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Abstract

We review standard holographic derivations of the scalar glueball spectra and emphasize
computational assumptions which rely strongly on the original AdS/CFT correspondence, and
those which are more arbitrary. In the soft-wall model, we show explicitly that the dual of
the spectral mass constraint in the Källen-Lehmann representation of the 2-point scalar gluonic
correlator is an eigenvalue constraint on the motion equation of the bulk field corresponding this
correlator.

1 Introduction

In this paper, we review some extensions of the Anti de Sitter/Conformal Field Theory (AdS/CFT)
correspondence to describe the gluonic sector of Quantum Chromodynamics (QCD). More precisely,
we emphasize main concepts used in the holographic computation of the scalar glueball mass. By
the way, the glueball mass analysis allows us to exhibit some advantages and limits of the AdS/QCD
approach.

2 General description of the AdS/CFT correspondence

It is a conjectured correspondence between some conformal field theories on the conformal boundary
Md of an Anti de Sitter space AdSd+1 and string theories on the product of AdSd+1 with a compact
manifold. The correspondence allows to compute correlation functions of the boundary theory,
defined on Md, by means of appropriate partition functions of the bulk theory, defined on AdSd+1.
More explicitly, in the scalar sector of the string theory, we have [7, 5, 6]:

〈

0|T
(

e
∫

φ0O
)

|0
〉

CFT
=

∫

φ|Md
=φ0

Dφ eiSstring [φ], (1)

where the left hand side of (1) is the generating functional of the conformal field theory, the rigth
hand side is the supergravity (or string) partition function computed from bulk fields φ whose
restriction at the boundary is φ0. In the classical approximation, we know that the partition
function reduces to the exponential of the critical value of the classical action. Taking into account
the boundary condition, the classical term of ZS(φ0) is given by the exponential of the critical value
of the classical supergravity action IS , evaluated with critical bulk field φcrit with boundary value
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φ0,
∫

φ|Md
=φ0

Dφ eiSstring [φ] = eiSSUGRA[φcrit] + quantum and string corrections. (2)

Due to the lack of valuable computational tools for nonperturbative QCD, it will be worth to extend
the AdS/CFT correspondence for QCD. Let us focus on the glueball spectrum analysis from the
holographic point of view.

3 About the mass of scalar glueball

Before the holographic approach, let us recall that scalar glueball is bound state of gluons, with
quantum numbers JPC = 0++ predicted by QCD, but not yet observed experimentally, although
some candidates exist [2, 3]. In QCD, the 0++ glueball mass is extracted from the gluonic 2-point
correlator

〈0|T [Js(x)Js(0)] |0〉 , Js := β(αs)Tr(G2). (3)

and its spectral representation,

Π(q2) := i

∫

d4x eiqx 〈0|T (Js(x)Js(0)) |0〉 , (4)

=
∑

n

∫

d~p

2E~p
| 〈Ω|Js(0)|mn, pE〉 |2

[

δ(~q − ~p)

q0 − E~p + iε
+

δ(~q + ~p)

q0 + E~p + iε

]

=

∫

dt

2π

ρ(t)

q2 − t + iε
,(5)

where |mn,pE) is glueball state with on-shell momentum pE = (E~p,~p) and mass mn, and ρ the
associated spectral function of glueball resonances. Extending the AdS/CFT correspondence to
QCD would allow to compute QCD correlators from an analogous ansatz to (1) with appropriate
theory on a well-chosen bulk theory. The next section considers explicit holographic models of
QCD, called AdS/QCD models, in which the scalar glueball mass spectrum arises from Lorentz
invariance constraint, which will be shown to be dual to the spectral constraint on the variable q
in the Källen-Lehmann representation (5) of the gluonic correlator.

