<td>20 µm (rms)</td>
<td>< 2 – 50 µm</td>
<td>8 µm (rms)</td>
</tr>
<tr>
<td>Emittance norm.</td>
<td>1.2 µm</td>
<td>0.13 – 0.5 µm</td>
<td>0.4 µm</td>
</tr>
<tr>
<td>X-ray energy</td>
<td>0.83 – 8.3 keV</td>
<td>0.25 – 10.5 keV</td>
<td>0.2 – 5 keV</td>
</tr>
<tr>
<td>X-ray pulse energy</td>
<td>< 2 mJ</td>
<td>< 4.7 mJ</td>
<td>< 2.2 mJ</td>
</tr>
<tr>
<td>X-ray pulse length</td>
<td>230 fs (FWHM)</td>
<td>< 5 – 500 fs (FWHM)</td>
<td>60 fs (FWHM)</td>
</tr>
</tbody>
</table>
LCLS Diagnostics Development

- Machine tuning optimization
 - Fast wire scanner
- High brightness beam issues
 - YAG screen (PSI)
- New capabilities
 - SXRSS, overlap diagnostics

- Extended machine parameters
 - Low charge mode
 - Mid IR spectrometer
 - XTCAV
- LCLS-II
 - BPM µTCA receiver
 - RF-BPM (PAL)
LCLS-II Diagnostic Challenges

- Single bunch properties like LCLS-I

- High beam power
 - Put (almost) nothing into the full rate beam
 - Low rate (diagnostic) or variable rate (post-spreader) lines for most invasive diagnostics

- High beam rate
 - Fast DAQ needed, FPGA processing, low latency networks for feedback, MPS, etc.
 - Single shot detector signals

- Low charge mode
 - BPM & R-BLM sensitivity
Charge Measurement Upgrade

• Existing toroid electronics issues
 - only local calibration
 - up to 15% read-back variation
 - Up to 4% noise at 150 pC from up to 500’ cable run (BPMs give 0.05%)

• New electronics and DAQ
 - Add remote calibrator to in-tunnel amp
 - Use differential cable
 - Gated charge amplifier CAEN QDCV965A already used for PMTs

• Get ~1% agreement for absolute charge between two toroids

• Noise of 0.2% to 0.5%

• LCLS-II requires high dynamic range average current measurement, use commercial solution (Bergoz Turbo-ICT)
μTCA Strip-line BPM Electronics

- Part of SLAC μTCA development
 - Initiated for NC LCLS-II project
- New AFE, use 300 MHz rather than 140 MHz, also higher BW
- Uses SIS8300 16 bit ADC at 109 MHz
- Up to 8 BPMs per crate possible

Poster C. Xu, WEPD17

Courtesy S. Hoobler
LCLS Test Installation

- Implemented for 4 strip-line BPMs in L3 linac
- Operational for almost 2 years without issues
- Achieve same resolution as from existing electronics
X-Band RF Cavity BPM

- PAL-SLAC collaboration
- 11.424 GHz (4x S-band) for flexible bunch pattern
- New receiver with coax input and µTCA
- Test BPM next to ANL undulator RF-BPM
- Preliminary results already meet <1 µm LCLS-II requirement
- Noise issue with power supply resolved, awaiting beam test
LCLS-II BPMs

• Most critical performance at 10 pC low charge limit
• Strip-line BPMs (30 µm) for most of beam transport
• RF cavity BPMs in special locations, X, S, or L band
 - Energy measurement
 - Orbit for fast feedback
 - Wire scanner jitter correction
 - Undulators
• Cold button BPMs inside cryo-modules (100 µm)
Fast Wire Scanner

- COTR makes WS critical for LCLS beam tuning
- LCLS uses existing SLC design
 - Stepper motor driven, mm/s speed
 - Vibrations from wire card support on single side and stepper motor
 - 45° actuator with 3 wires for x, y, u plane
- Fast wire scanner development
 - Linear motor, up to m/s speed possible
 - 2 bellows to cancel vacuum forces
 - Also 45° scan orientation, 2” stroke for 3 wires
 - Encoder with sub-µm resolution
FWS Motion Profile

- Motion profile to minimize scan time
- Beam synchronous data acquisition of encoder position and beam loss signal
- Makes motion stability not critical

- SLC-style 4 location emittance measurement for x, y, and coupling takes 8 min
- Expect < 30 sec with FWS
- Upgrade project started for LCLS
FWS Magnetic Shielding

- First prototype installed upstream of undulators
- Observed significant drop in FEL during scan
- Related to ~20 μTm magnetic field from linear motor

- μ-metal shielding was added
- Now reduced to ~1 μTm
- Tolerance limit for LCLS & LCLS-II
LCLS-II FWS

