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We extract directly (for the first time) the heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double
ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy
quark mass and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon
masses. As a result, we provide (relatively) robust predictions of the Ω

(∗)
Q (Qss) and Ξ

(∗)
Q (Qsq) masses (testable at Tevatron

and LHCb) once the masses of the ΛQ(Qdd) and Σ
(∗)
Q (Qdd) are given. Like in the case of the light baryons, the leading term

controlling the mass-splittings is the ratio κ ≡ 〈s̄s〉/〈d̄d〉 of the condensate, where they decrease when κ increases. The optimal
value of the mixing b ≃ (−1/5 ∼ 0) of the interpolating currents for the spin 1/2 baryons, confirms the one for light baryons
and the previous range for the non-strange heavy baryons. We also predict the hyperfine splittings Ω∗

Q − ΩQ and Ξ∗
Q − ΞQ.

1. Introduction

QSSR [1,2] à la SVZ [3] has been used earlier in full QCD
[4–6] and in HQET [7] for understanding charming and
beautiful baryons masses. Recent observations at Teva-
tron of families of b-baryons [8,9] and of the Ω∗

c baryon
by Babar and Belle [10] have stimulated different recent
theoretical activities for understanding their nature [11–
16,18]. QSSR results are in quite good agreement with
recent experimental findings but with relatively large
uncertainties. The inaccuracy of these results is mainly
due to the value of the heavy quark mass and of its
ambiguous definition when working to LO in the radia-
tive αs corrections in full QCD and HQET 1, where the
heavy quark mass is the main driving term in the QCD
expression of the baryon two-point correlator used in
the QSSR analysis. Another source of uncertainty is
the effect of the QCD continuum which parametrizes
the higher baryon masses contributions to the spectral
function and the ad hoc choices of interpolating baryon
currents used in different literatures. In this paper, we
shall concentrate on the analysis of the heavy baryons
mass-splittings due to SU(3) breaking using double ra-
tios (DR) of QCD spectral sum rules (QSSR), which
are less sensitive to the exact value and definition of the
heavy quark mass and to the QCD continuum contri-
butions than the simple ratios used in the literature to
determine the absolute value of heavy baryon masses.
• For the spin 1/2 baryons, and following Ref. [4],
we work with the lowest dimension currents:

ηΞQ
= ǫabc

[

(qT
a Cγ5sb) + b(qT

a Csb)γ5

]

Qc,

ηΛQ
= ηΞQ

(s → q)

ηΩQ
= ǫabc

[

(sT
a Cγ5Qb) + b(sT

a CQb)γ5

]

sc,

ηΣQ
= ηΩQ

(s → q) , (1)

where b is a priori an arbitrary mixing parameter. Its
value has been found to be:

b = −1/5 , (2)
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1However, radiative corrections have been evaluated in [16] but
(unfortunately) for a particular choice of the interpolating cur-
rents.

in the case of light baryons [29] and in the range [4–6]:

−0.5 ≤ b ≤ 0.5 , (3)

for non-strange heavy baryons . The corresponding two-
point correlator reads:

S(q) = i

∫

d4x eiqx 〈0|T ηQ(x)ηQ(0)|0〉

≡ q̂F1 + F2 , (4)

where F1 and F2 are two invariant functions.
• For the spin 3/2 baryons, we follow Ref. [5] and
work with the interpolating currents:

ηµ
Ξ∗

Q
=

√

2

3

[

(qT CγµQ)s + (sT CγµQ)q + (qT Cγµs)Q
]

ηµ
Ω∗

Q
=

1√
2
ηµ
Ξ∗

Q
(q → s)

ηµ
Σ∗

Q
=

1√
2
ηµ
Ξ∗

Q
(s → q) , (5)

where an anti-symmetrization over colour indices is un-
derstood. The normalization in Eq. (5) is chosen in such
a way that in all cases one gets the same perturbative
contribution. The corresponding two-point correlator
reads:

Sµν(q) = i

∫

d4x eiqx 〈0|T ηµ
Q(x)ην

Q(0)|0〉

≡ gµν (q̂F1 + F2) + . . . (6)

2. The spin 1/2 two-point correlator in QCD

In this letter, we extend the previous analysis in [4,5] by
including the new SU(3) breaking ms correction terms.

