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Certain single-spin asymmetries in semi-inclusive DIS (SIDIS) and the Drell-Yan process (DY)

can be explained by transverse momentum dependent parton distribution functions (TMDs)

that are predicted to differ in sign for SIDIS and DY. On the lattice, we can use non-local

operators with U-shaped Wilson lines to study these TMDs, in particular the Sivers- and the

Boer-Mulders function. We discuss the method, its limitations and preliminary results from an

exploratory calculation using lattices generated by the MILC and LHP collaborations.

1 Introduction

Transverse momentum dependent parton distribution functions (TMDs) provide three-
dimensional pictures of the momentum distribution of quarks inside a relativistic proton,
see, e.g., chapter 2 of Ref. [1] for a recent review. TMDs enter as non-perturbative ingredients
in the factorized cross section of processes like semi-inclusive deep inelastic scattering
(SIDIS) or the Drell-Yan process (DY) at low transverse momentum. Due to initial state
interactions (in DY) or final state interactions (in SIDIS) [2] whose theoretical explanation is
deeply connected to the principle of gauge invariance, the operator definition of TMDs is to
a certain extent process-dependent. This leads to the prediction that so-called naively time-
reversal odd (T-odd) TMDs differ in sign for SIDIS and DY [3]. The T-odd distributions at
leading twist are thought to be responsible for large single-spin asymmetries observed in
experiment, see, e.g., [4]. Here we address them using lattice QCD.

In previous lattice studies of TMDs [5, 6], a simplified, “process-independent” operator
geometry was chosen that does not strictly correspond to the definition of TMDs appearing
in the description of SIDIS or DY, and that does not feature T-odd TMDs. Here we go beyond
this simplification and show preliminary results obtained with a “process-dependent”
operator geometry that may ultimately allow quantitative comparisons to experimental
SIDIS or DY results.
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Figure 1: Geometry of the staple shaped gauge link. On the lattice, we compute the
SIDIS/DY limits η Ñ ˘8 by increasing the extent of the staple step by step, as indicated
by the dashed lines and the arrow.

The correlator that defines TMDs for SIDIS and DY can be written in general as

(1) ΦrΓs ”
1
2

ż

d4b
p2πq4

eip¨b

” rΦrΓsunsubtr.pb, P, S, ηv, µq
hkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

xP, S| qp0q Γ U r0, ηv, ηv` b, bs qpbq |P, Sy
rSpb2, . . .q

where P and S are momentum and spin of the nucleon, p is the quark momentum, Γ is a
Dirac matrix and µ is a renormalization scale. Note that b corresponds to the variable l
in the notation of Refs. [5, 6]. The precise definition of the soft factor rS varies in different
theory frameworks, see, e.g., [7–9]. However, it cancels explicitly in the quantities for which
we show results.

We use light cone coordinates and consider a fast nucleon, PK “ 0, P` " M. Integrating
over the suppressed component p´ of the intrinsic quark momentum, the decomposition of
the correlator [10, 11] yields

(2)
ż

dp´ Φrγ
`s “ f1px, p2

T; ζ̂, η, . . .q ´
εij piSj

mN
fK1Tpx, p2

T; ζ̂, η, . . .q

for a projection Γ “ γ` on leading twist and for transverse nucleon polarization ST. Here
f1 and the Sivers function fK1T [13] are the two TMDs that describe the corresponding
distribution of quarks with respect to the longitudinal momentum fraction x ” p`{P` and
the transverse momentum pT of the quark. The Wilson line U in Eq. (1) ensures gauge
invariance and effectively represents gluon exchanges in initial or final state interactions.
As illustrated in Fig. 1, it is composed of two parallel straight sections along the direction
v « n̂´ and a gauge link bridging the (transverse) gap at the far ends. For SIDIS, the extent
η of the staple is`8, while for DY the staple extends in the opposite direction, η “ ´8. The
T-odd Sivers function fK1T differs for SIDIS and DY, fK1Tpη“`8q “ ´ fK1Tpη“´8q, while
f1pη“`8q “ f1pη“´8q exhibits T-even behavior. Another leading-twist T-odd TMD is
the Boer-Mulders function hK1 [14], which describes correlations in pˆ s of quarks polarized
transversely along sT in an unpolarized nucleon. Employing a direction v off the light
cone n̂´ direction is one way to regularize rapidity divergences in the correlator, see, e.g.,
Refs. [7, 15]. Taking v space-like [9, 16, 17] also opens up the possibility to perform lattice
calculations. The TMDs obtained in this framework depend on an additional parameter,
here introduced as a dimensionless quantity ζ̂ ” v¨P{

a

|v2|P2. At large enough values of ζ̂,
the ζ̂-dependence of TMDs can be obtained from evolution equations, see, e.g., Refs. [9, 18].
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Dependencies of the TMDs on further regularization or renormalization scales have been
indicated by the dots and cancel in the quantities we consider.

