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 Abstract  
 The present work proposes a method to optimize the dimensions of different 
components of a wind pump: the support, the pump, the transmission mechanism of the 
energy from the rotor toward the pump and the rotor. The proposed pump is with piston for 
simple effect. The support is made from an assembly of wood. There are two fields of 
dimensions of the rod and the crank: the field where the hodograph of the speeds of piston 
present strong irregularity and the other where this hodograph varies less strongly. The results 
of modelling mechanism make it possible to separate these two fields. Laws, between the 
various characteristic kinematic magnitudes, are obtained. The mathematical model of the 
rotor is obtained by formulating the conditions of optimality of the aerodynamic forces, and, 
by equalizing the recoverable power from the wind, with the mechanical power necessary to 
start up the pump. The essential initial data are the speed of wind to starting the pump, the 
depth of the well and the densities of materials of the rotor. The resolution of the system of 
equations forming the model gives the forbidden measurements, and those optimal, of blades 
and the corresponding maximal debit of water. The wind motor can be armed by a special 
mechanism to obtain the working speed of an alternator to produce the electric energy. 
 Nomenclature 

PC  : Local coefficient of power 

VC : Volume of pump, 

MD : Duration of the ascent, 

S1,S2: Surfaces of the section of the tube of 
evacuation and the cylinder of the pump, 
H : Depth of well,  
V1 : Speed of wind to the pump starting, 

Ml  : Length of hub. 

1ω  : Angular speed of the crank, 

λ  : Specific speed of the wind pump, 

1 3, ,Cδ δ δ  : Densities of the hoop, the crank and 

the rod. 
, eρ ρ , ,Mλ σ : Densities of air, water, hub and 

blade, 

2 3,h h∆ ∆  : Dips of the rod and the piston. 

1. Introduction 
The difference between the entering and outgoing kinetic energy of the rotor 

corresponds to the recovered mechanical energy. A wind pump can recover no more than 59% 
of the kinetic energy of wind (law of Betz, 1929). So, we propose a method to optimize the 
system to reach this maximum energy efficiency. The study concerns the entity formed by the 
wind pump with horizontal axis and the pump to forcing back, with simple effect, while 
looking in detail its parts: the support, the transmission mechanism, the blades, their number 
and their angle of wedging, and the pump itself. 

Up to now, to the best of our knowledge, there are not deepened studies on the 
optimization of the wind pump, with weak speed of the wind, of the order of 3m/s again. The 
most frequent breakdown is the rupture of the rod; because of a too big effort to be developed 
by the device at certain time; that leds us to analyse the transmission mechanism, to formulate 
the mathematical model of this last, and of the wind one, to detect the source of the pain and 
to palliate it. 
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Mathematically, this work articulates therefore with the theory of control, with a view 
to master the usable energy optimization from wind. The sense of the optimal, or its 
rationality is in relation to the adequacy of the wind pump alloy "to horizontal axis and the 
pump to forcing back with simple effect" and the consistency of this non homogeneous 
system taken into consideration the materials, available locally, to compose the whole device. 
The determination of the different possible domains for the characteristic parameters of the 
system connects this approch of research to the mathematical theory of the viability [1]. 

 
FIG. 1: Wind pump with horizontal axis. 
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a- trunk 
b- timber 
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FIG. 2: Schema of the wind pump 
support.  

 
2. Optimization of the wind pump 

 2.1. The support  
 Common practices use a metallic pylon as a support of wind pump, but it is expensive; 
furthermore, it can twist under the strokes of wind and the whirlwinds that are very frequent. 
To reduce the cost of the system, we use an assembly of wood that resists these aerodynamic 
efforts better (FIG. 2). A round and dry eucalyptus wood, of about 0,25m of diameter and 6m 
of length, acts as pillar. To limit the possible distortions, the trunk is planted vertically very 
close to the well, in a hole cemented of 0,5m of depth. Three timbers of 4m long lean on the 
trunk in a level of 2,5m from the ground. An angle of 120° is to separate every two timber. To 
protect woods from a fast rot, they need to be dried before the installation, and then covered 
of draining oil.  

The structure undergoes periodic checking of its state. A replacement proves to be 
necessary if wood is decompositing. Like the support of the electric wires of the local 
electricity area network (JIRAMA1), the column can serve until five years.  

