Radiation Sources and their Application for Beam Profile Diagnostics

Gero Kube
DESY / MDI
gerokube@desy.de

- Introduction to Imaging
- Transverse Profile Measurements based on OTR and ODR
- Parametric X-Ray Radiation
- Coherent Radiation Diagnostics and Smith-Purcell Radiation
Size Measurements

- **task**
 - determination of beam profile
 - measurement of characteristical size (rms, …)

- **conventional size measurement**
 - take object and measure

- **difficulties**
 - object extremely small
 - object not directly accessible
 - inside vacuum beam pipe, accelerator environment, …

- **optical imaging**
 - generate replica in comfortable environment
 - adjust replica size (image) to size of measuring device (CCD)

courtesy: J. Amundson (FNAL)
Imaging and Resolution

- **neglect lens imperfections (aberrations)**
 - **diffraction limited** systems → high quality, aberration-free systems

- **fundamental resolution limit**
 - point observer detecting photons from point emitter → location of emission point?

 - uncertainty principle: \(\Delta x \cdot \Delta p_x \approx \hbar \)
 - high resolution: (i) small \(\lambda \) (ii) high NA

- **image of point source**

 - point-like object
 - magnification \(M \)
 - Airy pattern

\[
\Delta x = 0.61 \frac{M\lambda}{\sin \vartheta}
\]
Fundamentals of Image Formation

- **detailed resolution information**
 - requires basic knowledge of image formation

- **simple imaging setup**

- **procedure**
 - calculate image of point source (single particle radiation) → **Point Spread Function (PSF)**
 - image of extended object → 2-dim. convolution of source distribution and PSF
 - resolution → difference between source distribution and image (resp. PSF)

- **PSF calculation**
 - el. field in source plane
 - field propagation from element to element → in frame of scalar diffraction theory
 - (i) source plane – lens input
 - (ii) lens input – lens output
 - (iii) lens output – image plane
 - intensity distribution in the image plane
Fundamentals of Image Formation

- **source field**
 - radiation field → depends on mechanism of radiation generation

- **propagation**
 - scalar diffraction theory
 - (here: from source to lense plane)
 \[
 E_{x_i, y_i}^l(\vec{r}_i, \omega) = -i \frac{e^{ika}}{\lambda a} \cdot e^{i \frac{k}{2a}(x_i^2 + y_i^2)} \int \int d\xi d\eta \, E_{x_i, y_i}^s(\vec{r}_s, \omega) \cdot e^{i \frac{k}{2a}(x_s^2 + y_s^2)} \cdot e^{-i k \frac{x_i y_i}{a}}
 \]
 - aperture boundaries
 - far field (Fraunhofer) approximation:
 \[
 \frac{k}{2}(x_s^2 + y_s^2)_{\text{max}} \ll a
 \]
 \[
 E_{x_i, y_i}^m(\vec{r}_i, \omega) = -i \frac{e^{ika}}{\lambda a} \cdot e^{i \frac{k}{2a}(x_i^2 + y_i^2)} \int \int d\xi d\eta \, E_{x_i, y_i}^s(\vec{r}_s, \omega) \cdot e^{-i(k x_i + k y_i)} \propto \mathcal{F}(E_{x_i, y_i}^s) \quad \left(k_{x,y} = \frac{k x_i y_i}{a} \right)
 \]
 - basis of Fourier Optics

- **thin lens approximation**
 - quadratic phase shift:
 \[
 E_{x_i, y_i}^{l_w}(\vec{r}_i, \omega) = E_{x_i, y_i}^{l_n}(\vec{r}_i, \omega) \cdot e^{-i \frac{k}{2f}(x_i^2 + y_i^2)}
 \]
 with \[
 \frac{1}{f} = \frac{1}{a} + \frac{1}{b}
 \]

