

Chromo-Dynamics

PUZZLES IN HADRON SPECTROSCOPY

Stephan Narison

CNRS / IN2P3 - LPTA (Montpellier)

HEPMAD09, Antananarivo (21-28th August 2009) - p. 1/1

 Light Hadron Spectroscopy
 Light Quarks: u,d,s: $m_q ≤ Λ_{QCD} ≈ 350$ MeV; $Q_u = 2/3; Q_d = Q_s = -1/3$ Light Hadron Spectroscopy
 Light Quarks: u,d,s: m_q ≤ Λ_{QCD} ≈ 350 MeV; Q_u = 2/3; Q_d = Q_s = -1/3

 Light Baryons proton= uud; neutron= udd,...

HEPMAD09. Antananarivo (21-28th August 2009) - p. 2/1

1. Light Hadron Spectroscopy **Light Quarks:** $Q_u = 2/3; Q_d = Q_s = -1/3$ Light Baryons proton= uud; neutron= udd,... Light Ordinary Mesons $\pi^{-} \equiv \bar{u}d : J^{PC} = 0^{-+}; \ \rho^{-} \equiv \bar{u}d : J^{PC} = 1^{--};$ $A_1 \equiv \bar{u}d : J^{PC} = 1^{++}$ Well understood in QCD : associated resp. to the pseudoscalar, vector and axial-vector currents.

• Light scalar mesons : long standing problem in QCD

- Light scalar mesons : long standing problem in QCD
- Experimentally : inaccurate and confusing data
 - $K_0^*(700-900) \dots?$
 - Confirmation of the $\sigma/f_0(600)$ Bern group, Madrid group
 - BUT Proliferation of the number of f_0 mesons: $f_0(0.6), f_0(0.98), f_0(1.36), f_0(1.5), f_0(1.7), ...?$
 - Less known values of the hadronic and $\gamma\gamma$ couplings: Recent analysis of $\gamma\gamma \rightarrow \pi\pi$ and $\pi\pi \rightarrow \pi\pi, K\bar{K}$ (Kaminski+Minkowski+Mennessier+ S.N+Ochs) leads to : $\Gamma(\sigma \rightarrow \gamma\gamma)|_{direct} \simeq (0.13 \pm 0.05)$ KeV, $\Gamma(\sigma \rightarrow \gamma\gamma)|_{rescat} \simeq (2.7 \pm 0.4)$ KeV

 $|g_{\sigma
ightarrow \pi\pi}| pprox |g_{\sigma
ightarrow Kar{K}}| \ M_{\sigma} = 422 - i290 \ {
m MeV}$

- Light scalar mesons : long standing problem in QCD
- Experimentally : inaccurate and confusing data
 - $K_0^*(700-900)$...?
 - Confirmation of the $\sigma/f_0(600)$ Bern group, Madrid group
 - BUT Proliferation of the number of f_0 mesons: $f_0(0.6), f_0(0.98), f_0(1.36), f_0(1.5), f_0(1.7), ...?$
 - Less known values of the hadronic and $\gamma\gamma$ couplings: Recent analysis of $\gamma\gamma \rightarrow \pi\pi$ and $\pi\pi \rightarrow \pi\pi, K\bar{K}$ (Kaminski+Minkowski+Mennessier+ S.N+Ochs) leads to : $\Gamma(\sigma \rightarrow \gamma\gamma)|_{direct} \simeq (0.13 \pm 0.05)$ KeV, $\Gamma(\sigma \rightarrow \gamma\gamma)|_{rescat} \simeq (2.7 \pm 0.4)$ KeV

 $|g_{\sigma \to \pi\pi}| \approx |g_{\sigma \to K\bar{K}}| \ M_{\sigma} = 422 - i290 \ \text{MeV}$

- Theoretically : many speculations on their nature
 - $\bar{q}q$, 4q or gluonia/glueball states or their mixings ?

- Light scalar mesons : long standing problem in QCD
- Experimentally : inaccurate and confusing data
 - $K_0^*(700-900)$...?
 - Confirmation of the $\sigma/f_0(600)$ Bern group, Madrid group
 - BUT Proliferation of the number of f_0 mesons: $f_0(0.6), f_0(0.98), f_0(1.36), f_0(1.5), f_0(1.7), ...?$
 - Less known values of the hadronic and $\gamma\gamma$ couplings: Recent analysis of $\gamma\gamma \rightarrow \pi\pi$ and $\pi\pi \rightarrow \pi\pi, K\bar{K}$ (Kaminski+Minkowski+Mennessier+ S.N+Ochs) leads to : $\Gamma(\sigma \rightarrow \gamma\gamma)|_{direct} \simeq (0.13 \pm 0.05)$ KeV, $\Gamma(\sigma \rightarrow \gamma\gamma)|_{rescat} \simeq (2.7 \pm 0.4)$ KeV

 $|g_{\sigma \to \pi\pi}| pprox |g_{\sigma \to K\bar{K}}| \ M_{\sigma} = 422 - i290 \ {\sf MeV}$