 
2.2. The pump 

 A metallic pump of industrial manufacture is complex; it can get rusty and its fixing is 
difficult. The body of the proposed pump is made of the junction of the bodies of two bottles 
in plastic (recovered) glued tip to tip and every bottom of which is removed. The cylinder 
witch is obtained reaches more 0,25m of height and have an intern diameter D=0,06m. Two 
plastic disks are superposed to carry the valve of forcing back and to act as mobile piston that 
is cone-shaped bound with a head of bottle in plastic serving of fixing piece with the stem of 

                                                 
1 1 : Jiro sy Rano Malagasy 
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control (FIG. 3). Another double disk similar to the previous one is attached to the bottom of 
the cylinder, whose fixing is reinforced by bolts to nuts; this one carries the valve of stop. An 
impermeable transparent membrane, synthetic and flexible tube-shaped of a diameter slightly 
less than the one of the cylinder, joins the two disks by its two extremities. The whole is 
transparent and one can see at the time of the test before the installation, if the valves function 
well. The working conditions of the pump are shown in FIG. 4. The pressure of the water 
column that the piston supports is: 1 1. .[ (1 cos )]e atm ep p g H lρ ϕ= + − − . 

The debit Q is determined as follows: 
2 2

1 1
1 1

2

2
4 2 4

C

C

V VD D
Q l l

T x

ω λπ
π

= = = . 

The users can move with the scale of Beaufort to value the speed of wind roughly. The VN 
rated speeds and VL limit correspond respectively to strengths 4 and 6 of that scale. 
 

 
FIG. 3: Diagram of the pump 
 

1- valve of 
repression,  
2- valve of stop,  
3- stem of order,  
4- encapsulate 
the head of 
bottle,  
5- mobile piston  
6- impervious 
membrane,  
7- stationary 
disk  
8- body,  
9- house of 
repression 

 
 

 

 

FIG. 4: Domain of the wind speeds for the 
working of the pump.  
 

 
2.3. The transmission mechanism   
In general, the used mechanism rod crank has a crank and a rod having very near 

lengths. However these neighbouring measurements provoke an enormous speed, therefore a 
big strength of inertia for the piston (case of the CAPR2), what requires an excessive 
energizing need for the rotor. To get a better mastery of the speed, we do the kinematical 
analysis of the two options of the mechanism rod crank (FIG. 5 and 6). 

 
FIG. 5 : Rod crank mechanism  

   
  FIG. 6 : Eccentric mechanism rod crank 
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Put: 10 / 1e lβ≤ = ≤  and 2 11 /l lγ< = .  The position of the piston is defined by 

2 2
1 1 1 2 1 1cos ( sin )OB l l e l x eyϕ ϕ = + − − +

  

����

� �

its speed is: 1 1 1 1( ) ( )iV B l k xω ϕ= −
�

�

, with  

( )
1 1

1 1 1 1
2 2 2

1

( sin )cos
( ) sin

( sin )

k
β ϕ ϕϕ ϕ

γ β ϕ

−= −
− −

 . 

The acceleration of B1 ( 0)β ≠  to the lowest point of its course is θ  bigger than the one of 

B ( 0)β = , with 
1

2 2 2(1 ). (1 )θ γ γ β
−

 = + + −  .  

When the rotation of the crank is uniform, the acceleration of the piston has the same form 
that the following expression: 

[ ] [ ]32 2
1 1 1 11 1

1 3
2 21 2

1

2.sin .sin 1 sin . sin( )
cos

( sin )

k γ ϕ β ϕ ϕ β ϕϕ
ϕ

ϕ γ β ϕ

 − − + −∂  = −
∂

 − − 

 

The positions of instantaneous stop 11 12,ϕ ϕ  , the length MD of the rise, the length AMD  of the 

accelerated phase of the rise and the length ADD  of the accelerated part of the descent are 

defined by:  

[ ]11 arcsin /( 1)ϕ β γ= +  

[ ]12 arcsin /( 1)ϕ π β γ= + −  

with : ( 1)β γ+ <  

12 11 100
360MD

ϕ ϕ−= ×  

1 11 100M
A M

M

D
D

ϕ ϕ−= ×  

( )
1 12

12 11

100m
A D

C

D
T

ϕ ϕ
ϕ ϕ

−= ×
− −

 

 
FIG. 7: Graphic definitions 
of 11 12 1 1 1, , , , ,M m Mk kϕ ϕ ϕ  

1 , , , ,m M AM AD CD D D Tϕ  

 
 
