## Single and Double Pion Photoproduction off the Deuteron

Manuel Dieterle

Munich, June 13th 2011

#### XIV International Conference on Hadron Spectroscopy







| Outline<br>• | Motivation<br>00 | Single $\pi^0$ Photoproduction 0000000 | Double $\pi^0$ Photoproduction | Conclusions |
|--------------|------------------|----------------------------------------|--------------------------------|-------------|
| Outline      |                  |                                        |                                |             |

#### 1 Motivation

- 2 Single  $\pi^0$  Photoproduction Status Experiment Results
- Oouble π<sup>0</sup> Photoproduction
   Total Cross Sections
   Beam-Helicity Asymmetry

#### 4 Conclusions



Double  $\pi^0$  Photoproduction

Conclusions

#### Why Photoproduction of $\pi^0$ ?







Double  $\pi^0$  Photoproduction

Conclusions

## Why Photoproduction of $\pi^0$ ?

► Test modern hadron models by studying nucleon resonances  $N(J_N^P)$   $N(J_N^P)$ 



Small coupling of photons to neutral mesons





Single and Double Pion Photoproduction off the Deuteron



 Isospin amplitudes of the elm. transitions depend on reactions on proton and neutron

$$\begin{aligned} A(\gamma p \to \pi^+ n) &= \sqrt{2} (A^{(0)} + A^{(-)}) \\ A(\gamma n \to \pi^- p) &= \sqrt{2} (A^{(0)} - A^{(-)}) \\ A(\gamma p \to \pi^0 p) &= (A^{(+)} + A^{(0)}) \\ A(\gamma n \to \pi^0 n) &= (A^{(+)} - A^{(0)}) \end{aligned}$$

- meson photoproduction from light nuclei, i.e. deuteron
- nuclear effects (rescattering of the mesons, FSI, ...)

#### World $\pi^0$ Data



SAID Data Base - http://gwdac.phys.gwu.edu/

| Outline | Motivatior |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

### Former Results - MAMI 1999



B. Krusche et al., Eur. Phys. J. A 6(1999) 309

•  $\sigma(\pi^0 np)/A$  $\sigma(\pi^0 d)/A$ 

 $\bigcirc \sigma(\pi^0 p)$ 

 $- \sigma(\pi^0 p)$  folded

- significant reduction in σ/A compared to free proton
- can not be explained alone by Fermi motion
- nuclear effect? FSI?

| Dutline | Motivatio |
|---------|-----------|
|         |           |

Double  $\pi^0$  Photoproduction

Conclusions

#### Former Results - LNS Sendai 2009



- $\sigma(\pi^0 np)$
- $\bigcirc \sigma(\pi^0 p)$

$$\Delta \quad \sigma(\pi^0 n) = \sigma(\pi^0 n p) - \sigma(\pi^0 p)$$

- 0.8 \* MAID folded
- can not be explained alone by Fermi motion
- nuclear effect? FSI?

H. Shimizu, NNR workshop 2009

Single and Double Pion Photoproduction off the Deuteron



Conclusions

#### **Experiment MAinzer MIcrotron, Dec 2007**

- $\blacktriangleright$  Photon beam energies up to  $\sim 1.4~GeV$
- ▶ Target: ~ 5 cm LD<sub>2</sub>
- Detectors:
  - Crystal Ball (CB):
    - surrounding the target
  - Two Arm Photon Spectrometer (TAPS):
    - placed as forward wall
  - $\sim 4\pi$  steradian





Conclusions

#### **Identification of the Reaction Channels**

Reaction mechanism for  $\pi^0$  photoproduction on deuterium:

$$\gamma + d \rightarrow \begin{cases} \pi^0 + p(n) & \text{QF on proton} \\ \pi^0 + n(p) & \text{QF on neutron} \\ \pi^0 + d & \text{Coherent} \begin{pmatrix} E_{\gamma} > 500 \text{ MeV} \\ \longrightarrow \end{pmatrix} 0 \end{cases}$$