• The ΛQ(Qqq) and ΞQ(Qsq) baryons
The expression for ΛQ has been (first) obtained in the
chiral limit mq = 0 in [5], and the one of ΞQ including
SU(3) breaking in [14]. One can notice that due to the
expression of the current the ms corrections vanish to
leading order in αs for the perturbative term, while the
D = 6 condensates for the SU(2) case of [5] needs the
following replacement in the SU(3) case:

ρ〈q̄q〉2 → ρ〈q̄q〉〈s̄s〉 , (7)
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where ρ = 2 ∼ 3 indicates the violation of the four-quark
vacuum saturation [31,1,27]. The additional SU(3)
breaking corrections for the ΞQ are [14]:
- F1 :

ImF ms
1 |s̄s = −

ms

24π
(1 − x2)

[

(1 − b2)〈q̄q〉 −

(1 + b2)

2
〈s̄s〉

]

,

F ms
1 |mix =

ms

25π2

1

m2
Q − q2

{

〈s̄Gs〉
(1 + b2)

6
+

〈q̄Gq〉(1 − b2)

}

, (8)

- F2 :

ImF ms
2 |s̄s = −

msmQ

23π
(1 − x)

[

(1 + b2)〈q̄q〉 −

(1 − b2)

2
〈s̄s〉

]

,

F ms
2 |mix =

msmQ

25π2

1

m2
Q − q2

{

〈s̄Gs〉
(1 − b2)

6
+

〈q̄Gq〉(1 + b2)

}

, (9)

where x ≡ m2
Q/s and 〈s̄Gs〉 ≡ g〈s̄σµνλa/2Gµν

a s〉 .

• The ΣQ(Qqq) and ΩQ(Qss) baryons
The expression for ΣQ has been (first) obtained in [4].
The additionnal SU(3) breaking terms for the ΩQ are:
- F1 :

ImF ms
1 |pert =

3msm
3
Q

28π3
(1 − b2) ×

[

2

x
+ 3 − 6x + x2 + 6 lnx

]

,

ImF ms
1 |s̄s =

3ms〈s̄s〉

26π
(1 + b)2

(

1 − x2
)

,

F ms
1 |mix = −

ms〈s̄Gs〉

273π2

[

1

m2
Q − q2

(7 + 22b + 7b2)

−6(1 + b)2
∫ 1

0

dα(1 − α)

m2
Q − (1 − α)q2

]

,

F ms
1 |D=6 = −

msmQρ〈s̄s〉2(1 − b2)

8(m2
Q − q2)2

. (10)

- F2 :

ImF ms
2 |pert =

3msm
4
Q

28π3
(1 − b2) ×

(

1

x2
−

6

x
+ 3 + 2x − 6 ln x

)

,

ImF ms
2 |s̄s = −

3msmQ〈s̄s〉

25π
(3 + 2b + 3b2) (1 − x) ,

F ms
2 |mix =

msmQ〈s̄Gs〉

273π2
×

[

1

m2
Q − q2

(25 + 22b + 25b2)

−3(5 + 6b + 5b2) ×
∫ 1

0

dα

m2
Q − (1 − α)q2

]

,

F ms
2 |D=6 = −

msρ〈s̄s〉
2(1 − b2)

8(m2
Q − q2)

[

1 +
m2

Q

m2
Q − q2

]

,

(11)

We have checked the existing results in [4] obtained in
the chiral limit and all our previous results agree with
these ones.

3. The spin 3/2 two-point correlator in QCD

The QCD expression of the two-point correlator for the
Σ∗

Q(Qqq) has been (first) obtained in the chiral limit
mu,d = 0, to LO in αs and up to the contributions of the
D = 6 condensates in [4]. In this letter, we extend the
previous analysis by including the new SU(3) breaking
ms correction terms and consider the SU(3) breaking of
the ratio of quark condensates 〈s̄s〉 6= 〈q̄q〉.