The values of 11 12 1 1 1 1, , , , , , , ,M m M m M AM ADk k D D Dϕ ϕ ϕ ϕ and θ  are gotten for 0 1β≤ ≤   and 

( 1) 8β γ+ < ≤  from the mathematical model (1) of the mechanism where the equations (e) 

and (f) permit to get 1 1 1 1, ,M M m mk and kϕ ϕ :  
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[ ]

11

12

32 2
1 1 1 1

1 3
2 2 2

1

1
1 1 1 1 2 2

1

2 2

0 1 ( ); 1 ; ( )

arcsin ; ( )
1

arcsin ; ( )
1

2.sin .sin 1 sin . sin
cos 0; ( )

( sin )

cos
( ) sin ( sin ). ; ( )

( sin )

1
( )

( 1)

a b

c

d

e

k f

g

β β γ
βϕ

γ
βϕ π

γ

γ ϕ β ϕ ϕ β ϕ
ϕ

γ β ϕ

ϕϕ ϕ β ϕ
γ β ϕ

γθ
γ β

≤ ≤ + <

 =  + 

 = +  − 

 − − + − − =
 − − 

= − −
− −

+=
+ −

1 2 1; ( ); ( ).e l h l l iβ γ

















 = =


(1) 

 
The numeric results give the curves of the FIG. 8 and the following laws:    
- The mechanism as a system rod crank cannot exist for: 0 1γ β< ≤ +  .   
- In the defined zone by: (1 ) (1 1,42 )β γ β+ < ≤ +  , the slide of mechanisms acquires some 
speeds capable to reach big values. This zone presents a very elevated risk of blockage or 
rupture of the rod.   
- The defined domain by: 3 2(1 1,42 ) (7,7431 6,3512 5,8573 6,8945)β γ β β β+ < < − − +  
is supportable because the speeds of the slide there present no more of big irregularities; the 
speeds are not more critical, but they are not again sufficiently satisfactory for a wind pump. 
- The measurements that verify: 
 3 27,7431 6,3512 5,8573 6,8945γ β β β≥ − − +  
are optimal for a wind pump. The irregularity of speeds during the cycle is acceptable; they 
pass less 1% the one of the extremity of the crank. The mechanism having these 
measurements requires the least quantity of energy to move because of its simple structure, its 
reduced mass and its easiness of the lubrication of its links.  
For the domain where the difference ( )γ β−  is slightly superior to the unit, the speed of the 
slide is very big; the mechanisms having these measurements find their applications in the 
thermal motors; the piston behaves as the motor piece of the system. In these cases, the crank 
becomes the receiving piece of energy or brace. 

We got the laws permitting to determine:   
- the positions of instantaneous stop of the slide in below and top:  11 12andϕ ϕ  ;   

- the report of the acceleration to the point 11ϕ  : 1
11(cos )θ ϕ −=  ;   

- the positions of the crank for which the speed of the slide is maximal at the time of its 
displacements ascending and downward for2,5γ ≥ : 

2
1 90 (4,6558 23,2174 27,9129). exp[ (0,0213 0,1793). ]Mϕ β β β γ= + + − − +   

2
1 270 ( 4,3267 24,4789 27,9109).exp[(0,0190 0,1801) ]mϕ β β β γ= + − + + −  

- the maximal values of mϕ  who verify: =1,1343 +1,2695γ β  ; 
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a) 1Mk in function of γ  

 

 
b) 1mk in function ofγ  

 
c) 1Mϕ  in function of γ   

d) 1mϕ  in function of γ  

 

 
e) 1Mϕ  in function of β  

 

  
f) MD  in function of γ  
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g) AMD  in function of γ  

 
h) ADD  in function of γ  

 
FIG. 8: Curves of variation of the characteristic parameters 

1 1 1 1, , , , ,M M m m M AM ADk k D D and Dϕ ϕ  

- the measurements of the mechanism for a report of speed fixed of the slide for 2,5γ ≥ : 
2

1 1 (0,1074 0,2363 0,1280).exp[ (0,0363 0,3675)] Mk β β β γ= + − + − +  
2

1 1 (0,1308 0,2543 0,1271).exp[ (0,0030 0,3675)]mk β β β γ= − − + + − +   

- the minimal values of mk  that verify: =1,0286 +1,0624γ β  ; 
- the length of the displacement of the ascent of the slide: 

250 (2,5311 11,9497 0,0561).exp[ (0,0173 0,4234) ]MD β β β γ= + + + − +  ; 