- Theoretically : many speculations on their nature
 - $\bar{q}q$, 4q or gluonia/glueball states or their mixings ?
- Aims in this talk
 - QCD Spectral Sum Rules (QSSR)
 — Low Energy Theorem (LET) analysis (without any prejudices) of Unmixed States

HEPMAD09, Antananarivo (21-28th August 2009) - p. 4/1

QSSR

• SVZ Sum Rules M.A. Shifman - A.I. Vainshtein - V.I. Zakharov 79

Duality between What one can calculate in QCD with What one can measure

HEPMAD09, Antananarivo (21-28th August 2009) - p. 4/1

QSSR

- SVZ Sum Rules M.A. Shifman A.I. Vainshtein V.I. Zakharov 79
 - Duality between What one can calculate in QCD with What one can measure
- QCD two-point function
 - $\Pi(q^2) \equiv \int e^{iqx} \langle 0 | T J_{\Gamma}(x) J_{\Gamma}^{\dagger}(0) | 0 \rangle : J_{\Gamma}(x) \equiv \overline{\Psi} \Gamma \Psi \Psi :$ quark fields
 - $\Pi(Q^2 \equiv -q^2 \geq \Lambda^2) = \sum_{0,1,\dots} C_{2n} \langle O_{2n} \rangle / Q^{2n}$: OPE
 - C_{2n} calculable in pQCD
 - $\langle O_2 \rangle$: m_q^2 quark masses, λ^2 tachyonic gluon mass [parametrization of UV renormalons (*not in the usual OPE*)]
 - Condensates $\langle O_{2n\geq 4} \rangle$: $m \langle \bar{\psi}\psi \rangle$,...quark $\langle \alpha_s G^a_{\mu\nu} G^{\mu\nu}_a \rangle$,...gluons

Note: The coeff. of G^2 is not generated by the quark propagator put in external fields !

- Exponential Sum Rules (LSR) SVZ 79
 - $\Pi(Q^2 \equiv -q^2) = \int_{t<}^{\infty} \frac{dt}{t+Q^2+i\epsilon} \frac{1}{\pi} \operatorname{Im}\Pi(t) + ... \Longrightarrow \mathcal{L}[\Pi](\tau) = \int_{t<}^{\infty} dt \ e^{-t\tau} \frac{1}{\pi} \operatorname{Im}\Pi(t)$ $\operatorname{Im}\Pi(t)$: measurable experimentally *exp* enhances the ground state contribution

 - $-\frac{d}{d\tau}\log \mathcal{L}(\tau) \simeq M_R^2$: "one resonance" + QCD continuum.

- Exponential Sum Rules (LSR) SVZ 79

 - $Im\Pi(t)$: measurable experimentally *exp* enhances the ground state contribution
 - $-\frac{d}{d\tau}\log L(\tau) \simeq M_R^2$: "one resonance" + QCD continuum.
- Finite Energy & τ-like Sum Rules (FESR) Bramon-Etim-Greco 72, Shankar 77, Chetyrkin-Krasnikov-Tavkhelidze 78, Floratos-SN-de Rafael 79, Bertlmann-Launer-de Rafael 85, Braaten-SN-Pich 92

•
$$\mathcal{M}_n \equiv \int_{t<}^{Q^2} dt \ \rho(t) t^n \mathrm{Im}\Pi(t)$$
 $\rho(t) \equiv \left(1 - \frac{t}{Q^2}\right)^2$ for τ -decay...

- Exponential Sum Rules (LSR) SVZ 79
 - $\prod(Q^2 \equiv -q^2) = \int_{t_<}^{\infty} \frac{dt}{t+Q^2+i\epsilon} \frac{1}{\pi} \operatorname{Im}\Pi(t) + \dots \Longrightarrow \mathcal{L}[\Pi](\tau) = \int_{t_<}^{\infty} dt \ e^{-t\tau} \frac{1}{\pi} \operatorname{Im}\Pi(t)$
 - $Im\Pi(t)$: measurable experimentally *exp* enhances the ground state contribution
 - $-\frac{d}{d\tau}\log \mathcal{L}(\tau) \simeq M_R^2$: "one resonance" + QCD continuum.
- Finite Energy & τ-like Sum Rules (FESR) Bramon-Etim-Greco 72, Shankar 77, Chetyrkin-Krasnikov-Tavkhelidze 78, Floratos-SN-de Rafael 79, Bertlmann-Launer-de Rafael 85, Braaten-SN-Pich 92
 - $\mathcal{M}_n \equiv \int_{t_{<}}^{Q^2} dt \ \rho(t) t^n \mathrm{Im}\Pi(t) \qquad \rho(t) \equiv \left(1 \frac{t}{Q^2}\right)^2 \text{ for } \tau \text{-decay...}$
- Gaussian Sum Rules (GSR) Bertlmann-Launer-de Rafael 85
 - $\mathcal{G}(s,\sigma) \equiv \frac{1}{\sqrt{4\pi\sigma}} \int_{t<}^{\infty} dt \ e^{-\frac{(t+s)^2}{4\sigma}} \frac{1}{\pi} \text{Im}\Pi(t)$ centered at *s* with a finite width resolution $\sqrt{4\pi\sigma}$