• The Σ∗

Q(Qqq) and Ξ∗

Q(Qsq) baryons

The additionnal terms and replacement due to SU(3)
breaking for the Ξ∗

Q compared with the one of the

Σ∗
Q(Qqq) in [5] are:

- F1 :

ImF ms
1 |pert =

msm
3
Q

48π3

[

2

x
+ 3 − 6x + x2 + 6 lnx

]

,

ImF1|s̄s = −
mQ

6π

[

〈q̄q〉 + 〈s̄s〉
]

(1 − x)2 ,

ImF ms
1 |s̄s = −

ms

12π

[

2(1 − x2)〈q̄q〉 − (1 − x3)〈s̄s〉

]

,

ImF1|mix =
7M2

0

3223π

[

〈q̄q〉 + 〈s̄s〉
]

x2

mQ

,

F ms
1 |mix =

msM
2
0

144π2

[

12〈q̄q〉 − 9〈s̄s〉

m2
Q − q2

+

2

∫ 1

0

dα(1 − α)

m2
Q − (1 − α)q2

×

[

(1 − 3α)〈s̄s〉 + 〈q̄q〉
]

]

,

F1|D=6 =
4

9

ρ〈s̄s〉〈q̄q〉

m2
Q − q2

,

F ms
1 |D=6 = −

2

9
mQms

ρ〈s̄s〉〈q̄q〉
(

m2
Q − q2

)2
. (12)

- F2 :

ImF ms
2 |pert =

msm
4
Q

192π3

[

3

x2
−

16

x
+ 12 + x2 − 12 ln x

]

,

ImF2|s̄s = −
m2

Q

18π

[

〈q̄q〉 + 〈s̄s〉
](

2

x
− 3 + x2

)

,

ImF ms
2 |s̄s = −

msmQ

12π
(1 − x)

[

6〈q̄q〉 − (1 + x)〈s̄s〉
]

,

ImF2|mix =
M2

0

18π

[

〈q̄q〉 + 〈s̄s〉
](

1 +
3

4
x2

)

,

F ms
2 |mix =

msmQM2
0

72π2

[

3
(3〈q̄q〉 − 〈s̄s〉)

m2
Q − q2

+
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〈q̄q〉

∫ 1

0

dα

m2
Q − (1 − α)q2

]

,

F2|D=6 =
2

3

mQρ〈s̄s〉〈q̄q〉

m2
Q − q2

,

F ms
2 |D=6 = −

2

9

msm
2
Qρ〈s̄s〉〈q̄q〉

(m2
Q − q2)2

, (13)

where x ≡ m2
Q/s and 〈s̄Gs〉 ≡ g〈s̄σµνλa/2Gµν

a s〉 ≡
M2

0 〈s̄s〉 .

• The Ω∗

Q(Qss) baryons

Compared with the expression of the Σ∗
Q(Qqq) in [5], the

additionnal SU(3) breaking terms for the Ω∗
Q are:

- F1 :

ImF ms
1 |pert =

msm
3
Q

24π3

[

2

x
+ 3 − 6x + x2 + 6 ln x

]

,

ImF ms
1 |s̄s = −

ms〈s̄s〉

6π

(

1 − 2x2 + x3
)

,

F ms
1 |mix =

msM
2
0 〈s̄s〉

72π2

[

3

m2
Q − q2

+

2

∫ 1

0

dα(1 − α)(2 − 3α)

m2
Q − (1 − α)q2

]

,

F ms
1 |D=6 = −

4

9

mQmsρ〈s̄s〉
2

(

m2
Q − q2

)2
. (14)

- F2 :

ImF ms
2 |pert =

msm
4
Q

96π3
[

3

x2
−

16

x
+ 12 + x2 − 12 ln x

]

,

ImF ms
2 |s̄s = −

msmQ〈s̄s〉

6π

[

5 − 6x + x2

]

,

F ms
2 |mix =

msmQM2
0 〈s̄s〉

36π2

[

6

m2
Q − q2

+

∫ 1

0

dα

m2
Q − (1 − α)q2

]

,

F ms
2 |D=6 = −

4

9

msm
2
Qρ〈s̄s〉2

(m2
Q − q2)2

. (15)

We have checked the existing results in [5] obtained in
the chiral and SU(2) limits and agree with these ones.

