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Abstract 

Tropical cyclone tracks are predicted by an analog ensemble forecast model. Forecast 

errors are measured by calculating the distance between the real position and forecast 

position, for a time lag of six hours. Principal Axis Tree (PAT) is inserted in the self-adapting 

model. Local Linear Wavelet Neural Network is used on three basins (Australian, South West 

of Indian Ocean and Atlantic basin). This neural networks family is trained by Particle Swarm 

Optimization algorithm. When compared with the arithmetic mean, Local Linear Wavelet 

Neural Network has advantage on forecast errors homogeneity. In general, Local Linear 

Wavelet Neural Network is equivalent to the arithmetic mean in forecast quality. 

  

 

               

1. Introduction 

 

Tropical cyclone tracks forecast methods divide generally in two big classes: statistical 

models and numerical models. Since these last thirty years, some considerable progress have 

been gotten with the meteorological models with the advent of the computers more and more 

effective in memory capacity and calculation speed, the integration of sophisticated 

preliminary treatment model to establish an initial state of the atmosphere (data assimilation). 

The majority of tropical cyclones tracks forecasts are type CLIPER (Climatology Persistence) 

introduced by Neumann [1]. Fraedrich K. and al [2] have used the self adapting model of 

Oliviers Sievers [3], in the australian basin by adapting metric weights. Compared to its 

reference model (CLIPER), they found the good performance in forecast error. Currently, the 

quality of cyclone tracks forecasts  remains below expectations of the population, of the 

collectivities to warning systems taking into account the devastating impact (of human and 
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material damages) and financial costs that lead these phenomena (populations displacement, 

infrastructure destruction, agriculture devastation,…). 

The present study aims to improve the track forecast of cyclone. A new technique of 

analog selecting so-called Principal Axis Tree (PAT) is inserted in the self adapting model 

[3]. In the second time, Local Linear Wavelet Neural Network (LLWNN) whose training is 

done with the Particle Swarm Optimization (PSO) algorithm is used as calculation model.  

The paper is organized as follows. The Principal Axis Tree is introduced in Section 2. The 

LLWNN is described in Section 3. The Particle Swarm Optimization algorithm is 

summarized in Section 4. The results on cyclone track forecast are shown in section 5. A short 

discussion is given in Section 6. Finally, concluding remarks are derived in the last section. 

 

2. Principal Axis Tree (PAT) 

 

Principal Axis Tree (PAT) permits to partition data set in an efficient manner in term of speed 

for the nearest neighbour determination. This nearest neighbour algorithm has been developed 

by James Mac Names [4]. This research algorithm is based on a very fast tree pruning, thanks 

to its power of elimination criteria. Principal component analysis is used to build an efficient 

search tree. The principal axis is defined as the principal component with the largest 

eigenvalue. The objective is to partition the dataset along the principal axis into nc distinct 

regions such that each region contains roughly the same number of points.  The process is 

repeated for each subset of point recursively until each subset contains fewer than nc points. 

The fast nearest neighbour algorithm consists of two parts: 

- Principal Axis Tree Construction,  

- Principal Axis Tree Search. 

 

a. Principal Axis Tree construction 

 

Schematically, it takes place in 4 stages:  

1. Define nz as the number of points assigned to the node in progress. Ifz cn n< , the node 

is said terminal node and its treatment is finished, otherwise go to the second stage.  

2. Construct the principal axis for the points in progress and calculate the projections of all 

these points on the principal axis,  
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3. Partition the set of the projected points in nc distinct regions such that every region 

contains the same number of points (/z cn n or / 1z cn n + ).  

4. Assign to every created region a node label. There are nc distinct nodes.  

A tree, for which the set of the points is assigned to the root, is then obtained. These points 

are separated in different regions. 

 

b. Principal Axis Tree search 

 

Via the principal axis that has been saved to every stage, the region that contains a given 

point can be determined and therefore the associated child node is known. This determination 

is done by projecting the given point on the associated principal axis and doing dichotomic 

search among the limits of nc regions. From there, the algorithm tempts to eliminate the 

sibling nodes via elimination criteria. 