- Exponential Sum Rules (LSR) SVZ 79
 - $\prod(Q^2 \equiv -q^2) = \int_{t_<}^{\infty} \frac{dt}{t+Q^2+i\epsilon} \frac{1}{\pi} \operatorname{Im}\Pi(t) + \dots \Longrightarrow \mathcal{L}[\Pi](\tau) = \int_{t_<}^{\infty} dt \ e^{-t\tau} \frac{1}{\pi} \operatorname{Im}\Pi(t)$
 - Im $\Pi(t)$: measurable experimentally *exp* enhances the ground state contribution
 - $-\frac{d}{d\tau}\log \mathcal{L}(\tau) \simeq M_R^2$: "one resonance" + QCD continuum.
- Finite Energy & τ-like Sum Rules (FESR) Bramon-Etim-Greco 72, Shankar 77, Chetyrkin-Krasnikov-Tavkhelidze 78, Floratos-SN-de Rafael 79, Bertlmann-Launer-de Rafael 85, Braaten-SN-Pich 92
 - $\mathcal{M}_n \equiv \int_{t_<}^{Q^2} dt \ \rho(t) t^n \mathrm{Im}\Pi(t)$ $\rho(t) \equiv \left(1 \frac{t}{Q^2}\right)^2$ for τ -decay...
- Gaussian Sum Rules (GSR) Bertlmann-Launer-de Rafael 85
 - $\mathcal{G}(s,\sigma) \equiv \frac{1}{\sqrt{4\pi\sigma}} \int_{t_{<}}^{\infty} dt \ e^{-\frac{(t+s)^2}{4\sigma}} \frac{1}{\pi} \text{Im}\Pi(t)$ centered at *s* with a finite width resolution $\sqrt{4\pi\sigma}$
- Optimal Results
 - Stability in the change of the sum rules variables and QCD continuum threshold
 - (\simeq variational calculation)

HEPMAD09, Antananarivo (21-28th August 2009) - p. 6/1

• $O_{\bar{u}q} = (m_u + m_q)\bar{u}q$: $q \equiv d, s$

 $\overline{M_{ar{u}d}}\simeq$ 1 GeV , $M_{ar{u}s}\simeq M_{ar{u}d}$

Different positions of the optimization scales cancel SU(3) breaking effects SN

SN 06

•
$$O_{ar{u}q}=(m_u+m_q)ar{u}q$$
 : $q\equiv d,s$
 $M_{ar{u}d}\simeq$ 1 GeV , $M_{ar{u}s}\simeq M_{ar{u}d}$

Different positions of the optimization scales cancel SU(3) breaking effects SN 0

• $O_{4q} = (\bar{u}\Gamma u)(\bar{s}\Gamma s) + \dots, \quad O_{6d} = (uu)(\bar{s}\bar{s})$ $M_{4q} \simeq 1 \text{ GeV}$ Latorre-Pascual 85, Sao Paolo 05

Schechter 08, Achasov 08

•
$$O_{ar{u}q} = (m_u + m_q)ar{u}q$$
 : $q \equiv d,s$
 $M_{ar{u}d} \simeq$ 1 GeV , $M_{ar{u}s} \simeq M_{ar{u}d}$

Different positions of the optimization scales cancel SU(3) breaking effects SN

• $O_{4q} = (\bar{u}\Gamma u)(\bar{s}\Gamma s) + \dots, \quad O_{6d} = (uu)(\bar{s}\bar{s})$ $M_{4q} \simeq 1 \text{ GeV}$ Latorre-Pascual 85, Sao Paolo 05

• I=0 channel : Importance of $O_{gg} \equiv \theta^{\mu}_{\mu} = \frac{1}{4}\beta(\alpha_s)G^{\mu\nu}_a G^a_{\mu\nu}$ Needs 2 resonances for consistency of the substracted and unsbtracted sum rules $M_{\sigma_B} \simeq 1 \text{ GeV}, \qquad M_G \simeq (1.5 - 1.6) \text{ GeV}$ SN-Veneziano 89 Confirmed by inclusion of instanton-(anti) instanton in DIGA Harnett-Moats-Steele 08

•
$$O_{ar{u}q}=(m_u+m_q)ar{u}q$$
 : $q\equiv d$, $M_{ar{u}d}\simeq$ 1 GeV , $M_{ar{u}s}\simeq M_{ar{u}d}$

Different positions of the optimization scales cancel SU(3) breaking effects SN

• $O_{4q} = (\bar{u}\Gamma u)(\bar{s}\Gamma s) + \dots, \quad O_{6d} = (uu)(\bar{s}\bar{s})$ $M_{4q} \simeq 1 \text{ GeV}$ Latorre-Pascual 85, Sao Paolo 05