4. Form of the sum rules and QCD inputs

We parametrize the spectral function using the stan-
dard duality ansatz: “one resonance”+ “QCD contin-
uum”. The QCD continuum starts from a threshold tc
and comes from the discontinuity of the QCD diagrams.
Transferring its contribution to the QCD side of the sum
rule, one obtains the finite energy Laplace/Borel sum
rules:

|λ
B

(∗)
q

|2M
B

(∗)
q

e
−M

B
(∗)
q

2τ
=

∫ tc

tq

ds e−sτ 1

π
ImF2(s) ,

|λB∗

q
|2 e

−M
B

(∗)
q

2τ
=

∫ tc

tq

ds e−sτ 1

π
ImF1(s) , (16)

where λ
B

(∗)
q

and M
B

(∗)
q

are the heavy baryon residue and

mass; τ ≡ 1/M2 is the sum rule variable. Consistently,
we also take into account the SU(3) breaking at the
quark and continuum threshold:
√

tq|SU(3) ≃
(√

tq|SU(2) ≡ mQ

)

+ m̄q1 + m̄q2 ,
√

tc|SU(3) ≃
(√

tc|SU(2) ≡
√

tc
)

+ m̄q1 + m̄q2 , (17)

where q1,2 ≡ q or/and s depending on the channel. m̄qi

are the running light quark masses. mQ is the heavy
quark mass, which we shall take in the range covered by
the running and on-shell mass (see Table 1) because of
its ambiguous definition when working to LO. One can
estimate the baryon masses from the following ratios:

Rq
i =

∫ tc

tq
ds s e−sτ ImFi(s)

∫ tc

tq
ds e−sτ ImFi(s)

, i = 1, 2 ,

Rq
21 =

∫ tc

tq
ds e−sτ ImF2(s)

∫ tc

tq
ds e−sτ ImF1(s)

, (18)

where at the τ -stability point :

M
B

(∗)
q

≃
√

Rq
i ≃ Rq

21 . (19)

These quantities have been used in the literature for
getting the baryon masses and lead to a typical uncer-
tainty of 15-20% [4–6] 3. In order to circumvent these
problems, we work with the double ratio of sum rules
(DR)[20]:

rsd
i ≡

√

Rs
i

Rd
i

, rsd
21 ≡ Rs

21

Rd
21

. (20)

which take directly into account the SU(3) breaking
effects. These quantities are obviously less sensitive
to the choice of the heavy quark masses and to the
value of the continuum threshold than the simple ra-
tios Ri and R21

2 . Analogous DR quantities have been
used successfully (for the first time) in [20] for study-
ing the mass ratio of the 0++/0−+ and 1++/1−− B-
mesons, in [21] for extracting fBs

/fB, in [22] for esti-
mating the D → K/D → π semi-leptonic form factors
and in [23] for extracting the strange quark mass from
the e+e− → I = 1, 0 data. For the numerical analysis
whe shall introduce the RGI quantities µ̂ and m̂q [24]:

m̄q(τ) =
m̂q

(− log
√

τΛ)
2/−β1

〈q̄q〉(τ) = µ̂3
q

(

− log
√

τΛ
)2/−β1

〈q̄Gq〉(τ) = µ̂3
q

(

− log
√

τΛ
)1/−3β1

M2
0 , (21)

where β1 = −(1/2)(11 − 2n/3) is the first coefficient of
the β function for n flavours. We have used the quark

3More accurate results quoted in the recent QSSR literature [14,
15] do not take into account the uncertainties due to the heavy
quark mass definitions and to the arbitrary choice of the baryonic
interpolating currents.
2One may also work with the double ratio of moments Mn based
on different derivatives at q2 = 0 [20]. However, in this case
the OPE is expressed as an expansion in 1/mQ, which for a LO
expression of the QCD correlator is more affected by the definition
of the heavy quark mass to be used.
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mass and condensate anomalous dimensions reviewed in
[1]. We shall use the QCD parameters in Table 1. At
the scale where we shall work, and using the paramaters
in the table, we deduce:

ρ = 2.1 ± 0.2 , (22)

which controls the deviation from the factorization of
the four-quark condensates. We shall not include the
1/q2 term discussed in [25,26],which is consistent with
the LO approximation used here as the latter has been
motivated for a phenomenological parametrization of
the larger order terms of the QCD series.