4 Holographic approach to the scalar glueball spectrum

Without proof [6], let us assume that the 2-point scalar gluonic correlator is described by a massless
scalar bulk field of Lagrangian

S[φ] =

∫

dvolbulk gMN∂Mφ∂Nφ,

defined on an appropriate bulk space. In order to derive holographically the scalar glueball mass,
our task is to fix the bulk space which can provide, by the intermediate of the bulk (critical) action,
the generating functional of the gluonic correlator. In the so-called bottom-up approach, one fixes
the bulk space geometry in such a manner that it can accommodate phenomenological results [9]: in
general, the bulk space is a modified five dimensional Anti de Sitter space with metric, in Poincaré
coordinates, such as

ds2 = h(z)
R2

z2

(

ηµνdxµdxν + dz2
)

=: gMNdxMdxN (6)

with ds2 ∼ ds2
AdS5

= ds2
h(z)=1 for z → 0, (7)
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where ηµν is the Minkowski metric with signature (-,+++). Such space possesses conformal bound-
ary localized at z → 0, where lives the boundary theory. In this settings, the Euler-Lagrange
equation of the bulk field is obtained from the variational principle:

δS =
1

2

∫ √
g
[

gMN∂Mδφ∂Nφ + gMN∂Mφ∂Nδφ
]

, (8)

=

∫ √
g
[

gMN∂Mδφ∂Nφ
]

, (symmetricity of g) (9)

=

∫

[

δM (
√

ggMN∂Nφδφ) − δM (
√

ggMN∂Nφ)δφ
]

. (10)

So










δS = 0

δφ(x ∈ Boundary space) = 0

δφ arbitrary

⇒ ∂M (
√

ggMN∂Nφ) = 0, (11)

⇒ ∂M (
√

ggMN )∂Nφ +
√

ggMN∂M∂Nφ = 0, (12)

⇒ ∂M

(

R3h3/2

z3

)

ηMN∂N

∫

d4x

(2π)4
e−iqxφ̃(q, z) +

R3h3/2

z3
ηMN∂M∂N

∫

d4x

(2π)4
e−iqxφ̃(q, z) = 0,(13)

where

(

R2h

z2

)−1

ηMN := gMN and gMNgMN = dim(bulk), (14)

⇒
(

R3 3h1/2∂zh

2z3
− 3R3h3/2

z4

)

∫

d4x

(2π)4
e−iqx∂zφ̃ + R3 h3/2

z3

∫

d4x

(2π)4
e−iqx

[

−q2φ̃ + ∂2
z φ̃
]

= 0,(15)

⇒
∫

d4x

(2π)4
e−iqx

[

h(−q2φ̃ + ∂2
z φ̃) + 3(

∂zh

2
− h

z
)∂zφ̃

]

= 0, (16)

⇒ ∂2
z φ̃ + 3

(

∂zh

2h
− 1

z

)

∂zφ̃ − q2φ̃ = 0. (17)

where

φ̃(q, z) :=

∫

d4x eiqxφ(x, z).

Particular choices of the metric function h satisfying the physical condition (7) lead to specific
models such as the soft-wall model [9, 10] where

h(z) = e−
2

3
(cz)2 , (18)

with c an inverse length which is a physical parameter of the model. In fact, the soft-wall metric
function is chosen to make the bulk equation of motion into the following generalized Laguerre
differential equation

[

∂2
z − 3

(

2

3
c2z +

1

z

)

∂z − q2

]

φ̃(q, z) = 0, (19)

⇔







[∂2
z + 2(

α + 1/2

z
− c2z)∂z − q2 − (2α + 4)c2]f(z) = 0,

f(z) := z−α−2φ̃(q, z), α = 2.

