Nucleon Resonance Electrocouplings from the CLAS Data on Exclusive Meson Electroproduction off Protons

Victor I. Mokeev^{1,a,b}, Inna G. Aznauryan^c, and Volker D. Burkert^a ^aJefferson Lab, USA ^bSkobeltsyn Nuclear Physics Institute at Moscow State University, Russia ^cYerevan Physics Institute, Armenia

 $\gamma_v NN^*$ transition helicity amplitudes (electrocouplings) of several prominent excited proton states are determined for the first time in independent analyses of $\pi^+ n$, $\pi^0 p$, and $\pi^+ \pi^- p$ electroproduction off protons. Analysis of $\pi^+ \pi^- p$ electroproduction has extended considerably information on electrocouplings of high lying N* states, which decay preferentially to the $N\pi\pi$ final states.

1 Introduction

The studies of nucleon resonance structure from the data on different exclusive meson electroproduction channels off nucleons represent an important direction in the N^* program with the CLAS detector with the primary objective of determining electrocouplings of all prominent excited proton states in a wide area of photon virtualities $Q^2 < 5.0 \text{ GeV}^2$ [1]. In this paper we present the results on N^* electrocouplings obtained in independent analysis of $\pi^0 p$, $\pi^+ n$, and $\pi^+ \pi^- p$ electroproduction off protons.

2 Evaluation of N^{*} electrocouplings from exclusive meson electroproduction data

The $\pi^+ n$, $\pi^0 p$, and $\pi^+ \pi^- p$ exclusive channels are major contributors to meson electroproduction off protons in N^* excitation region. They are sensitive to N^* contributions and account for $\approx 90\%$ of meson electroproduction cross section. Non-resonant contributions in these channels are different, while N^* electrocouplings remain the same, since resonance electroproduction and hadronic decay amplitudes are independent. Therefore, consistent values of N^* electrocouplings determined from different major meson electroproduction channels strongly support a reliable extraction of these fundamental quantities.

¹mokeev@jlab.org

Figure 1: Electrocouplings of the $P_{11}(1440)$ resonance determined in independent analyses of the CLAS data on $N\pi$ (circles) and $\pi^+\pi^-p$ (triangles) electroproduction off protons. Square and triangle at Q^2 =0 correspond to RPP [8] and the CLAS $N\pi$ [9] photoproduction results, respectively. The results of relativistic light-front quark models [10,11] are shown by solid and dashed lines, respectively. Results of the covariant valence quark-spectator diquark model [12] are shown by the dashed dotted line.

The CLAS data considerably extended information on π^+n , $\pi^0 p$ electroproduction off protons. A total of nearly 120000 data points on unpolarized differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries were obtained with almost complete coverage of the accessible phase space [2]. The data were analyzed within the framework of two conceptually different approaches: a) the unitary isobar model (UIM) and b) a model, employing dispersion relations [3,4]. The two approaches provide good description of the $N\pi$ data in the entire range covered by the CLAS measurements: W < 1.7 GeV and $Q^2 < 5.0$ GeV², resulting in $\chi^2/d.p. < 2.0$.

Nine independent one-fold-differential and fully-integrated $\pi^+\pi^-p$ electroproduction cross sections of protons are determined from the CLAS measurements [5,6] in 131 bins of W and Q^2 in a mass range W < 2.0 GeV, and with photon virtualities of $0.25 < Q^2 < 1.5$ GeV². Analysis of these data within framework of the meson-baryon JM reaction model [7,14] allowed us to establish all essential contributing mechanisms from their manifestation in the measured cross sections. Reasonable data description makes it possible to provide a reliable separation between resonant and non-resonant contributions needed for extraction of N^* electrocouplings from $\pi^+\pi^-p$ electroproduction data.

3 Results and discussion

Electrocouplings of the $P_{11}(1440)$, $D_{13}(1520)$ states have become available from independent analyses of the CLAS data on π^+n , $\pi^0 p$ ($Q^2 < 5.0 \text{ GeV}^2$), and $\pi^+\pi^-p$ ($Q^2 < 1.5 \text{ GeV}^2$)

electroproduction channels [2, 14]. Their values obtained from these major meson electroproduction channels with different non-resonant mechanisms are in a good agreement. As an example, electrocouplings of the $P_{11}(1440)$ state are shown in Fig. 1. Consistent results on N^* electrocouplings demonstrate that the reaction models [4, 7, 10] mentioned in the Section 2 provide reliable evaluation of these fundamental quantities. It makes possible to determine electrocouplings of all resonances that decay preferentially to the either $N\pi$ or $N\pi\pi$ final states analyzing independently the $N\pi$ or $\pi^+\pi^-p$ electroproduction channels.

