Photoproduction of η Mesons off Light Nuclei

Lilian Witthauer

Hadron 2011

Munich, June 13th 2011

BASEL

Outline	Light η -Mesic Nuclei	Quasi-Free Photoproduction of η Mesons off ³ He	Conclusion & Outlook
•	0000000	0000000	0

1 Light η -Mesic Nuclei

Motivation Experiment Identification of the Coherent Reaction Results

2 Quasi-Free Photoproduction of η Mesons off ³He Motivation Identification of the Quasi-Free Reaction

Results

3 Conclusion & Outlook

Conclusion & Outlook

Light η -Mesic Nuclei (F. Pheron et al.)

Do the properties of the strong interaction allow the formation of meson-nucleus bound states?

pnpn

- Several model predictions:
 - ▶ Bhalerao and Liu (1985): attractive s-wave ηN-interaction for A > 12.
 - Liu and Haider (1986): interaction migth lead to the formation of quasi-bound η-nucleus states for A > 10 (η-mesic nuclei)
 - new analyses prefer larger values for the scattering length (above 0.5fm)

> existence of very light η -mesic nuclei (²H, ³H, ³He, ⁴He)?

 Quasi-bound states should give rise to an enhancement at threshold of the cross section relative to the expectation for phase space behavior.

Outline O	Light η -Mesic Nuclei •••••••	Quasi-Free Photoproduction of η Mesons off ³ He	Conclusion & Outlook

Light η -Mesic Nuclei: Experimental Evidence

- T. Mersmann et al. $dp \rightarrow {}^{3}\text{He}\eta$ (COSY-ANKE)
- A H.-H. Adam et al. $dp \rightarrow {}^{3}\text{He}\eta$
- $lacksymbol{V}$ B. Mayer et al. $pd
 ightarrow {}^3 extsf{He}\eta$
- I. Berger et al. $dp
 ightarrow {}^3 ext{He}\eta$

photon induced reactions:

M. Pfeiffer et al. Phys. Rev. Lett. 92 (2004) 252001

Quasi-Free Photoproduction of η Mesons off $^{3}\mathrm{He}$ 00000000

Conclusion & Outlook

Quasi-Free Photoproduction of η Mesons off $^{3}\mathrm{He}$ 00000000

Conclusion & Outlook

Quasi-Free Photoproduction of η Mesons off $^{3}\mathrm{He}$ 00000000

Conclusion & Outlook

Quasi-Free Photoproduction of η Mesons off $^{3}\mathrm{He}$ 00000000

Conclusion & Outlook

Conclusion & Outlook

Experiment: Crystall Ball and TAPS

- Circularly polarised tagged photon beam (0.45 GeV to 1.4 GeV)
- Crystal Ball: Highly segmented sphere made of Nal
- PID: Cylinder of scintillation counters surrounds target, charged particle detector
- TAPS: Forward wall, BaF₂ & PbWO₄ crystals
- ³He Target: 5.3 cm long, density: 0.069 g/cm³

geometrical exeptance close to 4π

Conclusion & Outlook

Identification of $\gamma^3 \text{He} \rightarrow {}^3 \text{He} \eta$ (F. Pheron et al.)

- Decay channels: $\eta \rightarrow 2\gamma$, $\eta \rightarrow 6\gamma$
- Invariant mass analysis for each energy and meson cm-polar angle
- 6 γ : photons combined via χ^2 -test to 3 pairs (best solution for $3\pi^0$ IM) \rightarrow 110 MeV - 150 MeV cut
- ▶ use overdetermined kinematics to separate coherent from breakup reactions. → missing energy
 > strong coherent component visible
 - \succ recoil taken by quasi-free nucleon
 - recoil taken by di-nulceon

Conclusion & Outlook

$\gamma^{3}\text{He} \rightarrow^{3}\text{He}\eta$ Cross Section (F. Pheron et al.)

- agreement between 2γ and 6γ
- disagreement between existing models and data
- Tiator et al.: PWIA
- ► Fix and Arenhövel: 1. PWIA 2. DWIA → strong FSI effects, full four-body model
- ► Shevchenko et al.: 2 examples for different FSI modelling → strong threshold effects

Light η -Mesic Nuclei 00000000

Quasi-Free Photoproduction of η Mesons off $^{3}\mathrm{He}$ 00000000

Conclusion & Outlook

$\gamma^3 { m He} ightarrow {}^3 { m He} \eta$ Cross Section (F. Pheron et al.)

Photoproduction of η Mesons off Light Nuclei

utline	Light η -Mesic Nuclei
	0000000

Conclusion & Outlook

π^0 -p back-to-back (F. Pheron et al.)