• I=0 channel : Importance of $O_{gg} \equiv \theta^{\mu}_{\mu} = \frac{1}{4}\beta(\alpha_s)G^{\mu\nu}_a G^a_{\mu\nu}$ Needs 2 resonances for consistency of the substracted and unsbtracted sum rules $M_{\sigma_B} \simeq 1 \text{ GeV}, \qquad M_G \simeq (1.5 - 1.6) \text{ GeV} \qquad \text{SN-Veneziano 89}$ Confirmed by inclusion of instanton-(anti) instanton in DIGA Harnett-Moats-Steele 08 • $\approx 1 \text{ GeV}$ Glueball : Unquenched Lattice McNeil et al. 08 Strong coupling evaluation of the gluon propagator Frasca 08

HEPMAD09, Antananarivo (21- 28th August 2009) – p. 6/1

•
$$O_{ar{u}q}=(m_u+m_q)ar{u}q$$
 : $q\equiv d$, $M_{ar{u}d}\simeq$ 1 GeV , $M_{ar{u}s}\simeq M_{ar{u}d}$

Different positions of the optimization scales cancel SU(3) breaking effects SN

• $O_{4q} = (\bar{u}\Gamma u)(\bar{s}\Gamma s) + \dots, \quad O_{6d} = (uu)(\bar{s}\bar{s})$ $M_{4q} \simeq 1 \text{ GeV}$ Latorre-Pascual 85, Sao Paolo 05

• I=0 channel : Importance of $O_{gg} \equiv \theta^{\mu}_{\mu} = \frac{1}{4}\beta(\alpha_s)G^{\mu\nu}_a G^a_{\mu\nu}$ Needs 2 resonances for consistency of the substracted and unsbtracted sum rules $M_{\sigma_B} \simeq 1 \text{ GeV}, \qquad M_G \simeq (1.5 \cdot 1.6) \text{ GeV} \qquad \text{SN-Veneziano 89}$ Confirmed by inclusion of instanton-(anti) instanton in DIGA Harnett-Moats-Steele 08 • $\approx 1 \text{ GeV}$ Glueball : Unquenched Lattice McNeil et al. 08 Strong coupling evaluation of the gluon propagator Frasca 08

• No conclusive structure from spectra predictions !

• From 3-point quark correlation functions

Approach tested from $\rho \rightarrow \pi^+\pi^-$, $\omega\rho\pi$ (SN - Paver 84) and $\pi^0 \rightarrow \gamma\gamma$ decay (SN 86).

• From 3-point quark correlation functions

Approach tested from $\rho \rightarrow \pi^+\pi^-$, $\omega\rho\pi$ (SN - Paver 84) and $\pi^0 \rightarrow \gamma\gamma$ decay (SN 86)

HEPMAD09, Antananarivo (21-28th August 2009) – p. 7/1

• From 3-point quark correlation functions

Approach tested from $\rho \to \pi^+\pi^-$, $\omega\rho\pi$ (SN - Paver 84) and $\pi^0 \to \gamma\gamma$ decay (SN 86)

From 3-point quark correlation functions

Approach tested from $\rho \to \pi^+\pi^-$, $\omega\rho\pi$ (SN - Paver 84) and $\pi^0 \to \gamma\gamma$ decay (SN 86)

• From 3-point hadron vertices (SN-Veneziano 89) $V[q^2 = (q_1 - q_2)^2] = \langle \pi_1 | \theta_{\mu}^{\mu} | \pi_2 \rangle = V(0) + q^2 \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \frac{1}{t - q^2 - i\epsilon} \frac{1}{\pi} \operatorname{Im} V(t)$ $V(0) = O(m_{\pi}^2) \to 0$ in the chiral limit (NSVZ 80) V'(0) = 1

• From 3-point hadron vertices (SN-Veneziano 89) $V[q^2 = (q_1 - q_2)^2] = \langle \pi_1 | \theta_{\mu}^{\prime \prime} | \pi_2 \rangle = V(0) + q^2 \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \frac{1}{t - q^2 - i\epsilon} \frac{1}{\pi} \operatorname{Im} V(t)$ $V(0) = O(m_{\pi}^2) \to 0$ in the chiral limit (NSVZ 80) V'(0) = 1

• \implies Two LET sum rules:

$$\frac{1}{4} \sum_{S=\sigma_B, \sigma'_B, G} g_{S\pi\pi} \sqrt{2} f_S = 0 , \quad \frac{1}{4} \sum_{S=\sigma_B, \sigma'_B, G} g_{S\pi\pi} \frac{\sqrt{2} f_S}{M_S^2} = 1$$

 $\implies |g_{\sigma_B\pi^+\pi^-}| \simeq |g_{\sigma_BK^+K^-}| \simeq (4 \sim 5) \text{ GeV} \Longrightarrow \Gamma_{\sigma_B \to \pi^+\pi^-} \simeq 0.7 \text{ GeV} M_{\sigma_B} = 1 \text{ GeV}$

