Superconducting detectors

for x-ray beamline applications and cosmology

Kent Irwin Stanford University and SLAC

Outline

An adventure in applied superconductivity: from cosmology to x-ray beamline science

- Superconducting Transition-Edge Sensors
- Photon detection from microwaves to x-rays
- Multiplexing for large arrays
- Microwave polarimetry for cosmology
- X-ray spectroscopy at synchrotron and FEL light sources

Thermal detection of photons

Anything that can be converted to heat can be measured with a thermometer

Photon \rightarrow Heat

Stanford University

Sensitivity requires low temperatures

Thermodynamic power noise: NEP²=4k_BT²G (W/ \sqrt{Hz})² Energy fluctuations: $\Delta E_{rms}^2 = k_B T^2 C (J)^2$

Operate at low temperatures ($T \sim 0.1$ K to 0.3K) where C, G and thermodynamic fluctuations are small.

Stanford University⁴

Superconducting transition-edge sensors (TES)

Stanford University⁵

Amplification by SQUIDs

- Measure current with a Superconducting Quantum Interference Device (SQUID) amplifier
- Can be multiplexed to enable large arrays

TES spectrometers

TES spectrometers provide a unique combination of spectral resolution, efficiency, and broadband coverage

 $\Delta E \propto \sqrt{k_B T E_{max}}$

But we need large pixel arrays!

TES photon detection across the spectrum

Outline

SLAC

An adventure in applied superconductivity from cosmology to x-ray beamline science

- Superconducting Transition-Edge Sensors
- Photon detection from microwaves to x-rays
- Multiplexing for large arrays
- Microwave polarimetry for cosmology
- X-ray spectroscopy at synchrotron and FEL light sources

SQUID readout

- Quantum-limited amplifier based on superconducting quantum interference : Superconducting Quantum Interference Device (SQUID)
- Current through the sensor is a function of the photon signal
- The current flows through a coil to create a magnetic field
- The SQUID transduces the magnetic field into a measurable voltage signal

s ac

Multiplexed SQUIDs for large arrays

For large TES arrays, multiplexing becomes necessary to minimize complexity and heat load from wires

Multiplexing allows many TES detectors to be sampled with one output line

Different ways to multiplex

SQUID

 Δ
 Temperature

 time

Time division (TDM): different pixels sampled at different times

TDM SQUID array

Frequency division (FDM): different pixels operated at different frequencies

100-SQUID series array for ~MHz frequencydomain readout with Berkeley/LBNL/McGill

Same idea, different orthogonal modulation functions

Stanford University

12

Outline

SLAC

An adventure in applied superconductivity from cosmology to x-ray beamline science

- Superconducting Transition-Edge Sensors
- Photon detection from microwaves to x-rays
- Multiplexing for large arrays
- Microwave polarimetry for cosmology
- X-ray spectroscopy at synchrotron and FEL light sources

CMB probes cosmology and physics of inflation

GALAXY EVOLUTION CONTINUES ...

> THE SOLAR SYSTEM 8.700.000.000 YEARS AFTER BIG BANG

The CMB is slightly polarized

Vertical / Horizontal differ by a very small amount

Two types of polarization

Polarization maps broken into mathematical basis sets

Density waves: "divergence", but no "curl" "E modes" *Unique gravity wave signature*: "curl" mode "B modes"

Similar to the fundamental theorem of vector calculus (Helmholtz theorem), but for a tensor field