- the length of the accelerated phase of the ascent of the slide: 

( ) ( )2 250 1,0792 4,2004 14,0540 . exp (0,0095 0,0325 0,1645).A MD β β β β γ= − − + + − −   

- the length of the accelerated phase of the descent of the slid: 

( ) ( )2 250 0,9861 2,9854 12,9327 . exp (0,0182 0,0214 0,1519).A DD β β β β γ= + − − + + −  

Global laws between1Mk , 1Mϕ , 1mk  and 1mϕ  in the zone 2,5 8γ≤ ≤  are also gotten. They 

permit to determine a characteristic directly while knowing another; these laws are: 

[ ]24
1 11 1,6.10 90M Mk ϕ−= + −  ;  

[ ]24
1 11 (0,5 1,6).10 270m mk β ϕ−= − − + −  ; 

[ ]3 2
1 1270 (2,3875 1,2955 1,9367 0,0016). 90m Mϕ β β β ϕ= + − + − −  ; 

[ ]3 2
1 11 ( 2,0104 4,3313 3,4093 0,9989) 1M mk kβ β β= − − + − + +  ; 

[ ]23 2 4
1 11 ( 2,7104 6,1280 5,1628 1,6260).10 270M mk β β β ϕ−= + − + − + −  ; 

[ ]4 3 2 4 2
1 11 (1282,1 1397,8 511,6 47,5 ).10 90m Mk β β β β ϕ−= − − − + − − . 

These expressions show that the sizes11 12 1 1 1 1( , , , , , , , , , ) M m M m M AM ADk k D D Dϕ ϕ ϕ ϕ θ stretch 

toward the values (0º, 180º, 1, -1, 90º, 270º, 50%, 50%, 50%, 1), feature of the cyclic 
symmetrical mechanism best adapted to the wind pump, when the length of the rod becomes 
more and more big for7 0 1andγ β≤ ≤ ≤ . 
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Remark 
The adjustments with exponential functions are only pertinente for 2,5γ ≥ . 

Exponential function can be transformed in limited development form. So, we can use rational 
fractional function as function of adjustment. The obtained accuracy is about 410− . We have 
the following expressions that are true for all the domain of parameters β  and γ : (0 1β≤ ≤  
and 1γ β> + ): 

 1 2 5

0,3817 0,3407 0,2289 +0,2165
=1Mk

β β
γ γ

− −− −  ; 

2 2

1m 2 5

0,4904 +0,9667 +0,3670 3,9156 +0,0973 +0,2513
k = 1 +

β β β β
γ γ

− −  ; 

2

1M 3

54,9354 +55,3980 16,0507 51,2298 +34,6045
90

β β βϕ
γ γ

− −= − +  ; 

2

1m 3

62,6855 +54,1177 127,1008 +87,0112 34,2747
= 270+

β β βϕ
γ γ

+−  ; 

2

M 4

4,8688 +0,1531 127,9386 +80,4497 +3,0423
D 50+ +

β β β
γ γ

=  ; 

2 2

4

2,3257 +4,2824 +29,9111 60,8871 +21,0726 13,7592
50AMD

β β β β
γ γ

− −= − −  ; 

2

AD 3

2,7734 +30,9877 127,6077 +91,3563 +23,9937 
D = 50+

β β β
γ γ

− . 

 
2.4. The rotor 

 Currently, some authors [2-3] use of the expression 2 3
10,15 rP D V=  to define the 

recoverable power. This formula is gotten while simplifying: 3
10,5 pP C SVρη= ; it only 

contains the diameter Dr of the rotor. The other elements decide by groping. We express this 
power according to the speed of the V1 wind planned for the starting, the n number of blades 
and their measurements, the angle α  of wedging and the radius 2x  of the rotor, where 

2
1,39

1 .sin
n

η α = − 
 

 and let's look for the expression of the necessary mechanical power for 

the functioning of the wind motor according to these different parameters, the depth of the 
well H and the debit Q of the pump. The configuration of the rotor is assimilated to a regular 
polygon formed by n sections( 3)with n≥  [4]. We get: 

 ( )
2

3
2 1

1 1,39
1 sin cos . 1 1

2 P L RP C n r r Lx V
n

ρ α α = − − −    
 

 (2) 

where the frontal surface of the rotor is defined by: ( )2 1 1 cosnp L RS S n L x r r α = = − −    ,    

with:  0 1L

l
r

L
≤ = ≤  ; R

2

h
0< r = <1 

x
 ; 0

2

πα< < .     (3)   



 9 

 

 
FIG. 9: Trapezoidal blade 

 

 

 
FIG. 10: Profile of a plane blade in air. 