- **intensity**
 \[
 \frac{d^2 W}{d\omega d\Omega} = \frac{c}{4\pi^2} \left(|\overline{E}_{x_i}^i(\vec{r}_i, \omega)|^2 + |\overline{E}_{y_i}^i(\vec{r}_i, \omega)|^2 \right)
 \]
Image Formation: Systems Approach

- **Image formation**

 \[\text{Image} = \text{PSF} \otimes \text{Object} + \text{Noise} \]

 - Point Spread Function (PSF)
 - image of a point source (single particle)
 - characteristic of the imaging instrument
 - deterministic function
 - Noise
 - nondeterministic function
 - described in terms of statistical distributions

- **Systems approach to imaging** (Fourier Optics)

 - „standard“ signal theory
 - 1-dim. signals (in time domain)
 - system analysis with **delta pulse**
 - Imaging
 - 2-dim. signals (in spatial domain)
 - system analysis with **point source**
 - system response: **PSF**
Radiation Generation: Considerations

- radiation generation via particle interaction with matter
 - luminescent screen monitors

- radiation generation via particle electromagnetic field
 - particle electromagnetic field
 - relativistic contraction characterized by Lorentz factor

\[\gamma = \frac{E}{m_0c^2} \]

\(\gamma \rightarrow \infty: \) plane wave

- \(mc^2 = 0 \text{ MeV} : \) light \(\rightarrow \) „real photon“
- ultra relativistic energies: idealization \(\rightarrow \) „virtual photon“

\(m_p c^2 = 938.272 \text{ MeV} \)
\(m_e c^2 = 0.511 \text{ MeV} \)
Separation of Particle Field

- electromagnetic field bound to particle observation in far field (large distances)

separation mechanisms

- bending of particle via magnetic field
 synchrotron radiation

 ⇒ circular accelerators

linear accelerators: no particle bending!

- diffraction/reflection of particle electromagnetic field via material structures
 exploit analogy between real/virtual photons:
 - light reflection/refraction at surface ↔ backward/forward transition radiation (TR)
 - light diffraction at edges ↔ diffraction radiation (DR)
 - light diffraction at grating ↔ Smith-Purcell radiation
 - light (X-ray) diffraction in crystal ↔ parametric X-ray radiation (PXR) …
Synchrotron Radiation

- **circular accelerator:** radiation source available for free
 - bending magnet (wiggler, undulator)

- **non-invasive**

- **strong collimation (vertical)**
 - opening angle: \(\Psi \propto 1/\gamma \)

- **emission over wide spectral range**
 - choice of operational range

 ![Graph showing spectral power density vs photon energy](image)

 \[h\omega_c = \frac{3}{2} \frac{hc^3}{\rho} \]

 - electron
 - proton

 \(E_{\text{kin}} = 20 \text{ GeV} \)
 \(\rho = 370 \text{ m} \)

- **polarized**
 - define vertical angular divergence

 ![Graph showing radiation field vs angle](image)

- **particle beam diagnostics:** resolution
 - electric field propagation through optical elements → radiation field

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014
SR Field: Standard Text Book

- **source field:** particle field described by Liénard-Wiechert potentials:

\[
\varphi(t) = \left(\frac{-e}{R(1 - \hat{n} \cdot \beta)}\right)_t, \quad \vec{A}(t) = \left(\frac{-e \hat{\beta}}{R(1 - \hat{n} \cdot \beta)}\right)_t
\]

- **field derivation:**

\[
E(t) = -\vec{\nabla} \varphi(t) - \frac{1}{c} \frac{\dot{\vec{A}}(t)}{c}, \quad \vec{H}(t) = \vec{\nabla} \times \vec{A}(t)
\]

\[
\vec{E}(t) = -e \left(\frac{(1 - \hat{n}^2)(\hat{n} - \beta)}{R^2(1 - \hat{n} \cdot \beta)} + \frac{\hat{n} \times \left[\hat{n} \times \beta\right]}{cR(1 - \hat{n} \cdot \beta)^3}\right)_t, \quad \vec{H}(t) = \hat{n} \times \vec{E}(t)
\]