1. If the elimination criteria is satisfied, the sibling node is eliminated and the analysis 

goes back to the related node ; 

2. If the criterion is not satisfied, the algorithm takes down in the nearest sibling node for 

an analysis and we take to the first stage of the first part. 

 

Partial Distance Search is performed on the points of the remaining nodes, to have nearest 

neighbours of the given point. Let's recall that, by construction, a terminal node contains less 

than nc points. 

In summary, the process begins with the root, tempts to eliminate a section of the tree via 

the elimination criteria and takes down toward the terminal node that is correspondent to the 

query point.  

The partial distance algorithm requires defining a distance formula. 

 

3.  Local linear wavelet neural network 

 

The term of wavelet designates a function that oscillates for a time (if the variable is time) 

or an interval of finite length (if variable is type space). Beyond, the function decreases very 

quickly toward zero.  

Wavelets are in the following form: 
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There are a family of functions generated from one single function ( )tϕ  by the operation 

of translation and dilatation. ( )tϕ  which is localized in both time space and frequency space, 

is called a mother wavelet. jT  and jd  are named translation and scale respectively. 

 

In the standard form of wavelet neural network, the output of wavelet neural network is 

given by [5]: 
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Where, 

iΦ  is the wavelet activation function of ith unit of the hidden layer,  

iw  is the weight connecting the ith unit of the hidden layer to the output layer unit,  

t represents the input to the wavelet neural network model, 

ℓ  is the number of hidden layer unit. 

 

In nr dimensional input space, the multivariate wavelet basis function can be calculated by 

the tensor product of nr  single wavelet basis functions as follows: 
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In order to take advantage of the local capacity of the wavelet basis functions while not 

having too many hidden units, Local Linear Wavelet Neural Network (LLWNN) is proposed 

[5,6] (Fig.1). LLWNN is an alternative type of wavelet neural network.  
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Its output in the output layer is given by: 
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The motivation for introducing the local linear models into a WNN are as follows:  

1. Local linear models have been studied in some neuro-fuzzy systems and shown good 

performances [7]. 

2. Local linear models should provide a more parsimonious interpolation in high 

dimension spaces when modelling samples are sparse [8].  

∑ 
FIG.1: Local Linear Wavelet Neural Network. 

 

4. Particle Swarm Optimization (PSO) 

 

 Particle Swarm Optimisation (PSO) has been developed by   Kennedy   and   Eberhart      

[9,10]. PSO puts in plays particles groups in the form of vectors moving in research space. 
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Each particle is characterized by its position( )Xi τ  and position changement vector   ( )vi τ  

(named velocity) in a given instantτ . 

PSO is based on two simple rules [11]: 

1. Every individual remembers the best point (the closest to the objective) by which it 

passed during its evolution and tends to return to it. 

2. Every individual is informed about the best point known within the population taken as a 

whole and tends to go there. 

In particle position update, the direction of its movement, its velocity, its best position and 

the best position of its neighbours are taken in account. 

At each time 1+τ , velocity and position for particle i are given by [12,13]:   

 

1 1 2 2( 1) * ( ) * *( ( )) * *( ( ))i i i i g iv v c R Po X c R P Xτ + = ω ω + − τ + − τ  
(7) 
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ω  : inertia weight, 

Po
i
 is the best position of particle i  

 
( )X i τ is the current position of the particle i  

Pg
is global best position. 

The algorithm runs as a convergence criterion was not met. This may be: 

• A fixed number of iteration ; 

• According to the fitness 

• When the change in velocity is close to zero 
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5. Results : Tropicals cyclones tracks forecast: 

 

Forecast error [2,3] is the following form : 

0 0 0111 arccos[sin( ) *sin( ) cos( )*cos( )*cos( )]f f fE y y y y x x= + −
 

(10) 

 

0 0( x , y )  is the observed position and 

 f f(x , y )  is the forecast  position. 
Model skill, compared with a reference model, is: 

 

( ) /k ref refs E E E= 〈 〉 − 〈 〉 〈 〉  
(11) 

 

refE〈 〉  : Mean error obtained with the reference model.  