Figure 2: Electrocouplings of $D_{33}(1700)$ (left) and $S_{31}(1620)$ (middle and right) resonances from analyses of the CLAS data on $\pi^+\pi^-p$ [5,6] and world data [15] on $N\pi$ electroproduction off protons. Symbols are the same as in Fig. 1.

Preliminary results on electrocouplings of $S_{31}(1620)$, $S_{11}(1650)$, $F_{15}(1685)$, $D_{33}(1700)$ and $P_{13}(1720)$ states were obtained from the CLAS $\pi^+\pi^-p$ electroproduction data [5]. The CLAS results provide accurate data on the Q^2 -evolution of the transverse electrocouplings and the first information on the longitudinal electrocouplings of all the above mentioned excited proton states. Several examples are shown in Fig. 2. A dominance of longitudinal $S_{1/2}$ electrocoupling is observed in electroexcitation of $S_{31}(1620)$ state at $Q^2 > 0.5$ GeV² (see Fig. 2).

The CLAS results on electrocouplings of prominent resonances stimulated the development of N^* structure models [16, 17]. The analysis of resonance electrocouplings within the framework of light front [10, 11] and quark-spectator diquark [12] models, complemented by the coupled channel approach [13] demonstrate that the structure of N^* states in a mass range W < 1.6 GeV is determined by a combined contribution of an internal core of three dressed quarks and an external meson-baryon cloud. The recent studies in the light-front quark model [18] revealed an important role of dynamical mass and structure of dressed quarks in Q^2 -evolution of of N^* electrocouplings. Furthermore, two conceptually different approaches of QCD-Dyson-Schwinger equations [19, 20] and Lattice QCD [21–23]are making progress toward the description of N^* electrocouplings from the first principles of QCD.

References

- [1] V. D. Burkert et al., J. Phys: Conf. Ser. 299, 012008 (2011).
- [2] I. G. Aznauryan et al., CLAS Collaboration, Phys. Rev. C 80, 055203 (2009).
- [3] I. G. Aznauryan, Phys. Rev. C 67, 0152009 (2003).
- [4] I. G. Aznauryan et al., Phys. Rev. C 71, 015201 (2005).
- [5] M. Ripani et al., CLAS Collaboration, Phys. Rev. Lett. 91, 022002 (2003)
- [6] G. V. Fedotov et al., CLAS Collaboration, Phys. Rev. C79, 015204 (2009).
- [7] V. I. Mokeev et al., Phys. Rev.C 80, 045212 (2009).
- [8] Review of Particle Physics, J. Phys. G 37, 075021 (2010).
- [9] M. Dugger et al., CLAS Collaboration, Phys. Rev. C 79, 065206 (2009).
- [10] I. G. Aznauryan, Phys. Rev. C 76, 025212 (2007).
- [11] S. Capstick and B. D. Keister, Phys. Rev. D 51, 3598 (1995).
- [12] G. Ramalho and K. Tsushima, Phys. Rev. D 81, 074020 (2010).
- [13] B. Julia-Diaz, et al., Phys. Rev. C 77, 045205 (2008).
- [14] I. G.Aznauryan, V. D. Burkert, V. I. Mokeev, arXiv:1108.1125[nucl-ex].
- [15] V. D. Burkert et al., Phys. Rev. C 67, 035204 (2003).
- [16] C. D. Roberts, arXiv:1108.1030 [nucl-th].
- [17] I. G. Aznauryan, et al., arXiv:0907.1901 [nucl-th].
- [18] I. G.Aznauryan, V. D. Burkert, private communication.
- [19] C. D. Roberts, I. C. Cloet, L. Chang, and H. L. L. Roberts, arXiv:1108.1327 [nucl-th]
- [20] H. L. L. Roberts et al., Few Body System 51, 1 (2011).
- [21] R. G. Edwards et al., arXiv:1104.5152 [hep-ph], accepted by Phys. Rev. D.
- [22] H.-W. Lin, Chin. Phys. C 33, 1238 (2009), H.-W. Lin and S. D Cohen, arXiv:1108.2528 [hep-lat].
- [23] V. Braun, et al., Phys. Rev. Lett. 103, 072001 (2009).