The triangles schematizing the blade (FIG. 9) in the same way summit O to the axis of 

rotation of the rotor, with bases 2l and 2L are similar; then 
2 2

L l

x x h
=

−
 ; that means: 

1L Rr r+ = . 

 The expression (2) becomes:  
2

3
2 1

1 1, 39
1 sin cos . (2 )

2 P R RP C n r r L x V
n

ρ α α = − − 
 

, or 

3
2 1

1
 

2 P ppP C nK L x Vρ=  (4) 

where the factor 
2

1,39
1 sin cos (2 )pp R RK r r

n
α α = − − 

 
 is optimal if  we have: 

 0pp pp
pp R

R

K K
dK d dr

r
α

α
∂ ∂

= + =
∂ ∂

. The equation 0pp

R

K

r

∂
=

∂
 has the solution: ( ); (0 ;1)L Rr r =  ;  

but this couple corresponds to a triangular blade of height h equals to the radius2x , what is 

impracticable because of the presence of the axis of rotation of the rotor and the hoop of 
fixing of the blades. An empty space in the centre of the rotor permits to reduce the harmful 

force T
�

(FIG. 5). By this technical consideration, we limit the height of the blade to 20,9h x=  

and the half small basis l=0,1L. The radius of the hoop is 1 2 20,1Cr x x h x= = − = . Thus, 

instead of the fictional solution(0 ;1), the rational solution ( ; ) (0,1 ; 0,9)L Rr r =  is taken like 

optimal condition for these two proportions. The trapeze has a centre of thrust situated to 

2 20,673 (2 / 3)Gx x x≈ >  of the axis of rotation. The equality between the frontal surface of the 

n blades and the swept surface by the radius2x  is translated by:  
2

2 2(2 )cos (2 )R R R Rn L x r r x r rα π− = − ,  

either: 2cosnL xα π= . This last equality expresses the optimal condition between parameters 

of the blade. The optimal condition of the angle of wedging α  must get itself of the 

equation 0ppK

α
∂

=
∂

. However this equation has not a root. To find the condition onα , we use 

the hypothesis on the force of lift 0P
�

, the proportional component to sinα  of the aerodynamic 

strength F
�

. Indeed, the sum of all these forces creates the motor couple. However it is the 
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recoverable power that turns into motor couple. It is here about a conversion of the same 
energizing size (principle of the thermodynamics). The ideal condition is to have a 
recoverable power and a force of lift at a time maximal (therefore a maximal motor couple 
also), that means: 

2
1,39

1 sin cos max

sin max

n
α α

α

 − →  
 →

 (5) 

The system (5) is equivalent to the equation (6) that means the optimal condition of the 
couple( , )n α : 

2
1,39

1 .sin .cos sin 0
n

α α α − − =  
        (6) 

The formed system (6) and ( ; ) (0,1 ; 0,9)L Rr r = show the optimal condition for the 

recoverable power (2). The equality between the recoverable power P affected by the 
coefficient µ of energy dissipation and the total mechanical power mE  results in a polynomial 

equation following the explanatory variable2x . In accordance with the convention in 

thermodynamics, P is counted positively for the wind pump, it is a quantity of stocked energy 
to the system, whereas mE is counted negatively, an energy that the same system must spend 

to be able to function; what gives. 0mP Eµ − = .   

All mobile parts of the wind pump and water being in the tube of evacuation acquires 
kinetic energy and potential energy of weight [5-6]; the debit of the pump must in addition to 
the energy of pressure [7]. The sum of all these energies taken to their maximal value by unit 
of time constitute that is necessary at the time the motor phase of the pump, that means during 
one half period(0,5 )CT . Each of the n blades is stretched by a right metallic stem. The n stems 

are welded on a hoop that is fixed on the hub with the help of 4 stems. The kinetic energies of 

the rotor, the crank, the stem and the debit are respectively: 2
1 1 1

1

2CE Jω= ; 2
1

1

2Cm mE J ω= ; 

2
2 1 1 1 2 1 1

1
( ) ( )

2CE l l lδ δ ω= + ; 
4

2
3 1 1

1
Q ( )

2C

D
E l

d
ω =  

 
; that gives the average power: 

1 2 3

2
( + )CT C Cm C C

C

E E E E E
T

= + + .  

