D and D_s meson spectroscopy from lattice QCD

Daniel Mohler

TRIUMF, Theory Group Vancouver, B.C., Canada

München, June 13 2011

Collaborators: Richard Woloshyn

Daniel Mohler (TRIUMF)

D and Ds meson spectroscopy

Motivation: Experimental D_s spectrum

Established states:

- D_s (J^P = 0⁻) and D^{*}_s (1⁻)
- $D_{s0}^{*}(2317)$ (0⁺), $D_{s1}(2460)$ (1⁺), $D_{s1}(2536)$ (1⁺), $D_{s2}^{*}(2573)$ (2⁺)
- More recent discoveries:
 - *D*^{*}_{\$1}(2710) seen by BaBar, Belle (1⁻)
 - D^{*}_s(2860) seen by BaBar (3⁻?,0⁺?)
 - D^{*}_{sJ}(3040) seen by BaBar (1⁺?,2⁻?)
 - D^{*}_{sJ}(2632) seen by SELEX (1⁻?)
- There is a zoo of phenomenological models and lattice results are getting dated
- Some models suggest a tetraquark/molecular interpretations for controversial states

A B F A B F

- We use 2+1 flavor Clover-Wilson ensembles of size $32^3 \times 64$ generated by the PACS-CS collaboration
- (Sea) Pion masses range from 156MeV to 702MeV
- We use the lattice spacing as determined by PACS-CS (a = 0.0907(13)fm)

Ensemble	$C_{SW}^{(h)}$	$\kappa_{u/d}$	κ_{s}	#configs D/D_s
1	1.52617	0.13700	0.13640	200/200
2	1.52493	0.13727	0.13640	-/200
3	1.52381	0.13754	0.13640	200/200
4	1.52327	0.13754	0.13660	-/200
5	1.52326	0.13770	0.13640	200/348
6	1.52264	0.13781	0.13640	198/198

4 3 5 4 3 5

Charm quark treatment I

• We use the *Fermilab method* for the heavy (charm) quark

El-Khadra et al., PRD 55, 3933

- We tune κ for the spin averaged kinetic mass (M_{Ds} + 3M_{Ds}*)/4 to assume its physical value
- General form for the dispersion relation

Bernard et al. PRD83:034503,2011

$$E(p) = M_1 + rac{p^2}{2M_2} - rac{a^3W_4}{6}\sum_i p_i^4 - rac{(p^2)^2}{8M_4^3} + \dots$$

We compare results from two different fits:

- 1 Neglect the term with coefficient W_4
- 2 Fit $E^2(p)$ and neglect $(p^2)^2$ term from mismatch of M_1 , M_2 and M_4

$$E^{2}(p) \approx M_{1}^{2} + \frac{M_{1}}{M_{2}}p^{2} - \frac{M_{1}a^{3}W_{4}}{3}\sum_{i}(p_{i})^{4}$$
 (1)

Charm quark treatment II

Method 1:

	$\kappa_{c} = 0.128$	$\kappa_c = 0.127$
<i>M</i> ₁	0.86334(50)	0.89314(51)
M ₂	0.9337(73)	0.9716(76)
<i>M</i> ₄	0.8638(274)	0.8855(284)
$\frac{M_2}{M_1}$	1.0815(86)	1.0878(88)
M ₂ [GeV]	2.0315(158)(291)	2.1137(166)(303)

Method 2:

	$\kappa_c = 0.128$	$\kappa_c = 0.127$			
<i>M</i> ₁	0.86342(50)	0.89322(51)			
$\frac{M_2}{M_1}$	1.0889(116)	1.0955(118)			
M ₂ [GeV]	2.0454(215)(293)	2.1293(227)(305)			

Daniel Mohler (TRIUMF)

Variational method (Michael; Lüscher and Wolff; Blossier et al.)

Matrix of correlators projected to fixed momentum

$$C(t)_{ij} = \sum_{n} \mathrm{e}^{-tE_{n}} \left\langle 0 | O_{i} | n \right\rangle \left\langle n | O_{j}^{\dagger} | 0 \right\rangle$$

• Solve the generalized eigenvalue problem:

$$C(t)\vec{\psi}^{(k)} = \lambda^{(k)}(t)C(t_0)\vec{\psi}^{(k)}$$
$$\lambda^{(k)}(t) \propto e^{-tE_k} \left(1 + \mathcal{O}\left(e^{-t\Delta E_k}\right)\right)$$

- At large time separation: only a single mass in each eigenvalue.
- Eigenvectors can serve as a fingerprint.

Charmonium results I

• We use the low-lying Charmonium spectrum as a benchmark

 Noticeable discretization effects expected for Spin-dependent quantities

• Spin-averaged quantities agree nicely with experiment

Daniel Mohler (TRIUMF)

Charmonium results II

Daniel Mohler (TRIUMF)

э

$D_{\rm s}$ - Mixing for the $J^P = 1^+$ states

- In the 1⁺ channel we consider mixing between interpolating fields that correspond to positive and negative charge conjugation in the mass-degenerate limit
- Neglecting the mixing leads to mass splitting much smaller than in experiment

2S states in the D_s spectrum

- For D_s mesons we also determine the 2S states
- We obtain a reasonable hyperfine splitting (within somewhat large errors)

Charmed and charmed strange mesons

- Results for the D_{s0} and D_{s1} ground states differs significantly from experiment
- The results from D and D_s mesons differ significantly

Daniel Mohler (TRIUMF)

D and D_s meson spectroscopy

11/13

The role of scattering states

- Energy levels are very close to non-interacting scattering states
- The energy of *DK* and *D***K* states is slightly unphysical
- Future studies will have to include these states in the variational basis

Daniel Mohler (TRIUMF)

12/13

Conclusions

- We determined the spectrum of low-lying charmonium and heavy-light states on configurations with 2+1 flavors of dynamical quarks.
- The charmonium spectrum below the $D\bar{D}$ threshold can be extracted with small discretization effects and agrees favorably with experiment.
- In some cases excited states can also be extracted.
- For P-wave charmed and charmed-strange mesons substantial differences with regard to experiment remain.
- In future studies effects of nearby scattering thresholds and/or the lattice discretization will have to be investigated

Thanks to ...

The PACS-CS collaboration for their gauge configurations Martin Lüscher for making his DD-HMC code available