- **neglect velocity term** (far field approximation)

- **Fourier transform:**

\[
\vec{E}(\omega) \approx -\frac{i \omega e}{c R} \int_{-\infty}^{+\infty} d\tau \left[\hat{n} \times \left[\hat{n} \times \beta\right]\right] e^{i\omega(\tau + R(\tau)/c)}
\]

- **special case:** charged particle moving on circular orbit

\[
E_x(\omega) = E_x = A_x \frac{\hbar \omega}{2\hbar \omega_c} \left(1 + \gamma^2 \Psi^2\right) K_{2/3} \left[\frac{\hbar \omega}{2\hbar \omega_c} \left(1 + \gamma^2 \Psi^2\right)^{3/2}\right]
\]

\[
E_y(\omega) = E_y = A_y \frac{\hbar \omega}{2\hbar \omega_c} \gamma \Psi \sqrt{1 + \gamma^2 \Psi^2} \cdot K_{1/3} \left[\frac{\hbar \omega}{2\hbar \omega_c} \left(1 + \gamma^2 \Psi^2\right)^{3/2}\right]
\]

- **analytical field description**

- **comments:**

(i) approximative field description → far field approximation

(ii) emission from single point on orbit → additional contributions: depth of field, orbit curvature

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014
Synchrotron Radiation Field

- Second representation: starting point again Liénard-Wiechert potentials

\[
\varphi(t) = \left(-\frac{e}{R(1 - \hat{n} \cdot \hat{\beta})} \right), \quad \vec{A}(t) = \left(-\frac{e \vec{\beta}}{R(1 - \hat{n} \cdot \hat{\beta})} \right)
\]

- Fourier transform of potentials:

\[
\varphi(\omega) = -e \int_{-\infty}^{+\infty} \frac{1}{R(\tau)} e^{i\omega(\tau + R(\tau)/c)} d\tau, \quad \vec{A}(\omega) = -e \int_{-\infty}^{+\infty} \frac{\vec{\beta}(\tau)}{R(\tau)} e^{i\omega(\tau + R(\tau)/c)} d\tau
\]

- Field derivation:

\[
\vec{E}(\omega) = -\frac{i\omega e^{+\infty}}{c} \int_{-\infty}^{+\infty} d\tau \left[\left(\frac{\vec{\beta} - \hat{n}}{R(\tau)} \right) - \frac{ic}{\omega} \frac{\hat{n}}{R^2(\tau)} \right] e^{i\omega(\tau + R(\tau)/c)}
\]

with \(\tau = \int_{0}^{\tau} \frac{dz}{c\beta(z)} = \frac{1}{c} \int_{0}^{\tau} \left[1 + \left(\gamma \beta_x \right)^2 + \left(\gamma \beta_y \right)^2 \right] \frac{dz}{2\gamma^2} \)

Knowledge of arbitrary particle orbit: \(\vec{E}(\omega) \) determined

Arbitrary magnetic field configuration: determines orbit and \(\vec{E}(\omega) \)

- Comments:
 (i) exact field description \(\rightarrow \) numerical near field calculation
 (ii) includes depth of field & curvature \(\rightarrow \) no additional contributions, only field propagation
 (iii) free codes available \(\rightarrow \) easy field calculation, even field propagation!

Light Sources: Emittance Diagnostics

emittance
typical values $\varepsilon_x = 1\text{-}5 \text{ nm.rad}$ and 1% emittance coupling

example: $s_{\text{hor}} = 40 \text{ mm}$, $s_{\text{vert}} = 20 \text{ mm}$ (PETRA III @ DESY)

fundamental resolution limit (uncertainty principle)

optical imaging: $l = 500 \text{ nm}$ and $D\Psi \approx 1.7 \text{ mrad}$ $D_{\text{vert}} = 145 \text{ mm}$

diffraction limited

X-ray imaging: focusing optics

reflective optics
Kirkpatrick-Baez mirrors,…

diffractive optics
Fresnel zone plates,…

refractive optics
Compound Refractive Lenses (CRL)