- MW beam power
- Carbon wire for least beam loss
- Scan simulation with typical beam parameters of wire heating
- Stays below safe fluence studies established for SLC

- Speed of 400 mm/s already demonstrated with FWS
- Higher speed requires longer stage
- May add thick wire for beam halo measurement
Injector OTR Measurements

- Straight beam path, no COTR affect on beam size
 - OTR and wire scanner emittance agree
- Laser heater chicane
 - introduces small R56, see 2x COTR enhancement, emittance 25% too small
 - Energy modulation from laser interaction in undulator
 Enhancement reduced to 20%
 - See laser 2. harmonic
 - Emittance still underestimated
- Even small enhancements of COTR can affect emittance measurements

see also F. Zhou et al., FEL14, THP031
SwissFEL Profile Monitor

- PSI development
- Installed at SLAC for GeV beam test at factor 10^5 COTR location
- YAG viewing geometry
 - Smallest spot size
 - COTR reflected away from CCD
 - Tilted focal plane needs tilted CCD

Talk R. Ischebeck, TUCYB3
Commissioning Results

- Saturation of YAG tested
 - None at 20 pC, indication at 180 pC
- Test for coherent enhancement
 - Scan RF phase to change bunch length
 - COTR enhancement reduced from 10^5 to small factor at full compression or 10’s of percent in normal setup
- Soft X-Ray Self Seeding (500 – 1000 eV)
- Both beams diverted by chicanes
- Need diagnostics to measure both
- Combine wire scanner and YAG screen
- Wire 40 µm carbon, YAG 20 µm thick
- View both with CCD camera
- ~10 µm position measurement needed
Overlap Diagnostics Performance

- Move supporting girder to scan wire and find e-beam position
- Move x-ray mirror to steer x-rays onto YAG, find position
- Use mirror response matrix to overlap beam, get seeding
- CR effects are serious issue
Mid-IR Spectrometer

- C*R based bunch length measurement of LCLS um and sub-um beams needs 1-20 µm
- Single shot preferred
- KRS-5 prism based spectrometer developed
- Images OTR from foil onto 128 element pyroelectric line array

- Transfer function determined by fitting spectra at different bunch lengths to simulated bunch spectra
MIR Spectrometer Results

- Form-factor extrapolation for $\lambda > 20 \, \mu m$ necessary
- Bunches as short as 0.7 μm rms at 20 pC measured

• Non-invasive version possible using CER from DL2 bends

T. Maxwell et al., PRL 111, (2013) 184801

IBIC 2014, Sep. 17, 2014
LCLS-II Bunch Length Monitors

- Relative BLMs similar to LCLS-I detecting edge radiation
- R-BLMs at full beam rate for feedback system
- Average THz radiation power at few W level becomes issue
 - Required attenuation leaves insufficient single shot energy
 - Cooled pyroelectric detectors being investigated
- High dynamic range from wide charge and length range
 - Use of Schottky diodes at few 100 GHz with much higher sensitivity
- Fast detector response for MHz rate
X-Band Deflecting Cavity

• Existing S-band deflecting structure about 5 µm resolution
• X-band provide ~10x better
 - 4x higher frequency
 - 2.5x higher gradient
• Installation post-undulator in main dump beam line
 - Non-invasive for FEL users
• Direct observation of longitudinal phase space on dump YAG

Courtesy P. Krejcik
C. Behrens et al., Nat. Commun. 5 (2014) 3762
XTCAV Bunch Length Measurement

- Simple calibration with phase sweep
- Bunch length with fit to off and ±90°
- Achieved resolution
 - 1 fs (4 GeV)
 - 4 fs (14 GeV)
- Doubling plan using SLED

Bunch Length

- 4.2 GeV, 22 MV

R-BLM vs. XTCAV

- Checked R-BLM calibration
- 5% average deviation to XTCAV
- R-BLM not sensitive below 2 μm
XTCAV as FEL and X-Ray Diagnostics

• X-ray pulse reconstruction
 - Compare FEL off and on
 - Measure time resolved energy loss
 - Energy spread increase also used

Electron Trapping

FEL Off
FEL On

X-Rays

Electrons

• Longitudinal bunch manipulations
 - Slotted foil emittance spoiler
 - Double bunch setup
Summary

• Diagnostics was sufficient for first LCLS operation

• New developments driven by enhancements in beam parameter range and capability, and also operational needs

• LCLS-II diagnostics benefits greatly from existing projects, but still many challenges remain
Thank you for your attention!

Special thanks to the diagnostics teams for
Toroids: D. Brown, S. Condamoor, R. Larsen
PAL RF-BPM: S. Babel, C. Kim, S. Hoobler, P. Krejcik, A. Young, C. Xu