Table 1
QCD input parameters. For the heavy quark masses, we use the range

spanned by the running MS mass mQ(MQ) and the on-shell mass
from QSSR compiled in page 602,603 of the book in [1].

Parameters Values Ref.

Λ (353 ± 15) MeV [27,9]
m̂d (6.1 ± 0.5) MeV [28,1,9]
m̂s (114.5 ± 20.8) MeV [28,1,9]
µ̂d (263 ± 7) MeV [28,1]
κ ≡ 〈s̄s〉/〈d̄d〉 (0.7 ± 0.1) [28,1]
M2

0 (0.8 ± 0.1) GeV2 [29,30,20]
〈αsG

2〉 (6.8 ± 1.3) × 10−2 GeV4 [27,31–35,2]
ραs〈d̄d〉2 (4.5 ± 0.3) × 10−4 GeV6 [27,31]
mc (1.18 ∼ 1.47) GeV [1,28,36,9]
mb (4.18 ∼ 4.72) GeV [1,28,36,9]

5. The masses of the spin 1/2 octet baryons

As a preliminary step of the analysis, we check the dif-
ferent results obtained in full QCD and in the chiral
limit [4,5]:

MΣc
= (2.45 ∼ 2.94) GeV ,

MΣb
= (5.70 ∼ 6.62) GeV ,

MΣc
− MΛc

≤ 207 MeV ,

MΣb
− MΛb

≤ 163 MeV , (23)

which we confirm. However, we have not tried to im-
prove these results due to the ambiquity in the definition
of the heavy quark mass input mentioned earlier at LO.

• Ξc(csq)/Λc(cqq)
– Choice of the sum rules: in so doing we choose (af-

ter iterations) b = 0 and study in Fig. 1a) and Fig.
1b), the τ -behaviour of the double ratio of sum rules
(DR) for two extremal values of tc (M2

Σc
: beginning of

τ -stability and 12 GeV2: beginning of tc-stability). The
appearance of the extremas for τ ≃ 0.3 GeV−2 depends
strongly on the value of tc at which one cannot extract
an optimal result. Therefore, among the three DR, we
retain rsd

21 continuous (red) which is the most stable in
τ and tc .
– Choice of the currents: we show in Fig. 1c), by fix-
ing τ=0.9 GeV−2 and tc= 12 GeV2 the b-behaviour of
the result which is very stable like in the range given in
Eq. (3). However, this generous range does not favour
the ad hoc choice around 1 used in the existing litera-
ture [14,15]. The absolute extremum happens at b = 0,
which is compatible with the one b = −1/5 in Eq. (3)

0 0.25 0.5 0.75 1 1.25 1.5

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 0.25 0.5 0.75 1 1.25 1.5

1.02

1.04

1.06

1.08

1.1

-0.75 -0.5 -0.25 0 0.25 0.5 0.75
1.0575

1.06

1.0625

1.065

1.0675

1.07

1.0725

1.075

8 10 12 14
1.0747

1.0748

1.0749

1.075

1.0751

1.0752

1.0753

1.0754

Figure 1. Ξc/Λc : a) τ -behaviour of the double ratio of sum
rules (DR) given b = 0 and tc = M2

Σc
= 6 GeV2: rds

1 dashed-

dotted (blue), rsd
2 dotted (green), rsd

21 continuous (red); b) the

same as a) but for tc =12 GeV2; c) b-behaviour of rsd
21 for given

values of τ = 0.9 GeV−2 and tc = 12 GeV2; d) tc-behaviour of
the DR given b = 0 and τ = 0.9 GeV−2.

for the light baryon systems [29]. For definiteness, we
shall work with:

b = −(1/5 ∼ 0) . (24)

– tc stabilities: we show in Fig. 1d) the tc behaviours of
rsd
21 at fixed τ = 0.9 GeV−2 and b = 0.