(20)

According to proprieties of this type of differential equations, regular solutions φ̃crit of (19) have
eigenvalues:

−q2 = 4c2(n + 2) with n ∈ N+. (21)
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Now, it suffices to show that one obtains exactly the same eigenvalue constraint on the variable of
the Fourier gluonic correlator to argue that eigenvalues (21) are identical to 0++ glueball masses
given by the Källen-Lehmann representation (5).
Indeed, let us write the critical bulk field in terms of its boundary restriction by means of a Green’s
function K, so

φcrit(x, z) =:

∫

d4x′ K(x − x′, z)φ0(x
′), φcrit(x, z → 0) =: φ0(x),

and φ̃crit(q, z) =

∫

d4x′ eiqx′

K̃(q, z)φ0(x
′).

where K̃ is necessarily a solution of the motion equation (19) and satisfy the boundary condition

K(x − x′, z → 0) = δ(x − x′) or K̃(q, z → 0) = 1,

which is equivalent to the fact that φcrit(x, z → 0) = φ0(x).
Applying the AdS/CFT correspondence (1), we have to evaluate the twice functional derivative of
the critical action with rapport to the boundary field in order to obtain the gluonic correlator

〈0|T [Js(x1)Js(x2)] |0〉 =
δ2S[φcrit]

δφ0(x1)δφ0(x2)
,

=
δ2

δφ0(x1)δφ0(x2)

∫

dvolbulk gMN

∫

dq ∂M

[

e−iqxK̃(q, z)
]

∫

dx′ eiqx′

φ0(x
′)

×
∫

dq′ ∂N

[

e−iq′xK̃(q′, z)
]

∫

dx′′ eiq′x′′

φ0(x
′′),

=
δ

δφ0(x2)

∫

dvolbulk gMN

∫

dq ∂M

[

e−iqxK̃(q, z)
]

∫

dx′ eiqx′

δ(x′ − x1)

×
∫

dq′ ∂N

[

e−iq′xK̃(q′, z)
]

∫

dx′′ eiq′x′′

φ0(x
′′)

+
δ

δφ0(x2)

∫

dvolbulk gMN

∫

dq ∂M

[

e−iqxK̃(q, z)
]

∫

dx′ eiqx′

φ0(x
′)

×
∫

dq′ ∂N

[

e−iq′xK̃(q′, z)
]

∫

dx′′ eiq′x′′

δ(x′′ − x1),

=

∫

dvolbulk gMN

∫

dq eiqx1∂M

[

e−iqxK̃(q, z)
]

∫

dq′ ∂N

[

e−iq′xK̃(q′, z)
]

∫

dx′′ eiq′x′′

δ(x′′ − x2)

+

∫

dvolbulk gMN

∫

dq ∂M

[

e−iqxK̃(q, z)
]

∫

dx′ eiqx′

δ(x′ − x2)

∫

dq′ eiq′x1∂N

[

e−iq′xK̃(q′, z)
]

,

=

∫

dvolbulk gMN

∫

dq eiqx1∂M

[

e−iqxK̃(q, z)
]

∫

dq′ eiq′x2∂N

[

e−iq′xK̃(q′, z)
]

+

∫

dvolbulk gMN

∫

dq eiqx2∂M

[

e−iqxK̃(q, z)
]

∫

dq′ eiq′x1∂N

[

e−iq′xK̃(q′, z)
]

,

= 2

∫

dvolbulk
R3h3/2

z3
[

∫

dq eiqx1

[

(−iqµ)K̃(q, z)
]

∫

dq′ eiq′x2e−i(q+q′)x
[

(−iq′µ)K̃(q′, z)
]

+

∫

dq eiqx1

[

∂zK̃(q, z)
]

∫

dq′ eiq′(x2−x)
[

∂zK̃(q′, z)
]

],
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= 2

∫

dvolbulk
R3h3/2

z3
[

∫

dq eiqx1

[

(−iqµ)K̃(q, z)
]

∫

dq′ eiq′x2e−i(q+q′)x
[

(−iq′µ)K̃(q′, z)
]

+

∫

dq eiqx1

[

∂zK̃(q, z)
]

∫

dq′ eiq′x2e−i(q+q′)x
[

∂zK̃(q′, z)
]

],

= 2

∫

dz
R3h3/2

z3
[

∫

dq eiqx1

[

(−iqµ)K̃(q, z)
]