E〈 〉 Mean error obtained with the model. Positive skill indicates that model have lower errors 

than reference and vice versa. 

Variation coefficient of forecast errors [14]  is 

cv
σ=
ϖ

 
 

(12) 

Where   

 σ  is the standard deviation of error forecast 

  ϖ  is the mean error  

  

   It indicates the homogeneity of forecast errors. With small value ofcv, forecast errors 

ensemble is more homogeneous.
 Analog selection PAT has been used. Local Linear Wavelet Neural Network has been 

compared to the arithmetic mean  (Fig. 2, Fig. 3, Fig. 4¸ Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9¸ 

Fig. 10). 

13 predictors have been used: current positions of analog cyclones (Longitudes and 

latitudes), zonal and meridional displacements for a time lag of 6 h up to 24 h and year day. 

The number of predictor has been reduced with the principal component analysis (PCA), 

using matlab software, hence the network architecture {6-6-1} (6 inputs, 6 units of the hidden 

layer and one output). 

PSO algorithm was employed to train the LLWNN model with this network architecture. 

The objective function used is the root mean square error (RMSE), 
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Where, iy1 and iy2  denote the target output and model output, respectively. 

Ne is the number of the analog.  

The used mother wavelet is as follows: 
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FIG. 2: Mean forecast errors changing with the lead 
time (h) in australian basin for 480 cyclones. The 
used selection analog is PAT.  
 

 
FIG. 3:  Local Linear Wavelet Neural Network skill 
with reference to Arithmetic mean zero skill or 
reference model, in the australian basin, for 480 
cyclones. 

 

 
FIG. 4: Local Linear Wavelet Neural Network 
Forecast error homogeneity with reference to 
Arithmetic mean zero homogeneity or reference 
model, in the australian basin.  
  

 
FIG. 5: Mean forecast errors changing with the lead 
time (h) in the South West of Indian Ocean basin 
for 494 cyclones. The used selection analog is PAT.  
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FIG. 6: Local Linear Wavelet Neural Network skill 
with reference to the Arithmetic mean zero skill or 
reference model, in the South West of Indian 
Ocean basin, for 494 cyclones. 

 
FIG. 7: Local Linear Wavelet Neural Network 
Forecast error homogeneity with reference to the 
Arithmetic mean zero error homogeneity or 
reference model, in the South West of Indian 
Ocean basin.  

 

 
FIG. 8: Mean forecast errors changing with the lead 
time (h) in atlantic basin for 921 cyclones. The 
used selection analog is PAT. 
 

 

 
FIG. 9:  Local Linear Wavelet Neural Network skill 
with reference to Arithmetic mean zero skill or 
reference model, in the Atlantic basin, for 921 
cyclones. 

 
FIG. 10: LLWNN Forecast error homogeneity with reference to the Arithmetic mean zero  forecast 
error homogeneity or reference model, in atlantic basin.  
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6. Discussion 

 

On a test set for the analog selection PAT, compared to the arithmetic mean, Local Linear 

Wavelet neural Network gives average large forecast errors. But the advantage of using the 

Local Linear Wavelet Neural Network is the stability of forecast errors forecasts.  Forecast 

errors obtained with Local Linear Wavelet Neural Network are more homogeneous compared 

to those of the arithmetic mean. This forecast stability of the Local Linear Wavelet Neural 

Network is due to the flexibility and the property of good approximation of neural network 

[15,16] 

 

 

7. Conclusion 

 

Local Linear Wavelet Neural Network allows having stable forecast.  Forecast qualities with 

the mean arithmetic and with the Local Linear Wavelet Neural Network are equivalent. The 

use of PAT and LLWNN, for tropical cyclone tracks forecast is not still satisfactory. 
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