Photoproduction of η Mesons off Light Nuclei

Conclusion & Outlook

Quasi-Free η **Photoproduction**

GRAAL collaboration:

narrow structure in the cross section: $\gamma + \mathbf{d} \rightarrow \eta + \mathbf{n}(\mathbf{p})$

GRAAL, V.Kuznetsov et al., hep-ex 0606065

Quasi-Free η **Photoproduction**

GRAAL collaboration, **CBELSA/TAPS collaboration**, LNS-Sendai:

narrow structure in the cross section:

 $\gamma + \mathbf{d} \rightarrow \eta + \mathbf{n}(\mathbf{p})$

GRAAL, V.Kuznetsov et al., hep-ex 0606065

ELSA, I.Jaeglé et al. EPJA accepted

Conclusion & Outlook

Nature of this Structre is unknown

1. etaMAID:

Large contribution of the $D_{15}(1675)$ > high value for the branching ratio of $\Gamma_{\eta N}/\Gamma_{tot} = 17\%$ (PDG: $\Gamma_{\eta N}/\Gamma \simeq 0 - 1\%$) (L.Tiator, NSTAR2005)

2. Chiral Soliton model:

Predicts the existence of a nonstrange member of the baryon antidecuplet (P_{11} -like state). Photoexcitation of this state is thought to have a bigger coupling to the neutron than to the proton (D.Diakonov et al., arXiv:hep-ph/9703373v2)

Exclude possibility that the structure could arise from nuclear effects: rescattering of mesons, final state interaction

study it for a nucleon system with different momentum distribution and different neutron/proton ratio: ³He

Conclusion & Outlook

Reaction Identification of the Quasi-Free Reaction

 $\gamma + {}^{3}He \rightarrow$ 1200 \succ Reconstruct η out of 2 photons M_=134.8 MeV 100 with invariant mass technique: Counts [a.u.] $M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos(\phi_{\gamma_1\gamma_2}))}$ M.=547.3 MeV Clean invariant mass because of $\times 30$ 40 other cuts on decay photons: 200 Coincidence cuts, random subtraction 100 200 300 400 500 600 700 800 900 1000 Invariant Mass [MeV]

Conclusion & Outlook

Background Suppression

Main background from $\gamma + {}^{3}He \rightarrow \eta \pi X$

Missing Mass cut:

$$M^2 = (P_{Beam} + P_N - P_\eta)^2$$

Light η -Mesic Nuclei

Quasi-Free Photoproduction of η Mesons off ³He

Conclusion & Outlook

Background Suppression

Main background from $\gamma + {}^{3}He \rightarrow \eta \pi X$ Missing Mass cut: **Coplanarity cut:** Cut on $\Delta \phi$ $M^2 = (P_{Beam} + P_N - P_n)^2$ between 170° and 190° 30000 — Data 25000 proton 300 -MC 20000 월 15000 250 10000 5000 200 150 6000 Data 5000 Data neutror MC 100 ['n'e] \$1000 Simulation: Signal & 2000 Background 1000 Total Fit 200 600 50 100 150 200 250 300 350 ∆ø_{nn} [deg]

Conclusion & Outlook

Total Cross Sections on p/n

Outline 0	Light η -Mesic Nuclei	Quasi-Free Photoproduction of η Mesons off ³ He	Conclusion & Outlook O

W_B versus W_R

Cross Sections as function of...

W_B(E_γ) : √s calculated with 4-momenta of initial state particles:

$$W_B^2 = (P_\gamma + P_{N,i})^2 = 2E_\gamma m_N + m_N^2$$

> Structures are smeared out because of Fermi motion

Outline	Light η -Mesic Nuclei	Quasi-Free Photoproduction of η Mesons off ³ He	Conclusion & Outlook
0	0000000	00000000	0

W_B versus W_R

Cross Sections as function of...

W_B(E_γ) : √s calculated with 4-momenta of initial state particles:

$$W_B^2 = (P_\gamma + P_{N,i})^2 = 2E_\gamma m_N + m_N^2$$

> Structures are smeared out because of Fermi motion

W_R: √s calculated with measured 4-momenta of final state particles (η, participant nucleon):

$$W_R^2 = (P_\eta + P_{N,f})^2$$

> No effects from Fermi motion, but experimental resolution for recoil nucleon

Outline	Light η -Mesic Nuclei
0	0000000

Conclusion & Outlook

Defolding Fermi Motion

 3 He: Calculation of recoil nucleon momentum is more approximate than in the case of LD₂

 \succ calculate E_n with TOF

Outline	Light η -Mesic Nuclei
0	0000000

Conclusion & Outlook

Defolding Fermi Motion

 \succ calculate E_n with TOF

Conclusion & Outlook

Conclusion & Outlook

- Coherent photoproduction of η -mesons off ³He:
 - improved statistical quality
 - total cross section rises extremely between the coherent and breakup thresholds
 - angular distributions at threshold are almost isotropic or have even an angular dependence opposite to the expectation for the form factor behavior

> strong evidence for dominant FSI effects, related to a resonant state at η production threshold.

- Quasi-Free photoproduction of η -mesons off ³He:
 - Narrow structure: Position and width consistent with deuteron data!
 - Next step:

Try to identify responsible partial waves

➤ Single/double polarisation observables

Thanks for your attention!

This work is supported by: Swiss National Fund and Deutsche Forschungsgemeinschaft