Gravitational waves from inflation are only source of primordial B

Gravitational waves from inflation are only source of primordial B

CMB polarimeters in the field

BICEP-2

ACTpol

POLARBEAR

SPTpol

ABS

Keck Array

Stanford University¹⁹

J. Sievers⁸ J. P. Hughes¹⁸ K. Martocci^{23,6} J. Dunkley ^{12,6,1} V. Acquaviva^{1,2} D. Spergel¹ . Infante⁴ P. Mauskopf³ P. Ade³ R. Dunner S.T. Staggs⁶ K.D. Irwin¹¹ F. Menanteau¹⁸ P. Aguirre⁴ T. Essinger-Hileman⁶ O. Stryzak⁶ N. Jarosik⁶ K. Moodley ¹⁴ R.P. Fisher⁶ M. Amiri⁵ D. Swetz² R. Jimenez¹⁹ H. Moseley¹⁰ J. Appel⁶ J. W. Fowler¹¹ J.B. Juin⁴ E. Battistelli 7,5 B. Netterfield ²⁴ A. Hajian⁶ M. Kaul² M.D. Niemack ^{11,6} J.A. Beall¹¹ M. Halpern⁵ H. Trac ^{27,1} J. Klein² M.R. Nolta⁸ M. Hasselfield⁵ JaR. Bond⁸ C. Tucker³ A. Kosowsky ⁹ C. Hernandez-Monteagudo ^{13,2} L.A. Page (PI)⁶ B. Brown⁹ L. Verde 19 J.M. Lau 20,6 L. Parker⁶ B. Burger ⁵ G. Hilton¹¹ R. Warne¹⁴ D. Li¹¹ M. Hilton^{14, 15} B. Partridge ²⁵ J. Chervenak¹⁰ G. Wilson²⁸ M. Limon²¹ H. Quintana⁴ A. D. Hincks⁶ H.M. Cho¹¹ E. Wollack ¹⁰ Y.T. Lin^{22,1,4} B. Reid 19,1 S. Das ^{6,1} R. Hlozek¹² R. Lupton¹ N. Sehgal ^{20,18} J. Hubmayr¹¹ M. Devlin² Y. Zhao⁶ T.A. Marriage ^{1,6} K. Huffenberger ^{16,6} S. Dicker² D. Marsden D. Hughes ¹⁷ W. B. Doriese¹ ¹⁵ South African Astronomical Observatory ¹ Princeton University Astrophysics (USA) ¹⁶ University of Miami (USA) ² University of Pennsylvania (USA) ¹⁷ INAOE (Mexico) ³ Cardiff University (UK) ¹⁸ Rutgers (USA) ⁴ Pontifica Universidad Catolica de Chile (Chile) ¹⁹ Institute de Ciencies de L'Espai (Spain) NSF ⁵ University of British Columbia (Canada) ²⁰ KIPAC, Stanford (USA) ⁶ Princeton University Physics (USA) ²¹ Columbia University (USA) ⁷ University of Rome "La Sapienza" (Italy) ²² IPMU (Japan) ⁸ CITA, University of Toronto (Canada) ²³ KICP, Chicago (USA) ⁹ University of Pittsburgh (USA) ²⁴ University of Toronto (Canada) CONICYT ¹⁰NASA Goddard Space Flight Center (USA) ²⁵ Haverford College (USA) ¹¹NIST Boulder (USA) ²⁶ West Chester University of Pennsylvania (USA) ¹² Oxford University (UK) ²⁷ Harvard-Smithsonian CfA (USA)

¹³ Max Planck Institut fur Astrophysik (Germany) ¹⁴University of KwaZulu-Natal (South Africa)

HAVERFOR

²⁸ University of Massachusetts, Amherst (USA)

NIST A

E. Switzer ^{23,6} R. Thornton ^{26,2} K.W. Yoon^{11,20}

University of Chicago: John Carlstrom (P.I)

Stephan Meyer Clem Pryke Bradford Benson Tom Crawford Jeff McMahon Clarence Chang Daniel Luong-Van Kathryn Miknaitis Joaquin Vieira Ryan Keisler Lindsey Bleem

Abigail Crites Keith Vanderlinde Dana Hrubes

Smithsonian:

Antony Stark Joe Mohr

Erik Leitch

Berkeley / LBL:

William Holzapfel Adrian Lee Helmuth Spieler John Clarke Huan Tran Martin Lueker Jared Mehl Tom Plagge Christian Reichardt Dan Schwan Erik Shirokoff Case:

John Ruhl Tom Montroy Zak Staniszewski Wenyang Lu McGill: Matt Dobbs Gil Holder Trevor Lanting UC Davis: Lloyd Knox Jason Dick

Zhen Hou

NIST:

Kent Irwin Jim Beall Dan Becker Sherry Cho Gene Hilton Johannes Hubmayr Dale Li Michael Niemack Jeff Van Lanen Ki Won Yoon

ANL:

Val Novosad Vlad Yefremenko

Colorado:

Chica

mt

Jason Galliceb

Nils Halverson Jay Austermann Jason Henning

Chiang

G

Detection of *B*-Mode Polarization at Degree Angular Scales by BICEP2

P. A. R. Ade,¹ R. W. Aikin,² D. Barkats,³ S. J. Benton,⁴ C. A. Bischoff,⁵ J. J. Bock,^{2,6} J. A. Brevik,² I. Buder,⁵ E. Bullock,⁷ C. D. Dowell,⁶ L. Duband,⁸ J. P. Filippini,² S. Fliescher,⁹ S. R. Golwala,² M. Halpern,¹⁰ M. Hasselfield,¹⁰ S. R. Hildebrandt,^{2,6} G. C. Hilton,¹¹ V. V. Hristov,² K. D. Irwin,^{12,13,11} K. S. Karkare,⁵ J. P. Kaufman,¹⁴ B. G. Keating,¹⁴ S. A. Kernasovskiy,¹² J. M. Kovac,^{5,*} C. L. Kuo,^{12,13} E. M. Leitch,¹⁵ M. Lueker,² P. Mason,² C. B. Netterfield,^{4,16} H. T. Nguyen,⁶ R. O'Brient,⁶ R. W. Ogburn IV,^{12,13} A. Orlando,¹⁴ C. Pryke,^{9,7,†} C. D. Reintsema,¹¹ S. Richter,⁵ R. Schwarz,⁹ C. D. Sheehy,^{9,15} Z. K. Staniszewski,^{2,6} R. V. Sudiwala,¹ G. P. Teply,² J. E. Tolan,¹² A. D. Turner,⁶ A. G. Vieregg,^{5,15} C. L. Wong,⁵ and K. W. Yoon^{12,13}

(BICEP2 Collaboration)