2 Lattice calculations

In previous lattice studies of TMDs [5, 6], a direct, straight gauge link U r0, bs was employed,
corresponding to η “ 0 in Eq. (1). We make use of the same lattice at mπ « 500 MeV [19]
and the same techniques as in these earlier works, except that we now implement the
staple-shaped operator geometry of Fig. 1. We also improve our statistics using the new
arrangement of nucleon sources and coherent sinks of Ref. [20]. In essence, we calculate
rΦrΓsunsubtr.pb, P, S, ηv, µq directly for a large selection of lattice vectors b, P and ηv. As before,
we restrict the operator to have no extent in Euclidean time direction. Consequently, b
and v can only have spatial components on the lattice. For a given lattice nucleon three-
momentum Plat, the regularization parameter ζ̂ is thus limited by ζ̂ ď |Plat|{M2. The
translation of the results obtained in the lattice frame to the TMD language is established
through a parametrization of rΦrΓsunsubtr. in terms of Lorentz-invariant amplitudes rAi and rBi,
analogously to Ref. [11] but in b-space. To be able to construct quantities where the soft
factor cancels, we work with TMDs in Fourier space and their b-derivatives, see Ref. [12]
for details. For a generic TMD f we define

f̃ px, b2
Tq ”

ż

d2 pT eibT ¨pT f px, p2
Tq, f̃ pnqpx, b2

Tq ” n!
ˆ

´
2

M2 Bb2
T

˙n

f̃ px, b2
Tq(3)

In the limit b2
T Ñ 0, the latter correspond to the usual pT-moments:

(4) f̃ pnqpx, 0q “
ż

d2 pT pp
2
T{2M2qn f px, p2

Tq ” f pnqpxq.

Consider the quantity xpyyTUpxq ” M fKp1q1T pxq{ f p0q1 pxq, which has an interpretation as the
average transverse momentum in transverse y-direction carried by the quarks inside a
nucleon polarized in transverse x-direction. We now show that similar quantities are
accessible on the lattice. Here we restrict ourselves to x-integrated TMDs f̃ r1spnqpb2

Tq ”
ş1
´1 dx f̃ r1spnqpx, b2

Tq, which can be obtained from the amplitudes at b¨P “ 0:

(5)
1
2
rΦrγ

`s

unsubtr.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b¨P“0

S“0

“ P`
´

rA2 ` Rpζ̂qrB1

¯

loooooooomoooooooon

rSpb2, . . .q f̃ r1sp0q1 pb2
Tq

´ iMP`εijbiSj

´

rA12 ´ Rpζ̂qrB8

¯

looooooooomooooooooon

rSpb2, . . .q f̃Kr1sp1q1T pb2
Tq

,

where Rpζ̂q ” 1 ´ p1 ` ζ̂´2q1{2. We thus can construct a ratio which looks similar to
the average momentum xpyyTUpxq, but is formed from x-integrated distributions and
generalized to non-zero bT, in the following called the (generalized) Sivers shift:

xpyyTUp|bT|q ” M
f̃Kr1sp1q1T pb2

Tq

f̃ r1sp0q1 pb2
Tq

“ ´M
rA12 ´ Rpζ̂qrB8

rA2 ` Rpζ̂qrB1

ˇ

ˇ

ˇ

ˇ

ˇ

b¨P “ 0
.(6)
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Figure 2: Generalized Sivers shift of up´down quarks (isovector) on the 203 ˆ 64 lattice
at a pion mass mπ « 500 MeV and a lattice spacing of a « 0.12 fm. a) results as a function
of the staple extent η. A simple estimate of the SIDIS/DY values at η Ñ ˘8 is obtained
from a fit of an odd but otherwise constant function to the data at |ηv| ě 7a. Potentially
significant systematic uncertainties in this procedure have not been taken into account in
this preliminary analysis. b) Extracted SIDIS results for several values of ζ̂.

Analogously, the “Boer-Mulders shift” can be constructed using h̃Kr1sp1q1 instead of f̃Kr1sp1q1T .
The soft factor and multiplicative renormalization factors cancel in the above ratio. However,
the dependence on the rapidity cutoff parameter ζ̂ (not shown in the arguments) survives.
Figures 2 a) demonstrates how the SIDIS or DY Sivers shift can be read off from the plateau
reached at large positive or negative η, respectively. The extraction of these asymptotic
values is still preliminary and lacks an estimate of systematic errors. In Fig. 2 b), we plot the
extracted SIDIS results as a function of ζ̂ and find indications of a strong ζ̂-dependence at
the rather low values of ζ̂ presently accessible to us. A major future challenge is to generate
statistically well-determined results at higher values of ζ̂ and to make contact with the
ζ̂-evolution predicted by perturbative QCD.
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