• From 3-point hadron vertices (SN-Veneziano 89) $V[q^2 = (q_1 - q_2)^2] = \langle \pi_1 | \theta_{\mu}' | \pi_2 \rangle = V(0) + q^2 \int_{4m_{\pi}}^{\infty} \frac{dt}{t} \frac{1}{t - q^2 - te} \frac{1}{\pi} \operatorname{Im} V(t)$ $V(0) = O(m_{\pi}^2) \to 0$ in the chiral limit (NSVZ 80) V'(0) = 1

• \implies Two LET sum rules:

$$rac{1}{4}\sum_{S=\sigma_B,\sigma_B',G}g_{S\pi\pi}\sqrt{2}f_S=0\;,\quad rac{1}{4}\sum_{S=\sigma_B,\sigma_B',G}g_{S\pi\pi}rac{\sqrt{2}f_S}{M_S^2}=1$$

 $\implies |g_{\sigma_B\pi^+\pi^-}| \simeq |g_{\sigma_BK^+K^-}| \simeq (4 \sim 5) \text{ GeV} \Longrightarrow \Gamma_{\sigma_B \to \pi^+\pi^-} \simeq 0.7 \text{ GeV} M_{\sigma_B} = 1 \text{ GeV}$

• Euler – Heisenberg Lagrangian : $gg \rightarrow \gamma\gamma$ (NSVZ 80) $\implies g_{S\gamma\gamma} \simeq \frac{\alpha}{60} \sqrt{2} f_S M_S^2 \left(\frac{\pi}{-\beta_1}\right) \sum_{q=u,d,s} Q_q^2 / M_q^4 M_q$: constituent quark mass; f_s from QSSR

• From 3-point hadron vertices (SN-Veneziano 89) $V[q^2 = (q_1 - q_2)^2] = \langle \pi_1 | \theta_{\mu}^{\mu} | \pi_2 \rangle = V(0) + q^2 \int_{4m_{\pi}^2}^{\infty} \frac{dt}{t} \frac{1}{t - q^2 - tc} \frac{1}{\pi} \operatorname{Im} V(t)$ $V(0) = O(m_{\pi}^2) \to 0$ in the chiral limit (NSVZ 80) V'(0) = 1

• \implies Two LET sum rules:

$$rac{1}{4}\sum_{S=\sigma_B,\sigma_B',G}g_{S\pi\pi}\sqrt{2}f_S=0\;,\quad rac{1}{4}\sum_{S=\sigma_B,\sigma_B',G}g_{S\pi\pi}rac{\sqrt{2}f_S}{M_S^2}=1$$

 $\implies |g_{\sigma_B\pi^+\pi^-}| \simeq |g_{\sigma_BK^+K^-}| \simeq (4 \sim 5) \text{ GeV} \Longrightarrow \Gamma_{\sigma_B \to \pi^+\pi^-} \simeq 0.7 \text{ GeV} M_{\sigma_B} = 1 \text{ GeV}$

• Euler – Heisenberg Lagrangian : $gg \rightarrow \gamma\gamma$ (NSVZ 80) $\implies g_{S\gamma\gamma} \simeq \frac{\alpha}{60}\sqrt{2}f_S M_S^2 \left(\frac{\pi}{-\beta_1}\right) \sum_{q=u,d,s} Q_q^2 / M_q^4 M_q$: constituent quark mass; f_s from QSSR • $\Gamma_{\sigma_B \rightarrow \gamma\gamma} \simeq (0.2 \sim 0.6)$ keV $\sim M_{\sigma_R}^3$ (SN-Veneziano 89, SN 98)

HEPMAD09, Antananarivo (21-28th August 2009) - p. 9/1

- What σ mass to be used ? (Minkowski)-Mennessier-SN-Ochs 07,08
 - QSSR mass obtained in the real axis !
 - USE the on-shell or Breit-Wigner mass (amplitude purely imaginary at the phase 90⁰) Kniehl-Sirlin 08 BUT NOT the mass in the Complex plane : often (mis)used in the literature !
 - $M_{\sigma}|_{pole} \simeq 422 \text{-i} \ 290 \ \text{GeV} \Longrightarrow \ M_{\sigma}|_{on \ shell} \simeq M_{\sigma}|_{BW} \simeq 1 \ \text{GeV}$

- What σ mass to be used ? (Minkowski)-Mennessier-SN-Ochs 07,08
 - QSSR mass obtained in the real axis !
 - USE the on-shell or Breit-Wigner mass (amplitude purely imaginary at the phase 90⁰) Kniehl-Sirlin 08 BUT NOT the mass in the Complex plane : often (mis)used in the literature !
 - $M_{\sigma}|_{pole} \simeq 422$ -i 290 GeV $\implies M_{\sigma}|_{on \ shell} \simeq M_{\sigma}|_{BW} \simeq 1$ GeV
- On-shell $\sigma\pi\pi$ and direct $\sigma\gamma\gamma$ couplings
 - Comparable with previous QSSR⊕LET predictions :

 $\Gamma_{\sigma|_{on \ shell} \to \pi^+\pi^-} \simeq 1.0 \text{ GeV}, \quad \Gamma_{\sigma}|_{on \ shell} \to \gamma\gamma|_{direct} \simeq (1.0 \pm 0.4) \text{ keV}.$