The potential energies of the rod, the stem and the debit of water are: 

2 1 1 2PE l g hδ∆ = ∆ , 3 1 2 3PE l g hδ∆ = ∆ , 4PE Q g H∆ = ,  

that gives the power 2 3 4
2

( )P P P P
C

E E E E
T

∆ = ∆ + ∆ + ∆ .  

The energy of pressure of the debit [7] is: 2
1 1( ) 0,25pr atm eE p g H D lρ π ω= + ;  

the loss of energy is estimated to: 

213

1

2

0,63 0,37 1pr pr

S
E E

S

−     ∆ = + −      

 ;  

it is minimal for 1 2S S→ . The total pressure energy is: T pr prE E E= + ∆ .  

The total mechanical power of pumping is: m CT P TE E E E= + ∆ + . 
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The moment of inertia J1 of the rotor is equal to the sum of the moments of inertia of all 
pieces that compose it; these are: the blades, the stems of fixing, the hub, the stretchers, the 
hoop and the crank. It comes: 1 . 4. .zz I M T C mJ n J J J n J J J= + + + + + , where successively: 

2 2 2 2 3
2 2

2 1 1
(1 ) (1 2 ) (1 3 ) (1 )(1 )cos

3 6 6zz L L L L LJ h x r x h r r h L h r r Lσ σ α = + − + + + + + +  
 

2 2 2 2 3
2 2

2 1 1
(1 ) (1 2 ) (1 3 ) (1 )(1 )cos

3 6 6zz L L L L LJ h x r x h r r h L h r r Lσ σ α = + − + + + + + +  
 ; 3

1

1

3I CJ rδ=  ;  

( )4 4
2 1

1

2M M MJ l r rλ π= −  ; ( )3 3
1 2

1

3T CJ x rδ= −  ; 32C C CJ rπδ=  ; 3
1 1

1
.

3mJ lδ= . 

While regrouping the coefficients of the same term in . 0mP Eµ − = , we get the equation (c) 

expressing the constraint opposite the load that the pump must defeat. The expression (c) and 
the optimal conditions (a), (b) and (d) form the system (6) that represents the mathematical 
model of the energizing system formed by the wind machine and the mass of air in 
movement; it contains 3 equations with 4 unknowns 2( , , , )n x Lα : 

( ) ( )

( )

( )( ) ( )

( )

2

2
3 2

1 2

2
32 3 2

1 2

3

1 1

1,39
; 0,9;0,1     ( ); 1 sin cos sin 0      ( );

1,39
0 1 sin 2

1 1
2 3 2 1 1

2 6 cos

4 1 1
1 2

3 3 3

R L

p R R

R
R R R L L

R C C

r r a b
n

C r r V x
n

r
r r r r r V x

n

r n n

α α α

ρ α π µ

σπ λ
α

δ πδ δ δ

 = − − =  

 = − − 
 

    − − + − + + +    
     

  − − + − +  
  

( )

( ) ( ) ( )

( ) ( )

3

1

4 4
2 1 1 1 1 2 3 3 1 1

2

213 2
1

1 1
2 2

4 2

1 1 1 2 3 3

1
   (6)

1 1 1
2 2 2

2

1
2 1 0,63 0,37 1

2

1 1

3 4

M M

e atm e

e

V

l r r g l l l l V
x

S D
gH p gH l V

S x

D D
l l l

d

λ
π

λ δ δ δ λ
π

ρ ρ π λ

δ δ δ ρ
π

−

 − − + + +  

         − + + + + −             

    − + + +       
( )32

1 1 3
2

2

1
; ( )

;          ( )
cos

l V c
x

x
L d

n

λ

π
α
























 

 =

 

The equations (b) and (c) are solved by the dichotomy method [8]. The initial datas are the 
speed V1 of the wind of starting, the mass of blades, the length l1 of the crank and the depth H 
of the well. A Delphi program solves the system (6). While iterating n=3 to 40 with 

( ); (0,1; 0,9)L Rr r = , every value of the couple ( , )n α  of the equation (b) corresponds a value 

x2 of (c) and a value L of (d). The h and l values are deducted of (a). The table 1 contains an 
extract of the acquired results. The optimal solutions are the values of 2( , , , )n x Lα  

corresponding in the most elevated debit Q, either to the smallest radius 2x .  