X-ray imaging: non-focusing optics

pinhole camera
example: Diamond Light Source

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014
Light Sources: Emittance Diagnostics

SR interferometer

T. Mitsuhashi, Proc. of BIW 2004 Knoxville, Tennessee, p.3

USR studies at PETRA III (DESY):

\[\varepsilon_x = 160 \text{ pm.rad} \quad @ \text{3 GeV} \]

π-polarisation imaging

widely applied @ SLS

coded aperture imaging

C. Bloomer, "Coded Aperture @ DLS", TUCZB2
Constant Linear Motion

- **source field**
 - point charge with **constant** velocity \(v \) \(\rightarrow \) Liénard-Wiechert fields
 \[
 \vec{E}(t) = -e \left(\frac{1-\beta^2}{R^2 (1 - \hat{n} \cdot \hat{\beta})} \hat{\beta} + \frac{\hat{n} \times \left(\frac{\hat{n} - \hat{\beta}}{cR(1 - \hat{n} \cdot \hat{\beta})} \right)}{cR} \right),
 \]
 \(\vec{H}(t) = \hat{n} \times \vec{E}(t) \)
 no acceleration term

- common representation \(\rightarrow \) cylindrical coordinate system
 \[
 \vec{E}(\rho, \varphi, z, \omega) = \frac{e\alpha}{\pi v} e^{i\omega z} \left(K_1(\alpha\rho) \hat{\rho} - i K_0(\alpha\rho) \hat{z} \right)
 \]
 with \(\alpha = \frac{\omega}{\gamma v} = \frac{2\pi}{\lambda\beta\gamma} \)

- ultra-relativistic particles \((\gamma \gg 1)\)
 - neglect longitudinal field component
 - pure transverse “pancake“ structure
 - radial extension: \(\alpha\rho \approx 1 \)

 \[
 \rho = \frac{\lambda\beta\gamma}{2\pi} \approx \gamma\lambda
 \]
 virtual photon range

- angular distribution

3-dim. theories
D.V. Karlovets and A.P. Potylitsyn, Nucl. Instr. and Meth. B266 (2008) 3738 \

- separation of field \(\rightarrow \) different radiation sources

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

Transition Radiation

- **transition radiation**: electromagnetic radiation emitted when a charged particle crosses boundary between two media with different optical properties

- **visible part**: Optical Transition Radiation (OTR)

- **beam diagnostics**: backward OTR
 typical setup: image beam profile with optical system

- **advantage**: fast single shot measurement
 linear response (neglect coherence !)

- **disadvantage**: high charge densities may destroy radiator
 → limitation on bunch number

- **field separation mechanism**
 → reflection at boundary (perfect conductivity)

→ reflected and incident field are the same
OTR Monitor Resolution

- PSF calculation in image plane
 - Field propagation in frame of scalar diffraction theory
 \[E_{x_i,y_i}^{l}(\vec{r}_i,\omega) = -i \frac{e^{ika}}{\lambda a} \cdot e^{i\frac{k}{2a}(x_i^2+y_i^2)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx_s dy_s E_{x_s,y_s}^{l}(\vec{r}_s,\omega) \cdot e^{i\frac{k}{2a}(x_s^2+y_s^2)} \cdot e^{-\frac{a}{4}x_s x_i+y_s y_i} \]

 - Care: screen dimension ↔ field extension \(\gamma \lambda \)
 → might modify radiation properties

- OTR resolution for beam imaging (far field)

 - Resolution definition according to classical optics:
 \[\Rightarrow \text{first minimum of PSF} \]
 \[\Rightarrow \text{diameter of Airy disk} \]
 \[R_{i0} \approx 1.12 \frac{M \lambda}{\theta_m} \]
 - \(M \): magnification
 - \(\theta_m \): lens acceptance angle (NA)
 - \(\theta_m \) determined by optics, not by radiation properties!