- What σ mass to be used ? (Minkowski)-Mennessier-SN-Ochs 07,08
 - QSSR mass obtained in the real axis !
 - USE the on-shell or Breit-Wigner mass (amplitude purely imaginary at the phase 90⁰) Kniehl-Sirlin 08 BUT NOT the mass in the Complex plane : often (mis)used in the literature !
 - $M_{\sigma}|_{pole} \simeq 422$ -i 290 GeV $\implies M_{\sigma}|_{on \ shell} \simeq M_{\sigma}|_{BW} \simeq 1$ GeV
- On-shell $\sigma\pi\pi$ and direct $\sigma\gamma\gamma$ couplings
 - Comparable with previous QSSR⊕LET predictions :

 $\Gamma_{\sigma|_{on \ shell} \to \pi^+\pi^-} \simeq 1.0 \ \text{GeV}, \quad \Gamma_{\sigma|_{on \ shell} \to \gamma\gamma}|_{direct} \simeq (1.0 \pm 0.4) \ \text{keV}.$

- What internal structure of the σ from QSSR is favoured by the data?
 - NOT pure $\bar{q}q$: too large $\gamma\gamma$ (5 keV) AND too small $\pi\pi$ [(120-180) MeV] widths !
 - NOT pure 4q: too small $\gamma\gamma$ width (few 10 eV) and $g_{\sigma\bar{K}K} \ll g_{\sigma\pi\pi}$
 - MOST PROBABLY a large Gluonium component: $\gamma\gamma$, $\pi\pi$ and $\bar{K}K$ couplings OK !

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 10/1

• If σ is a gluonium ? (Minkowski)-Mennessier-SN-Ochs 07,08

- Almost equal $(m_d = m_s)$ coupling to $\pi^+\pi^-$ and K^+K^- (LET SR): \neq 4q scenario. (confirmed from $\gamma\gamma$, $\pi \pi$ scattering) Kaminski, Mennessier, SN 09.
- [●] $B_{\phi \to \sigma_B \gamma} \approx 12 \times 10^{-5}$ SN-V 89, SN 98, 06 : KLOE $B_{\phi \to \pi^0 \pi^0 \gamma} = (10.9 \pm 0.06) \times 10^{-5}$
- $B_{J/\psi \to \sigma_B \gamma} \approx 19 \times 10^{-5}$ SN-V 89, SN 98, 06 $\frac{\Gamma_{D_s \to \sigma_B(gg)Iv}}{\Gamma_{D_s \to S_d(\bar{a}g)Iv}} \sim O(1)$ Dosch-SN 03
- I=0 : Study of the CP-odd asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Layssac-SN 08
- σ and $f_0(980)$: maximally mixed gg and $\bar{q}q$? Bramon-SN 89, SN 98

• If σ is a gluonium ? (Minkowski)-Mennessier-SN-Ochs 07,08

- Almost equal $(m_d = m_s)$ coupling to $\pi^+\pi^-$ and K^+K^- (LET SR): \neq 4q scenario. (confirmed from $\gamma\gamma$, $\pi \pi$ scattering) Kaminski, Mennessier, SN 09.
- [■] $B_{\phi \to \sigma_B \gamma} \approx 12 \times 10^{-5}$ SN-V 89, SN 98, 06 : KLOE $B_{\phi \to \pi^0 \pi^0 \gamma} = (10.9 \pm 0.06) \times 10^{-5}$
- $B_{J/\psi \to \sigma_B \gamma} \approx 19 \times 10^{-5}$ SN-V 89, SN 98, 06 $\frac{1}{D_x \to \sigma_B(gg)/v} \sim O(1)$ Dosch-SN 03
- I=0 : Study of the CP-odd asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Layssac-SN 08
- σ and $f_0(980)$: maximally mixed gg and $\bar{q}q$? Bramon-SN 89, SN 98
- States above 1 GeV ?
 - More Involved : Mixings Spectroscopic Chemistry !

N 98, Amsler, Close, Zhao 99, 05

- $\exists \sigma'_B$ as a radial excitation $\equiv f_0(1300)$? and
- G(1.5-1.6) as "true OZI glueball" : decay into $\eta'\eta, \eta\eta$: $\frac{\Gamma(G \rightarrow \eta\eta)}{\Gamma(G \rightarrow \eta'\eta)} \sim \# \tan^2 \theta_P$

• If σ is a gluonium ? (Minkowski)-Mennessier-SN-Ochs 07,08

- Almost equal $(m_d = m_s)$ coupling to $\pi^+\pi^-$ and K^+K^- (LET SR): \neq 4q scenario. (confirmed from $\gamma\gamma$, $\pi \pi$ scattering) Kaminski, Mennessier, SN 09.
- [■] $B_{\phi \to \sigma_B \gamma} \approx 12 \times 10^{-5}$ SN-V 89, SN 98, 06 : KLOE $B_{\phi \to \pi^0 \pi^0 \gamma} = (10.9 \pm 0.06) \times 10^{-5}$
- $B_{J/\psi \to \sigma_B \gamma} \approx 19 \times 10^{-5}$ SN-V 89, SN 98, 06 $\frac{1}{1} \frac{D_s \to \sigma_B(gg)/v}{D_s \to S_{\sigma}(\tilde{\sigma}g)/v} \sim O(1)$ Dosch-SN 03
- I=0 : Study of the CP-odd asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Layssac-SN 08
- σ and $f_0(980)$: maximally mixed gg and $\bar{q}q$? Bramon-SN 89, SN 98
- States above 1 GeV ?
 - More Involved : Mixings Spectroscopic Chemistry !