– Results: we can deduce the DR:

rsd
Ξc

= 1.075(0.1)(0.6)(0.4)(3.4)(11)(17)(6) , (25)

where we have considered the mean value from tc = 6
GeV2 (beginning of τ -stability) to the beginning of tc-
stability (12 GeV2). The errors are due respectively to
the values of τ = (0.9 ± 0.2) GeV−2, b, tc, mc, ms, the
ratio κ = 〈s̄s〉/〈d̄d〉 and the factorization of the four-
quark condensate ρ. κ gives the most important error
while the ratio of masses increases when the one of the
quark condensate decreases. The other QCD parame-
ters give negligible errors. Using as input the data [9]:

M exp
Λc

= (2286.46± 0.14) MeV , (26)
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and adding the different errors quadratically, one can
deduce:

MΞc
= (2449 ± 49) MeV , (27)

which agrees with the data [9]:

M exp
Ξc

= (2467.9± 0.4) MeV . (28)

This result is also given in Table 2.

• Ξb(bsq)/Λb(bqq)
We repeat the previous analysis in the case of the b
quark. The analysis of the ratio of sum rules shows sim-
ilar curves than for the charm case except the obvious
change of scale. It also indicates that rsd

21 has the best
τ - and tc-stabilities, from which we deduce:

rsd
Ξb

= 1.048(4)(2)(3)(1)(7)(9)(7) , (29)

where we have considered the mean value from tc = 34
GeV2 (beginning of τ -stability) to the beginning of tc-
stability (60 GeV2). We have used the optimal value
τ = 0.35 ± 0.05 GeV−2. The sources of the errors are
the same as in the charm quark case. Using the data
[9]:

M exp
Λb

= (5620.2± 1.6) MeV , (30)

and adding the different errors quadratically, one get:

MΞb
= (5888 ± 81) MeV , (31)

which agrees with the data [9]:

M exp
Ξb

= (5792.4± 3.0) MeV , (32)

Although the errors look quite large in the two cases
of charm and bottom compared with the data, the pre-
dictions are more robust than the recent estimates in
[14,15], where we expect that the errors have been un-
derestimated.

• Ωc(css)/Σc(cqq)
We do an analysis similar to the one in the previous

section. The result for the c-quark is shown in Fig 2 .
One can notice that the optimal choice of the current
is the same as in Eq. (2) which we fix to the value
b=0. One can notice from in Fig 2a) and Fig 2b), that
rsd
21 does not give a result consistent with the one from

rsd
i (i = 1, 2) and it is also less stable in τ than the

two others. The appearance of a (false) extremum at
small τ -values is also strongly affected by tc at which
one cannot extract any optimal result. We shall not
also retain rsd

1 as it is not stable versus b. The final
result from rsd

2 is:

rsd
Ωc

= 1.141(12)(0.4)(17)(10)(13)(29)(1) , (33)

and come from the mean of tc values from 6 (beginning
of τ -stablity) to 12 GeV2 (beginning of tc-stability). The
sources of the errors are the same as before and come
from τ = (0.8±0.2) GeV−2, b, tc, mc, ms, κ and ρ (devi-
ation from factorization of the four-quark condensate).
The other QCD parameters gives negligible errors. Us-
ing this previous result together with the experimental
averaged value [9]:

M exp
Σc

= 2453.6 MeV , (34)

one can deduce the result in Table 2 in agreement with
the data.
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1.1

1.15

0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

1.1

-1 -0.5 0 0.5 1

1
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1.14

6 8 10 12 14 16 18

1.125

1.13

1.135

1.14

1.145

1.15

1.155

Figure 2. Ωc/Σc : a) τ -behaviour of the DR in the charm case
given b = 0 and tc = 6 GeV2: rds

1 dashed-dotted (blue), rds
2

dotted (green), rds
21 continuous (red); b) the same as in a) but for

tc = 11 GeV2; c) b-behaviour of the DR rds
1 and rds

2 given τ = 0.8

GeV−2 and tc = 11 GeV2; d) tc-behaviour of rds
2 given b = 0 and

τ = 0.8 GeV−2.