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

A.P. Potylitsyn, in "Advanced Radiation Sources and Applications", p.149
G. Kube, TESLA-FEL Report 2008-01
G. Stupakov, SLAC-PUB-14758 (2011) …….
OTR Monitors

example: FLASH @ DESY

![Diagram of OTR Monitors]

- **optical system**
 - | magnification | f / mm | a / mm | b / mm |
 - | 1 | 250 | 500 | 500 |
 - | 0.382 | 200 | 724 | 276 |
 - | 0.25 | 160 | 800 | 200 |

screen shot: 6 DBC2

standard monitors @ e-Linacs

- **10 keV:** R.B. Fiorito et al., Proc. PAC 2007, p.4006
- **30 GeV:** P. Catravas et al., Proc. PAC 1999, p.2111

OTR @ hadron accelerators

- **protons:** O.V. Afanasyev et al., Proc. BIW 2006, p.534
 V.E. Scarpine et al., Proc. BIW 2006, p.473
- **heavy ions:** B. Walasek-Höhne et al., Proc. HB 2012, p.580

K. Honkavaara et al., Proc. PAC 2003, p.2476

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014
COTR and possible Mitigation

unexpected Coherent OTR observation during LCLS commissioning

- strong shot-to-shot fluctuations
- doughnut structure
- change of spectral contents

measured spot is no beam image!

text continues...

interpretation of coherent formation in terms of “Microbunching Instability”

- E.L. Saldin et al., NIM A483 (2002) 516

alternative schemes for transverse profile diagnostics

- short term perspective: scintillating screen monitors
- long term perspective: TR imaging at smaller λ

proof of principle experiment @ $\lambda = 19.6$ nm:

additional advantage of better resolution

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014

courtesy:

H. Loos (SLAC)

E.L. Saldin et al., NIM A483 (2002) 516

L.G. Sukhikh et al., Proc. IPAC 2012, New Orleans (USA), p. 819

and submitted to PRST-AB
PSF dominated Imaging

- **Image formation**
 - standard imaging:
 - minimize PSF contribution → image is true replica of object

- **PSF dominated imaging**
 - object size \ll PSF
 - image dominated by PSF properties
 - non-zero object size
 → smearing out of PSF
 → beam size determination via image contrast
 - resolution below diffraction limit
 → resolve sub-micron beam sizes with optical methods

- **Experimental verification**
 - synchrotron radiation → π-polarisation imaging
 - OTR → test experiment @ ATF2

\[\text{minimize measured beam size (0.754 ± 0.034) \mu m}\]
Diffraction Radiation

- **problem OTR:** screen degradation/damage

 → limited to only few bunch operation, no permanent observation

- **Optical Diffraction Radiation (ODR):** non-intercepting beam diagnostics

 - DR generation via interaction between particle EM field and conducting screen

 → diffraction of „virtual photons“

- **radial field extension**

 → radius $\lambda\beta\gamma / 2\pi \approx \lambda\gamma$

- **limiting cases**

 \[a \gg \lambda\gamma : \text{no radiation} \]
 \[a \approx \lambda\gamma : \text{DR} \]
 \[a \ll \lambda\gamma : \text{TR} \]

- **comment:** ODR in circular accelerator (CesrTA, Cornell)

ODR Imaging

- **PSF calculation in image plane**
 - field propagation in frame of scalar diffraction theory
 - no beam image, illuminated edge of half-plane

- **ODR imaging for beam diagnostics**
 - P. Evtushenko et al., Proc. BIW08, WECOTC01 (2008), p.332
 - (relative) 1D beam size monitor: \(\sigma_x \)
 - (i) Gaussian beam profile
 - (ii) known distance between slit edge and beam center
 - pre-defined ROI: projected 1D intensity profile
 - fit profile with Gaussian distribution \((\sigma_x) \)
 - cross-calibrate \(\sigma_x \) with OTR beam profiles