Other results are obtained making vary successively the speed V1 of the wind for the 
starting, the density of the blade, the depth H of the well and the length l1 of the crank (tables 
2 to 5). These results serve numerical illustrations of the model and permit to find laws of 
interdependence (calculated by extrapolation) between the different parameters. These laws 
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help to have an assessment of the influence of every element. The heaviest blades in plastic 
( 21,5 2 .kg mσ −≤ ≤ ) are lighter than those made of sheet metal ( 22,7 2,1 .kg mσ −≥ ≥ ). 

When the main parameters are fixed, their values are: H=10 m, l1=0,075 m, σ = 2 
kg.m-2, 1 3V =  m.s-1. The following laws are gotten when one of these parameters varies: 

for3 23n≤ ≤ , 2 3

2

2,1037
x = 1,9370+

n

 and for24 40n≤ ≤ , we have : 2x = 0,0011. n +1,9316; 

2
2 0,0003 0,0352 1,6299x H H= − + +  ; 2

2 0,0033 0,0726 1,8020x σ σ= + +  ;  
2

2 1 116,1957 9,6567 1,3210x l l= − + + ;  
4 3 2

2 0,0295 0,1946 0,4484 0,2649 2,0096x L L L L= − + − +  ; 

4

8,4370 7,0536
L =

n n
− ; 

3

0,5777 778,7039
Ap = +

n n
;  

2

33,7449
Snp =15,9099 +

n
 when 3 15n≤ ≤  ;  

2Snp = 0,0005n +0,0024n+15,9327 when16 40n≤ ≤ . 

2 3

0,9141 1,7529
Q = 0,24 +

n n
−  when 3 23n≤ ≤ , 

 -1Q= ( 0,0013.n+2,4120).10−  when 24 40n≤ ≤  ; 
2
2 20,0487 0,3111 0,6606Q x x= − +  ;  3 2

1 1 10,0003 0,0118 0,0641 0,0535Q V V V= − + + −  ;  
2
1 12,6677 2,6345 0,0546Q l l= − + + ; 20,0010 0,0051 0,2834;Q H H= − +    

0,0104 0,2588Q σ= − + . 
Table 1: Different values of parameters of the rotor for different numbers of blades  

( Snp=  total surface of the n blades) λ = 0,8 ; H = 10 m ; V1 = 3 m.s-1 ; l1 =0,075m ; σ =2kg.m2 
 

n α, 0 x2, m h, m L, m l, m Snp m² Q, m3.h-1 

3 30,3810 2,33352966 2,100176 2,832641 0,283264 19,631852 0,199937 
4 33,2382 2,20285446 1,982569 2,068532 0,206853 18,044436 0,211798 

..... ..... ..... ...... ..... ..... ..... ..... 
16 41,6038 1,96821859 1,771396 0,516826 0,051682 16,112883 0,237047 
17 41,7961 1,96583095 1,769247 0,487289 0,048729 16,121937 0,237335 
18 41,9678 1,96398951 1,767590 0,461024 0,046102 16,135054 0,237557 
19 42,1221 1,96260647 1,766345 0,437514 0,043751 16,151524 0,237725 
20 42,2616 1,96161184 1,765450 0,416345 0,041634 16,170790 0,237845 
21 42,3882 1,96094915 1,764854 0,397183 0,039718 16,192411 0,237926 
22 42,5036 1,96057243 1,764515 0,379756 0,037975 16,216043 0,237971 
23 42,6093 1,96044373 1,764399 0,363836 0,036383 16,241397 0,237987 
24 42,7064 1,96053153 1,764478 0,349237 0,034923 16,268241 0,237976 
25 42,7959 1,96080939 1,764548 0,335800 0,033580 16,296381 0,237943 
26 42,8788 1,96125506 1,765130 0,323391 0,032339 16,325661 0,237888 
..... ..... ..... ..... ..... ..... ..... ..... 
39 43,5754 1,97636695 1,778730 0,236070 0,023607 16,768762 0,236070 
40 43,6105 1,97797292 1,780175 0,214558 0,021455 16,805827 0,235878 
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Table 2: Variation of the parameters according to the speed of wind to the starting,  
H=10 m, σ =2 kg.m-2, l1=0,075m. 