∫

dq′ eiq′x2δ(q + q′)
[

(−iq′µ)K̃(q′, z)
]

+

∫

dq eiqx1

[

∂zK̃(q, z)
]

∫

dq′ eiq′x2δ(q + q′)
[

∂zK̃(q′, z)
]

],

= 2

∫

dz
R3h3/2

z3

[
∫

dq eiq(x1−x2)q2K̃2(q, z) +

∫

dq eiq(x1−x2)
(

∂zK̃(q, z)
)2
]

,

=

∫

dq eiq(x1−x2)

∫

dz
2R3h3/2

z3

[

q2K̃2(q, z) +
(

∂zK̃(q, z)
)2
]

,

=

∫

dq eiq(x1−x2)

∫

dz
2R3h3/2

z3

[

q2K̃2(q, z) + ∂z

(

K̃∂zK̃
)

(q, z) − K̃∂2
z K̃(q, z)

]

.

Therefore, the Fourier transform of the 2-point gluonic correlator is given by:

Π(q2) := i

∫

d4x eiqx 〈0|T (Js(x)Js(0)) |0〉 , (22)

= i

∫

dz
2R3h3/2

z3

[

q2K̃2(q, z) + ∂z

(

K̃∂zK̃
)

(q, z) − K̃∂2
z K̃(q, z)

]

. (23)

One can go further by using the fact that K̃ is a solution of (19) and the derivation result

∂z

(

R3h3/2

z3

)

= 3
R3h3/2

z3

(

∂zh

2h
− 1

z

)

. (24)

So

Π(q2) = i

∫

dz

{

2R3h3/2

z3

[

q2K̃2 − K̃∂2
z K̃
]

+ ∂z

(

2R3h3/2

z3
K̃∂zK̃

)

− ∂z

(

2R3h3/2

z3

)

K̃∂zK̃

}

,

= i

∫

dz

{

2R3h3/2

z3
K̃

[

q2K̃ − ∂2
z K̃ − 3

(

∂zh

2h
− 1

z

)

∂zK̃

]

+ ∂z

(

2R3h3/2

z3
K̃∂zK̃

)}

,

= i

∫

dz ∂z

(

2R3h3/2

z3
K̃∂zK̃

)

(q, z),

=

[

i
2R3h3/2

z3
K̃∂zK̃(q, z)

]z→+∞

z→0

, with − q2 = 4c2(n + 2), n ∈ N+,

where we obtain the holographic constraint on the variable of the Fourier transform Π in the last
equality. The obtained 0++ mass spectrum (21) is comparable to linear dependence of rho meson
masses with rapport to high radial quantum number [9]. Here are more general remarks deduced
partially from the above analysis:

• in the limit c → 0 or equivalently for pure Anti de Sitter bulk space, the boundary theory is
massless, and therefore conformally invariant as confirmed by the AdS/CFT correspondence:
we can conclude that the bulk metric encodes the conformality or not of the boundary theory;
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• although phenomenological arguments allow to construct QCD dual in AdS/QCD models, the
so-called top-down approach, which start directly from the full machinery of string theories,
provides more controllability on the construction of QCD dual.

5 Conclusion

This review emphasizes some details on the identification of glueball mass spectrum provided by
holographic models, such as the dual of the spectral constraint given by the Källen-Lehmann rep-
resentation. However, more works need to be done to integrate further physical proprieties such as
confinement and mass gap in AdS/QCD models. Our future work on AdS/QCD models is to fix the
dual of supersymmetry in the Maldacena duality in order to suppress its effects on the boundary
theory, to classify eigenvalue constraints on q2 with rapport to the metric function, and finally
to compare the holographic gluonic 2-point correlator with QCD results in order to impose more
criteria on the choice of the metric function.

Acknowledgments. I am grateful to Pr Stephan Narison for introducing me to this topic. Com-
ments and discussions with Fenompanirina Andrianala was also benefit to the present work.
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