- **1D beam position monitor**
 - ODR centroid
 - achieved sensitivity: 50-100 \(\mu \text{m} \)
 - \(\sigma_x = 1.3 \text{ mm}, \) depends on beam size

PSF for vertical polarized ODR from semi-infinite plane

courtesy: P. Evtushenko (JLab)
ODR Angular Distribution

angular distribution dependence

▶ on beam size
▶ on beam offset
 → beam centered in slit aperture
▶ on beam divergence x'
 → interferometric methods

1D beam size determination \((\sigma_y) \)

▶ very low emittance beam \((\varepsilon_y = 1.5 \times 10^{-11} \text{ m.rad}) \) @ KEK-ATF, centered in slit
▶ exploit visibility \(I_{\text{min}} / I_{\text{max}} \) of projected vertical polarization component

courtesy: E. Chiadroni (INFN)

sensitive on beam size \(\sigma_y \approx 10 \mu m \)

courtesy:
 P. Karataev (RHUL)
 A. Potylitsyn (TPU)
ODR Interferometry

beam divergence: DR / ODTR interferometer

ODRI: 1D beam size determination @ FLASH (DESY)

- compact double slit arrangement
- both slits with different sizes
 second slit within radiation formation length of first one
- $\sigma_y, \sigma_{y'}$ and offset by complex fit routine

$\lambda = 800$ nm

excellent agreement
Parametric X-Ray Radiation (PXR)

- **idea:** higher photon energies $\hbar \omega$
 - better resolution
 - insensitive on coherent effects

- **real photons**
 - X-rays \leftrightarrow Bragg reflection, crystals

- **virtual photons**
 - field separation by Bragg reflection at crystal lattice
 - \rightarrow radiation field: **Parametric X-Ray Radiation (PXR)**

- **crystal periodicity (3D)**
 - discrete momentum transfer (reciprocal lattice vector $\vec{\tau}_{hkl}$)
 - \rightarrow emission of line spectrum

\[
\begin{align*}
\vec{p}_i &= \vec{p}_f + \hbar \vec{k} + \hbar \vec{\tau}_{hkl} \\
\delta E &= \left(\vec{p}_i - \vec{p}_f \right) \cdot \vec{v} = \hbar \vec{k} \cdot \vec{v} + \hbar \vec{\tau}_{hkl} \cdot \vec{v} = \hbar \omega \\
\hbar \omega_{hkl} &= \hbar c \left| \frac{\vec{\beta} \cdot \vec{\tau}_{hkl}}{1 - \sqrt{\varepsilon} \vec{\beta} \cdot \vec{k}} \right| \\
\varepsilon &= 1 - |\chi_0| \\
\text{dielectric constant (}\approx 1) \\
\end{align*}
\]

- **Si crystal**
 - $E = 855$ MeV
 - $\Theta_B = 22.5^\circ$

courtesy: M.J. Winter (Science Photo Library)
Parametric X-Ray Radiation (PXR)

- **PXR**: Bragg scattering of virtual photons
 - virtual photon properties retained
 - → double lobe angular distribution

- **radiation generation inside crystal**
 - material properties influence radiation characteristics
 - → angular width:
 \[
 \Delta \theta = \sqrt{\frac{1}{\gamma} + \left(\frac{\hbar \omega_p}{\hbar \omega}\right)^2}
 \]
 plasma energy \(\hbar \omega_p\)
 (Si: 31 eV)

- **background contribution**: real photon diffraction
 - transition radiation from crystal entrance surface
 - → diffracted at crystal planes under same Bragg angle

- **additional contribution to angular distribution**
 - DTR: smaller angular width

radiation amplitude:

\[
A_r = A_{cr} + R_A (A_v - A_{c0})
\]
PXR for Beam Profile Diagnostics

- **advantage of PXR diagnostics**
 - spatial separation from COTR background
 - OTR reflection wrt. surface normal \(\hat{n} \)
 - PXR reflection wrt. reciprocal lattice \(\hat{t} \)

- **proposals**

- **detection scheme (1)**
 - imaging with X-ray optics
 - sensitivity ?