¹School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom ²Department of Physics, California Institute of Technology, Pasadena, California 91125, USA ³Joint ALMA Observatory, Vitacura, Santiago, Chile ⁴Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada ⁵Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, Massachusetts 02138, USA ⁶Jet Propulsion Laboratory, Pasadena, California 91109, USA ⁷Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA ⁸Service des Basses Températures, Commissariat à l'Energie Atomique, 38054 Grenoble, France ⁹Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA ¹⁰Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada ¹¹National Institute of Standards and Technology, Boulder, Colorado 80305, USA ¹²Department of Physics, Stanford University, Stanford, California 94305, USA ¹³Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA ¹⁴Department of Physics, University of California at San Diego, La Jolla, California 92093, USA ¹⁵University of Chicago, Chicago, Illinois 60637, USA ¹⁶Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada (Received 4 April 2014; revised manuscript received 13 June 2014; published 19 June 2014)

CMB polarimeters in the field

BICEP-2

ACTpol

POLARBEAR

Keck Array

SPTpol

ABS

Stanford University

Example TES CMB polarimeter

5 mm

Ortho-mode transducer couples to Si feedhorn

Example TES CMB polarimeter

5 mm

CPW-to-microstrip transition

Band-defining stub filter stepped-impedance LPFs

Example TES CMB polarimeter

CMB polarimeters in the field

PICEP-2

ACTpol

POLARBEAR

SPTpol

ABS

Кеск Анау

Stanford University

BICEP2 high s/n B-mode map

BICEP2 B-mode signal

SLAC

How to definitively measure the energy scale of inflation

Multiple frequency observations to constraint and clean foregrounds

- Cross-correlation with Planck 353 GHz channel now
- Keck array 100 GHz channels: data being analyzed
- BICEP-3 100 GHz: deploying this season
- Multichroic pixels (ACTpol multichroic deploying soon)

Higher angular resolution measurements to delense

• SPT, ACT, Polarbear

Deeper maps \rightarrow sky variance limited

Greater sky coverage in Chile

- Better constraint on 'r'
- Consistency ratio of inflation

All these steps will use more advanced TES arrays

Stanford University

Outline

SLAC

An adventure in applied superconductivity from cosmology to x-ray beamline science

- Superconducting Transition-Edge Sensors
- Photon detection from microwaves to x-rays
- Multiplexing for large arrays
- Microwave polarimetry for cosmology
- X-ray spectroscopy at synchrotron and FEL light sources

Collaboration

SLAC / Stanford

Saptarshi Chaudhuri Hsiao-Mei Cho Kelly Gaffney Kent Irwin Chris Kenney Dale Li Michael Minitti Dennis Nordlund Tsu-Chien Weng Christopher Williams

<u>NSLS</u>

Daniel Fischer Cherno Jaye

<u>NIST</u>

Doug Bennett Randy Doriese Dan Swetz Galen O'Neil Joel Ullom Joe Fowler Carl Reintsema Gene Hilton Dan Schmidt

Lund Kemicentrum (Lund, Sweden)

Jens Uhlig

SLAC

Soft X-ray Detection: Conventional Technology

Soft X-ray Grazing Incidence Grating Spectrometers and its limitations

SLAC

Conventional Soft X-ray Grating Spectrometer

- Limited Solid Angle
- Low Detection Efficiency
- High Resolution Possible (at a cost)
- **Small Spot Size**

Fraction Detected

Sensitivity of TES based X-ray Spectrometers at SSRL (in development) Enabling Ultra-low Concentrations (ppm)

SLAC

Defects/Dopants $10^{19}-10^{20}/\text{cm}^3 => 10^{17}-10^{18}/\text{cm}^3$

Surface Sensitivity 1-10% monolayer => 0.01-0.1% ML

Solute Sensitivity 10-100 mM

=> 100-1000 uM

New Science Opportunities in Material Science, Chemistry, and Biology

Spot Size 10-100um

=> 1-10mm

TES Spectrometer Arrays

We are now deploying a 240pixel soft x-ray spectrometer array on SSRL BL-10-1

SLAC

Beamline hardware

SLAC

NSLS U7A beamline

- 200-1400 eV
- Prototype installed Dec., 2011

APS 29ID IEX beamline

- 400-2500 eV
- Installed August, 2014

Demonstration spectra

NSLS 45-nixel

Prototype NSLS 45-pixel spectrometer:

- XES of eV-scale chemical shifts (chemistry of occupied valence states)
- partial-fluorescence-yield absorption spectroscopy (chemistry of unoccupied valence states)

XES for forensics

N emission in RDX is clearly distinguishable from NH_4NO_3 .

XES probes the nitrogen chemical environment

PFY-NEXAFS of ODTC

resulting NEXAFS spectrum

- Better than MultiLayer Mirror (MLM) spectrum of same sample
- Unlike MLM, also works at N, O, ... all other edges

NIR detector array Moore's Law

TES spectrometer Moore's Law: ~2 years doubling SLAC

1 pixel 1996

4 pixel 2000

24 pixel 2004

45 pixel 2008

240 pixel 2014

Long-term effort will double solid angle & count rate every ~ two years 43