N 98, Amsler, Close, Zhao 99, 05

- $\exists \sigma'_B$ as a radial excitation $\equiv f_0(1300)$? and
- G(1.5-1.6) as "true OZI glueball" : decay into $\eta'\eta, \eta\eta$: $\frac{\Gamma(G \rightarrow \eta \eta)}{\Gamma(G \rightarrow \eta' \eta)} \sim \# \tan^2 \theta_P$
- About the $a_0(980)$ and $K_0^*(840)$?
 - Needs a precise determination of the hadronic couplings and their ratio.
 - Needs a separation of the direct $\gamma\gamma$ coupling and rescattering term for $a_0(980)$

• If σ is a gluonium ? (Minkowski)-Mennessier-SN-Ochs 07,08

- Almost equal $(m_d = m_s)$ coupling to $\pi^+\pi^-$ and K^+K^- (LET SR): \neq 4q scenario. (confirmed from $\gamma\gamma$, $\pi \pi$ scattering) Kaminski, Mennessier, SN 09.
- [■] $B_{\phi \to \sigma_B \gamma} \approx 12 \times 10^{-5}$ SN-V 89, SN 98, 06 : KLOE $B_{\phi \to \pi^0 \pi^0 \gamma} = (10.9 \pm 0.06) \times 10^{-5}$
- $B_{J/\psi \to \sigma_B \gamma} \approx 19 \times 10^{-5}$ SN-V 89, SN 98, 06 $\frac{1}{1} \frac{D_s \to \sigma_B(gg)/v}{D_s \to S_s(gg)/v} \sim O(1)$ Dosch-SN 03
- I=0 : Study of the CP-odd asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ Layssac-SN 08
- σ and $f_0(980)$: maximally mixed gg and $\bar{q}q$? Bramon-SN 89, SN 98
- States above 1 GeV ?
 - More Involved : Mixings Spectroscopic Chemistry !

N 98, Amsler, Close, Zhao 99, 05

- $\exists \sigma'_B$ as a radial excitation $\equiv f_0(1300)$? and
- G(1.5-1.6) as "true OZI glueball" : decay into $\eta'\eta, \eta\eta$: $\frac{\Gamma(G \rightarrow \eta\eta)}{\Gamma(G \rightarrow \eta'\eta)} \sim # \tan^2 \theta_P$
- About the $a_0(980)$ and $K_0^*(840)$?
 - Needs a precise determination of the hadronic couplings and their ratio.
 - Needs a separation of the direct $\gamma\gamma$ coupling and rescattering term for $a_0(980)$
- Present interpretations seem to be premature !

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 11/1

 \bullet The σ is there BUT one needs to confirm its large gluonium substructure!

HEPMAD09, Antananarivo (21-28th August 2009) - p. 11/1

• The σ is there **BUT** one needs to confirm its large gluonium substructure!

• Analogous problems for clarifying the nature of the other scalars !

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 11/1

• The σ is there **BUT** one needs to confirm its large gluonium substructure!

• Analogous problems for clarifying the nature of the other scalars !

• Further efforts from theory and experiments are still needed :

- Poor $\gamma\gamma \rightarrow \pi\pi$ data below 700 MeV
- Separation of the direct $\gamma\gamma$ coupling and rescattering contributions
- Data from $J/\psi \rightarrow \gamma \sigma, \ \pi^+\pi^-, \ K^+K^-, ...$

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 12/1

- TH calculations for Hybrids
 - $M_H = 2.2 \text{ GeV}$ (Lattice with 2 fermions)
 - $M_H = 1.8(2)$ GeV and $M_H \le 2.2$ GeV (QSSR: SN 09)

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 12/1

- TH calculations for Hybrids
 - $M_H = 2.2 \text{ GeV}$ (Lattice with 2 fermions)
 - $M_H = 1.8(2)$ GeV and $M_H \le 2.2$ GeV (QSSR: SN 09)
 - TH calculation for 4-quark $(\overline{q_1q_2})(q_1q_2)$ states
 - $M_{4q} = 1.70(4)$ GeV and $M_{4q} \le 2.4(1)$ GeV (SN 09)

- TH calculations for Hybrids
 - $M_H = 2.2 \text{ GeV}$ (Lattice with 2 fermions)
 - $M_H = 1.8(2)$ GeV and $M_H \le 2.2$ GeV (QSSR: SN 09)
 - TH calculation for 4-quark $(\overline{q_1q_2})(q_1q_2)$ states
 - $M_{4q} = 1.70(4)$ GeV and $M_{4q} \le 2.4(1)$ GeV (SN 09)
 - TH calculation for molecules $(\bar{q}_1q_1)(\bar{q}_2q_2)$
 - *M_{mol}*= 1.3 (1) GeV (SN 09)