- **detection scheme (2)**
 - X-ray scintillator/detector close to emission point
 - conversion of X-rays to visible light
 - allows usage of standard optics and CCD
 - parallel object and image plane
 - sensitivity, background ?

- **detection scheme (3)**
 - exploit angular distribution
 - requires exact knowledge of shape
 - PXR / DTR interference, …
 - additional background contributions ?

Gero Kube, DESY / MDI

IBIC14, Monterey California (USA), September 16, 2014
PXR for Beam Profile Diagnostics

- **direct imaging with pinhole camera**
 - test experiment at SAGA Light Source (Japan)
 - 255 MeV linac beam, $f_{\text{rep}} = 1$ Hz, $I_{\text{avg}} = 7$ nA
 - Si crystal, $t = 20$ μm, (220) reflection @ 11.6 keV
 - OTR beam profile → PXR beam profile
 - single shot → 12600 shots
 - 3.5 h exposure time
 - image plate as detector

- **detector close to emission point**
 - test experiment @ SAGA
 - image plate 55.6 mm from target crystal
 - 1 sec exposure time
 - image plate inside vacuum chamber
 - large background contribution
 - test experiment @ MAMI (Mainz, Germany)
 - scintillator close to target + CCD
 - sensitivity to low, no beam image
PXR Angular Distribution

- **angular distribution measurements**

 G. Kube et al., Proc. IPAC 2013, Shanghai, China, p.491

 - test experiment @ MAMI (Mainz, Germany)
 - 855 MeV, $I_{\text{avg}} = 500$ nA
 - use of low-cost X-ray CCD
 - (100)-cut Si-crystal, $t = 50$ μm
 - $\hbar\omega(220) = 16.55$ keV, $\hbar\omega(400) = 23.40$ keV
 - two (out of 6) beam configurations

 Config 1: $\sigma_x = 45.7$ μm, $\sigma_y = 42.9$ μm

 Config 2: $\sigma_x = 44.7$ μm, $\sigma_y = 796$ μm

 - angular distribution sensitive on beam size

 - observation
 - θ_1 independent on photon energy: $\theta_1 = 0.6$ mrad $\approx 1/\gamma$
 - additional lobes at $\theta_2 \sim 1.8$ mrad

 - interpretation
 - significant DTR contribution
 - additional contribution from diffracted bremsstrahlung ???
Longitudinal Profile Diagnostics

Coherent Radiation Diagnostics (CRD)
- standard method for radiation based bunch length diagnostics

long bunch $$(\lambda<\sigma_z)$$
short bunch $$(\lambda>\sigma_z)$$

basic procedure
- **principle**: bunch length/shape dependent emission spectrum of coherent radiation

\[
\frac{dU}{d\lambda} = \left(\frac{dU}{d\lambda} \right) \left(N + N(N-1)|F(\lambda)|^2 \right) \text{ with } F(\lambda) = \int_{-\infty}^{+\infty} dz S(z)e^{\frac{2\pi z}{\lambda}}
\]

- measure radiation intensity as function of wavelength in spectral region of interest
 - bunch length determination requires spectral decomposition of intensity
 - intensity-interferometer in THz region (Michelson or Martin-Puplett interferometer)
- Fourier transform
 - **bunch profile and bunch length**
- radiation generation
 - coherent radiation source: synchrotron radiation, transition radiation, diffraction radiation, Smith-Purcell radiation, Cherenkov radiation, …
Coherent Radiation Diagnostics

- **TR, DR or SR based CRD**
 - polychromatic emission spectrum
 - → spectrometer required for spectral decomposition
 - Michelson / Murtin-Puplett interferometers: scanning devices
 - → no single-shot capability