Conclusions

#### **Identification of the Reaction Channels**

Reaction mechanism for  $\pi^0$  photoproduction on deuterium:

$$\gamma + d \rightarrow \begin{cases} \pi^0 + p(n) & \text{QF on proton} \\ \pi^0 + n(p) & \text{QF on neutron} \\ \pi^0 + d & \text{Coherent} ( \xrightarrow{\text{E}_{\gamma} > 500 \text{ MeV}} 0 ) \end{cases}$$

Measurements:

+ Exclusive on P: 
$$\gamma + d \rightarrow \pi^{0} + p$$
  
+ Exclusive on N:  $\gamma + d \rightarrow \pi^{0} + n$   
 $\approx$  QF-Inclusive:  $\gamma + d \rightarrow \pi^{0} + (N)$ 

| Outline | Motivation |
|---------|------------|
| 0       |            |

Double  $\pi^0$  Photoproduction

Conclusions

## $\pi^0$ Total Cross Sections



| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

### $\pi^0$ Total Cross Sections



| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

#### **Comparison to Models**



| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

### **Resonance Contributions**





Single and Double Pion Photoproduction off the Deuteron

| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

## **Resonance Contributions**





Single and Double Pion Photoproduction off the Deuteron

Manuel Dieterle

| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

#### **Resonance Contributions**



Single and Double Pion Photoproduction off the Deuteron

| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction

Conclusions

#### **Resonance Contributions**





Single and Double Pion Photoproduction off the Deuteron



### $2\pi^0$ Total Cross Sections (M. Oberle et al.)



| Outline | Motivatio |
|---------|-----------|
| 0       |           |

Double  $\pi^0$  Photoproduction  $0 \circ 0 \circ 0$ 

Conclusions

## **Resonance Contributions**



 Electromagnetic excitation of the F<sub>15</sub> stronger on the proton



 Electromagnetic excitation of the D<sub>15</sub> stronger on the neutron

| Outline | Motivation |
|---------|------------|
|         |            |

Double  $\pi^0$  Photoproduction  $\circ \circ \circ \circ \circ \circ$ 

Conclusions

#### The Beam-Helicity Asymmetry

Helicity  $h = \vec{S}\hat{P} = -S, ..., S$ 



| Outline | Motivation | Single $\pi^0$ Photoproduction | Double $\pi^0$ Photoproduction | Conclusions |
|---------|------------|--------------------------------|--------------------------------|-------------|
| 0       | 00         | 0000000                        | 00000                          |             |

#### Former Results (D. Krambrich, F. Zehr et al.)

- Asymmetry indicates strong sensitivity to reaction mechanisms
- Early results contradicted many model predictions

- 🔵 Data
- Fit to Data
- Fix and Arenhövel model
- Roca
  - BoGa model



D. Krambrich, F. Zehr et al., Phys. Rev. Lett. 103 (2009) 052002

Single and Double Pion Photoproduction off the Deuteron

| Outline | Motivatio |
|---------|-----------|
|         |           |

Double  $\pi^0$  Photoproduction

Conclusions

## Helicity Asymmetries for $2\pi^0$ (M. Oberle et al.)

# PRELIMINARY







#### Manuel Dieterle

| Outline<br>O | Motivation<br>00 | Single $\pi^0$ Photoproduction | Double $\pi^0$ Photoproduction | Conclusions |
|--------------|------------------|--------------------------------|--------------------------------|-------------|
| Conclu       | sions            |                                |                                |             |

- $\blacktriangleright$  Cross Sections for Single  $\pi^0$  in good agreement with former results
- ▶ MAID/SAID overestimate the cross sections by 25%
- Reduction can not only be explained by Fermi motion

#### **Double** $\pi^0$ **Photoproduction:**

- Same asymmetries for  $2\pi^0$  on the proton as on the neutron
- Model predictions not yet in agreement with results, further input needed
- Electromagnetic excitation of the resonances different for proton and neutron. De-excitation of the resonances different for single and double pion production.