V1 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 
n 23 21 19 18 17 16 15 15 14 14 13 
x2 1,960 1,797 1,669 1,565 1,448 1,441 1,345 1,292 1,245 1,204 1,167 
L 0,364 0,364 0,337 0,367 0,367 0,370 0,338 0,361 0,371 0,359 0,373 
Q 0,237 0,302 0,372 0,447 0,525 0,607 0,693 0,782 0,874 0,968 1,065 

 
Table 3: Variation of the parameters according to the depth H:  

V1=3 m.s-1,σ =2 kg.m-2, l1=0,075m. 
H 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5 30 
n 21 22 23 24 25 26 26 27 28 29 29 
x2 1,788 1,879 1,961 2,035 2,104 2,168 2,228 2,284 2,338 2,389 2,437 
L 0,362 0,364 0,364 0,363 0,360 0,358 0,367 0,363 0,359 0,354 0,362 
Q 0,260 0,248 0,237 0,229 0,221 0,215 0,209 0,204 0,199 0,195 0,191 

 
Table 4: Variation of the parameters according to the mass of the blades:  

  V1=3 m.s-1, H=10 m, l1=0,075m. 
σ  1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2 ,7 
n 23 23 23 23 23 23 23 23 23 23 23 23 24 
x2 1,918 1,927 1,935 1,943 1,952 1,960 1,969 1,978 1,987 1,995 2,004 2,013 2,022 
L 0,356 0,358 0,3359 0,361 0,362 0,364 0,366 0,367 0,369 0,370 0,372 0,374 0,360 
Q 0,243 0,242 0,241 0,240 0,239 0,237 0,236 0,235 0,234 0,233 0,232 0,231 0,230 

 
Table 5: Variation of the parameters according to the length of the crank l1:  

V1=3 m.s-1,σ =2 kg.m-2, H=10m. 
l1 0,05 0,06 0,07 0,075 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 

n 20 22 23 23 24 24 25 26 27 27 28 29 

x2 1,749 1,840 1,922 1,960 1,997 2,066 2,130 2,190 2,246 2,300 2,350 2,399 
L 0,371 0,356 0,357 0,364 0,356 0,368 0,365 0,361 0,357 0,366 0,361 0,356 
Q 0,178 0,203 0,226 0,238 0,249 0,271 0,292 0,312 0,332 0,352 0,370 0,389 

 
3. Conclusion and perspectives 
The kinematical analysis of the mechanism rod crank permitted to distinguish the 

domain of measurements where the field of speeds is strongly irregular from the domain 
where this one is regular. Thus, we could bring out a domain of viability of the system 
parameters and its limit. Every domain has its application. When the rod is, at least, seven 
times longer than the crank, the mechanism becomes practically symmetrical and the 
oscillation of the piston has the tendency to be a sinusoid. The invariant of the system is the 
cycle period. Only the length of the piston on the way up is slightly superior to the one of its 
coming down. 

This periodic oscillating movement (or even cyclic) permits to make its mathematic 
form of controls by a hybrid system: discreet continuation of sequences (stop of the piston in 
top, stop of the piston below) of control on the continuous process (out-flow of wind and 
catchment’s energy). It is the same for the discreet states of the pumping system 
(replenishment of water, expulsion of water) that alternate with states of continuous 
movement. It permits to have possibilities of efficient control already while focusing the 
survey on the sequence of transition of such a hybrid dynamic system. 

The strong irregularity of speeds is solved and the risk of rupture of the rod limited. 
The mathematical model of the mechanism and the mathematical model of the pump permit 
to determine, a priori and in a convenient manner, the optimal measurements of a wind pump 
to horizontal axis. The radius of the rotor is an increasing function (nearly linear) of the depth 
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of the well and the density of the blade, but it decreases with the presupposed speed of wind 
for the starting. The basis of the blades becomes smaller when their number increases.   

The wind motor can be armed by a special mechanism to obtain the working speed of 
an alternator to produce the electric energy. 

This work permits to manage, with optimal manner, from energetic point of view, the 
oscillating movement of the wind pump. It helps to conceive an air pump for the air-
conditioning of dwelling or storeroom, the increasing of the efficience of the solar driers 
while increasing the retiring and incoming air flux. From theoretical point of view, this 
modelling has manipulability, is falsifiable and can be therefore the starting point of 
simulation for other improvements and developments according to the needs and the various 
creativeness; it can act as basis help tool to improve the control, the monitoring, the 
assessment, the normalization, the piloting of initiatives, or even simply for training of 
potentialities of the wind pump. The perspectives are immense; to each its development and 
its improvement.   
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