- TH calculations for Hybrids
 - $M_H = 2.2 \text{ GeV}$ (Lattice with 2 fermions)
 - $M_H = 1.8(2)$ GeV and $M_H \le 2.2$ GeV (QSSR: SN 09)
 - TH calculation for 4-quark $(\overline{q_1q_2})(q_1q_2)$ states
 - $M_{4q} = 1.70(4)$ GeV and $M_{4q} \le 2.4(1)$ GeV (SN 09)
 - TH calculation for molecules $(\bar{q}_1q_1)(\bar{q}_2q_2)$
 - M_{mol}= 1.3 (1) GeV (SN 09)
 - Nature of the $\pi_1(1400)$, $\pi_1(1600)$, $\pi_1(2015)$
 - $\pi_1(1400), \pi_1(1600)$ can result from 4q \oplus molecule mixing : $\theta_{mix} = 11.7 \pm 2.2^0$
 - $\pi_1(2015)$ more hybrid component.

4. *THE X, Y, Z STATES*

HEPMAD09, Antananarivo (21-28th August 2009) - p. 13/1

4. *THE X, Y, Z STATES*

A similar systematic analysis should be done for the X, Y, Z charm states discussed yesterday by V. Poireau (Babar) & M. Bracko (Belle).

HEPMAD09, Antananarivo (21- 28th August 2009) - p. 13/1

4. *THE X, Y, Z STATES*

A similar systematic analysis should be done for the X, Y, Z charm states discussed yesterday by V. Poireau (Babar) & M. Bracko (Belle).

• QSSR analysis

- X(3872) as a 4-quark state (Matheus-Nielsen-SN-Richard 07)
- Y(4260) as a $1^{--} \overline{D}^* D_0$ molecule (Albuquerque-Nielsen 08)

5. OPEN CHARM & BOTTOM STATES

HEPMAD09, Antananarivo (21-28th August 2009) - p. 14/1

5. OPEN CHARM & BOTTOM STATES

- $D_{sJ}(2317) \& D_{sJ}^*(2457)$ candidates
 - **Decay into** $D_s\pi$, $D_s\gamma$ and $D_s\pi\gamma$ (Belle-Babar)

5. OPEN CHARM & BOTTOM STATES

• $D_{sJ}(2317) \& D^*_{sJ}(2457)$ candidates

Decay into $D_s\pi$, $D_s\gamma$ and $D_s\pi\gamma$ (Belle-Babar)

• QSSR predictions for $\bar{Q}q$

- $0^- 0^+$ splittings controlled by the quark condensate $\langle \bar{q}q \rangle$ (SN 09)
- M_{D_s(0⁺)} = 2297(113) MeV M_{D_s(0⁺)} M_{D₀(0⁺)} ~ 25 MeV
 M_{D^{*}_s(1⁺⁺)} ~ 2440(113) MeV (~ flavour & spin symmetries for the splittings)

•
$$M_{B(0^+)} - M_{B(0^-)} \simeq 422(196) \text{ MeV} \approx M_{D(0^+)} - M_{D(0^-)}$$

6. CHARM & BOTTOM BARYONS

HEPMAD09, Antananarivo (21-28th August 2009) - p. 15/1

6. CHARM & BOTTOM BARYONS

Table 2: QSSR predictions of the strange heavy baryon masses in units of MeV from the double ratio (DR) of sum rules. The data for the Ω_b come respectively from the D0 and the CDF collaborations (Albuquerque-Nielsen-S.N. 09)

Baryons	$r^{sd}_{B^*_Q}$	Mass	Data
Octet (spin 1/2)			
$\Xi_c(csq)$	1.075(21)	2458(50)	2467.9 ± 0.4
$\Omega_c(css)$	1.141(39)	2800(96)	2697.5 ± 2.6
$\Xi_b(bsq)$	1.048(15)	5888(81)	5792.4 ± 3.0
$\Omega_b(bss)$	1.051(12)	6108(71)	6165.0 ± 13
			6054.4 ± 6.9
Decuplet (spin 3/2)			
Ξ_c^*	1.065(21)	2682(53)	2646.1 ± 1.3
Ω_c^*	1.135(37)	2858(92)	2768.3 ± 3.0
Ξ_b^*	1.024(8)	5973(44)	_
Ω_b^*	1.051(17)	6130(99)	_

4. Concluding Remarks

HEPMAD09, Antananarivo (21-28th August 2009) - p. 16/1

4. Concluding Remarks

 New data for light scalar mesons are still needed for a better understanding of their nature

HEPMAD09, Antananarivo (21-28th August 2009) - p. 16/1

4. Concluding Remarks

- New data for light scalar mesons are still needed for a better understanding of their nature
 - New data for heavy mesons are available and will come soon
- Related theoretical progresses are expected.