## Thanks for your attention

#### This work is supported by:

Swiss National Fund Deutsche Forschungsgemeinschaft

| $\pi^0$ DXS  |  |
|--------------|--|
| 000000000000 |  |





#### **DXS:** QF-Inclusive $E_{\gamma} = [414, 707]$ MeV



| $\pi^0$ | DXS          |
|---------|--------------|
| 00      | 000000000000 |

 $\pi^0$  Analysis



## **DXS: QF-Inclusive** $E_{\gamma} = [714, 1007]$ **MeV**



| $\pi^0$ | DXS       |
|---------|-----------|
| 00      | 000000000 |





#### **DXS: QF-Inclusive** $E_{\gamma} = [1012, 1306]$ **MeV**



Single and Double Pion Photoproduction off the Deuteron

| $\pi^0$ DXS     |  |
|-----------------|--|
| 000000000000000 |  |





#### **DXS: QF-Inclusive** $E_{\gamma} = [1315, 1397]$ **MeV**



| r <sup>0</sup> DXS   |  |
|----------------------|--|
| 0000 <b>000</b> 0000 |  |





#### **DXS: Exclusive Proton** $E_{\gamma} = [414, 707]$ **MeV**



Single and Double Pion Photoproduction off the Deuteron

| τ <sup>0</sup> DXS |  |
|--------------------|--|
| 000000000000       |  |





#### **DXS: Exclusive Proton** $E_{\gamma} = [714, 1007]$ **MeV**



dơ/dΩ [µb/sr]

| τ <sup>0</sup> | DXS           |  |
|----------------|---------------|--|
|                | 0000000000000 |  |





#### **DXS: Exclusive Proton** $E_{\gamma} = [1012, 1306]$ **MeV**



| $\pi^0$ DXS | $\pi^0$ Analysis |
|-------------|------------------|
| 0000000000  |                  |
|             |                  |



## **DXS: Exclusive Proton** $E_{\gamma} = [1315, 1397]$ **MeV**



| $\pi^0$ DXS                             |   |
|-----------------------------------------|---|
| 000000000000000000000000000000000000000 | 2 |





#### **DXS: Exclusive Neutron** $E_{\gamma} = [414, 707]$ **MeV**



| $\pi^0$ DXS                             |   |
|-----------------------------------------|---|
| 000000000000000000000000000000000000000 | 0 |





#### **DXS: Exclusive Neutron** $E_{\gamma} = [714, 1007]$ **MeV**



Single and Double Pion Photoproduction off the Deuteron

| $\pi^0$ DXS    |  |
|----------------|--|
| 00000000000000 |  |





#### **DXS: Exclusive Neutron** $E_{\gamma} = [1012, 1306]$ **MeV**



| $\pi^0$ DXS     |  |
|-----------------|--|
| 000000000000000 |  |





## **DXS: Exclusive Neutron** $E_{\gamma} = [1315, 1397]$ **MeV**







#### **Main Contributing Channels**

| Initial State          | Final State | Threshold [MeV] |
|------------------------|-------------|-----------------|
| $\gamma d \rightarrow$ | $\pi^{0}d$  | $\sim 140$      |
|                        | $\pi^0 np$  | $\sim 142$      |
|                        |             |                 |
|                        |             |                 |
|                        |             |                 |
|                        |             |                 |
|                        |             |                 |





#### **Main Contributing Channels**

| Initial State          | Final State     | Threshold [MeV] |
|------------------------|-----------------|-----------------|
| $\gamma d \rightarrow$ | $\pi^{0}d$      | $\sim 140$      |
|                        | $\pi^0 np$      | $\sim$ 142      |
|                        | $\pi^0\pi^0$ np | $\sim 292$      |
|                        | $\pi^0\pi^-pp$  | $\sim 297$      |
|                        | $\pi^0\pi^+$ nn | $\sim 297$      |
|                        |                 |                 |
|                        |                 |                 |