- **single-shot CRD**
 - extension to multi-stage single-shot grating spectrometer

pyro-electric line detector
- 30 channels @ room temperature
- no window, works in vacuum
- fast read out
- sensitivity ~ 300 pJ (S/N=5)

S. Wesch et al., Proc. BIW’12, Newport News (VA), USA, p.256
Smith-Purcell Radiation

- **idea**: dispersive radiation generation
 - radiation generation and analysis with one device
 - → compact setup, option for single-shot capability

Smith-Purcell radiation (SPR)
- field separation
 - → virtual photon diffraction at 1D
 Bravais-structure (grating)
 - → grating provides 1D discrete momentum

momentum conservation:
\[
\vec{p}_i = \vec{p}_f + \hbar k + \hbar \mathbf{n} \frac{2\pi}{D} \hat{\nu}
\]
\[
(\vec{p}_i - \vec{p}_f) \cdot \hat{v} = \hbar \omega = \hbar k \cdot \hat{v} + \hbar \mathbf{n} \frac{2\pi}{D} \hat{\nu} \cdot \hat{v}
\]
\[
2\pi \frac{c}{\lambda} = \frac{2\pi}{\lambda} \nu \cos \theta + n \frac{2\pi}{D} \nu
\]
\[
n \lambda = D \left(\frac{1}{\beta} - \cos \theta \right)
\]

→ **SPR dispersion relation**

- **distance dependence**
 - range of el. field: \(\lambda \beta \gamma / 2\pi \)
 - 2D field description: \(\vec{E} \propto e^{-\frac{2\pi \beta}{\lambda \gamma} d} \)
 - intensity scaling: \(I \propto |\vec{E}|^2 \propto e^{-\frac{4\pi \beta}{\lambda \gamma} d} \)

- **SPR identification**
 - dispersion relation: necessary condition
 - distance dependence: sufficient condition
SPR for Bunch Length Diagnostics

proposals

bunch length monitor based on SPR

similar setup

courtesy G. Doucas, V. Blackmore (Oxford)

measurement at 45 MeV, FELIX

critical items

- limited number of points for reconstruction → interferometer: typically about 200 points
- single photon emission spectrum → different model predictions, especially at high γ

Summary

- **radiation physics widely used for beam diagnostics**
 - longitudinal and transverse beam profiles
 - beam divergence, beam energy, …

- **circular accelerators: synchrotron radiation**
 - new 3rd generation light sources with ultra-small beam sizes
 - → X-ray imaging: possibility to measure beam sizes down to μm level

- **linear accelerators: working horse OTR (+ screens), ODR in experimental stage**
 - OTR: invasive measurement, usually resolution of about 10 μm
 - better resolution → smaller wavelengths (EUV), PSF-dominated imaging
 - new 4th generation light sources → coherent emission compromises use of OTR as reliable diagnostics
 - ODR: high resolution measurements via angular distribution → ODRI offers possibility to resolve ambiguities

- **PXR: interesting for X-ray region**
 - still in early experimental stage → first experiments in view of beam diagnostics

- **CRD: bunch length/shape measurements**
 - CTR, CDR, CSR → spectral decomposition with interferometers
 - CSPR → dispersive emission characteristic, but still some open questions…
Outlook

commercial codes applied to radiation physics

- TR generation with CST Particle Studio®

- OTR/ODR generation and propagation with ZEMAX®

 T. Aumeyr et al., Proc. IPAC 2014, Dresden, Germany, p.3722

Surface Cherenkov Radiation

- growing interest → as radiation source

- but also for beam diagnostics

Acknowledgment

- for the invitation to this conference and the opportunity to give a talk
- for stimulating discussions and help in preparation of this talk

 → A. Cianchi (INFN and Univ. Rome), P. Karataev (RHUL), D. Nölle (DESY),

 → A.P. Potylitsyn (TPU), N.A. Potylitsina-Kube (DESY), K. Wittenburg (DESY)

- for your attention