#### **Main Contributing Channels**

| Initial State          | Final State                              | Threshold [MeV] |
|------------------------|------------------------------------------|-----------------|
| $\gamma d \rightarrow$ | $\pi^{0}d$                               | $\sim 140$      |
|                        | $\pi^0$ np                               | $\sim$ 142      |
|                        | $\pi^0\pi^0$ np                          | $\sim 292$      |
|                        | $\pi^0\pi^-pp$                           | $\sim 297$      |
|                        | $\pi^0\pi^+$ nn                          | $\sim 297$      |
|                        | $(\eta  ightarrow 3\pi^0)$ np            | $\sim 630$      |
|                        | $(\eta  ightarrow \pi^0 \pi^+ \pi^-)$ np | $\sim 630$      |

$$2\pi^0$$
 Analysis

## Identifications of the $\pi^0$ -Mesons

$$\pi^0 \stackrel{99\%}{\longrightarrow} 2\gamma > \mathsf{Identify} \ \pi^0: \ M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos( heta_{\gamma_1\gamma_2}))}$$



$$2\pi^0$$
 Analysis

## Identifications of the $\pi^0$ -Mesons

$$\pi^0 \xrightarrow{99\%} 2\gamma$$
 >Identify  $\pi^0$ :  $M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos(\theta_{\gamma_1\gamma_2}))}$ 



$$2\pi^0$$
 Analysis

#### Identifications of the $\pi^0$ -Mesons

$$\pi^0 \xrightarrow{99\%} 2\gamma$$
 >Identify  $\pi^0$ :  $M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos(\theta_{\gamma_1\gamma_2}))}$ 





#### Invariant mass spectrum rather clean

# > Remove remaining background: Competing channels, $\pi^0$ from other channels



Single and Double Pion Photoproduction off the Deuteron

$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(\mathbf{X}) = M(\gamma + N - \pi^0)$$



$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(\mathbf{X}) = M(\gamma + N - \pi^0)$$



$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(\mathbf{X}) = M(\gamma + N - \pi^0)$$



$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(\mathbf{X}) = M(\gamma + N - \pi^0)$$



$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(\mathbf{X}) = M(\gamma + N - \pi^0)$$



$$2\pi^0$$
 Analysis

Invariant mass spectrum rather clean

> Remove remaining background: Competing channels,  $\pi^0$  from other channels

$$\Rightarrow M(X) = M(\gamma + N - \pi^0)$$



| $\pi^0$ | DXS |
|---------|-----|
|         |     |

 $\pi^0$  Analysis

#### $2\pi^0$ Analysis

## **Charged Particle Identification**

#### Crystal Ball: PID



TAPS: *BaF*2







$$2\pi^0$$
 Analysis

## **Missing Energy Analysis**

Coherent Reaction:  $d(\gamma, \pi^0)d \Leftrightarrow$  two 2-body-decay.

$$\Delta E_{i} = E^{*}(i) - E^{*}_{i}(E_{\gamma})$$
  $i = d, \pi^{0}$ 









#### **Coplanarity Cut**

Two final state particles always coplanar:  $\Delta \phi = \phi_1 - \phi_2 \simeq 180^\circ$ 



Coherent Reaction:  $175^{\circ} \leq \Delta \phi \leq 185^{\circ}$ 





#### **Final Invariant Mass Distributions**



Single and Double Pion Photoproduction off the Deuteron

#### Manuel Dieterle





#### Invariant Mass Cut and Reconstruction



- $\triangleright \ \gamma \ p \ \rightarrow \ \pi^0 \pi^0 p$
- 4 neutral and 1 charged hits
- $\triangleright \ \gamma \ n \ \rightarrow \ \pi^0 \pi^0 n$
- 5 neutral hits
- $\triangleright \ \gamma \ D \ \rightarrow \ \pi^0 \pi^0 X$
- 4 neutral hits or
- 5 neutral hits or
- 4 neutral and 1 charged hits

- Cut on invariant mass:  $M_{\gamma\gamma}^{second} \in [110, 160]$ MeV ( $M_{\pi 0} \approx 135$  MeV)
- **•** Cut on invariant mass:  $M_{\gamma\gamma}^{\textit{first}} \in [110, 160]$  or

Single and Double Pion Photoproduction off the Deuteron





1.2

1.1

600

800

1000

E, [MeV]

- (1) Fit signal in side bins
   ([85, 110] & [160, 185] MeV)
- (2) Fit background in signal-bins ([110, 160] MeV)
- Calculate ratio (2)/(1)
- Correct online for this background

1200

1400







#### Missing Mass and Coplanarity Cut

Background mainly from:



Single and Double Pion Photoproduction off the Deuteron

Manuel Dieterle