• Ωb(bss)/Σb(bqq)
We repeat the previous analysis in the case of the b-
quark. The curves present the same qualitative be-
haviour as in the case of the charm, where, only rds

2

survives the different tests of stabilities. Here, the tc-
behaviour is almost flat from tc = 34 GeV2 (beginning
of τ -stability). The optimal value is taken at the ex-
tremum τ = (0.25 ± 0.05) GeV−2. Then, we obtain:

rsd
Ωb

= 1.051(2)(0.5)(1)(4)(3)(11)(1) , (35)

with the same sources of errors as before. Using this
value together with the experimental averaged value [9]:

M exp
Σb

= 5811.2 MeV, (36)

one can deduce the result in Table 2 in agreement with
the data [37], which, however, needs to be confirmed by
some other experiments.
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6. The masses of the spin 3/2 decuplet baryons

As a preliminary step of the analysis, we check the dif-
ferent results obtained in [5]:

MΣ∗

c
= (2.15 ∼ 2.92) GeV ,

MΣ∗

b
− MΣ∗

c
= 3.3 GeV , (37)

and confirm them. However, like in the octet case, we
have not tried to improve these (old) results.

• Ξ∗

c(csq)/Σ∗

c(cqq)
We repeat the previous DR analysis for the case of the
Ξ∗

c . We show in Fig. 3a) and Fig. 3b) the τ -behaviour
of the mass predictions for two extremal values of tc
between M2

Σ∗

c
(beginning of the τ -stability) and 12 GeV2

(beginning of tc-stability). We do not retain rsd
21 which

differs completely from rds
1 and rds

2 , while we do not
consider rds

1 which becomes τ -instable when tc increases.
We show in Fig. 1c) the tc-behaviour of rds

2 given τ=0.7
GeV−2.

0 0.2 0.4 0.6 0.8 1 1.2

1.02

1.04

1.06

1.08

1.1

0 0.2 0.4 0.6 0.8 1 1.2

1

1.02

1.04

1.06

1.08

1.1

6 8 10 12 14 16 18

1.055

1.06

1.065

1.07

1.075

Figure 3. Ξ∗

c /Σ∗

c : a) τ -behaviour of the double ratio of sum
rules (DR) by giving tc = M2

Σ∗

c
= 6 GeV2 : rds

1 dashed-dotted

(blue), rsd
2 dotted (green) and rsd

21 continuous (red); b) the same

as in a) but for tc = 12 GeV2 c) tc-behaviour of rds
2 for a given

optimal τ = 0.9 GeV−2.

We deduce the optimal value:

rsd
Ξ∗

c
= 1.065(1)(10)(4)(4)(17.5)(1) . (38)

The errors are due respectively to the values of τ =
(0.7 ± 0.2) GeV−2, tc, τ , mc, ms, κ ≡ 〈s̄s〉/〈d̄d〉 and ρ
(factorization of the four-quark condensate). The ones

due to some other parameters are negligible. Using the
data [9]:

M exp
Σ∗

c
= (2517.97± 1.17) MeV , (39)

and adding the different errors quadratically, we deduce
the results in Table 2.

• Ξ∗

b(bsq)/Σ∗

b(bqq)
We extend the analysis to the case of the bottom quark.
The curves are qualitatively similar to the charm case.
We deduce:

rsd
Ξ∗

b
= 1.024(0.4)(2.5)(1)(1)(7)(0.6) . (40)

The sources of the errors are the same as for the Ξ∗
c ,

where here τ = (0.22 ± 0.04) GeV−2 and tc between
M2

Σ∗

b
and 70 GeV2 (beginning of tc-stability).The ones

due to some other parameters are negligible. Using the
averaged data:

M exp
Σ∗

b

= (5832.7± 6.5) MeV , (41)

and adding the different errors quadratically, we deduce
the result in Table 2.

• Ω∗

c(css)/Σ∗

c(cqq)
We pursue the analysis to the case of the Ω∗

c(css). We

0 0.2 0.4 0.6 0.8 1 1.2

1

1.025

1.05

1.075

1.1

1.125

1.15

0 0.25 0.5 0.75 1 1.25 1.5 1.75

1.09

1.1

1.11

1.12

1.13

1.14

1.15

6 8 10 12 14 16 18
1.12

1.125

1.13

1.135

1.14

1.145

1.15

Figure 4. Ω∗

c /Σ∗

c : a) τ -behaviour of the double ratio of sum
rules (DR) by giving tc = M2

Σ∗

c
: rds

1 dashed-dotted (blue), rsd
2

dotted (green) and rsd
21 continuous (red); b) the same as in a) but

for tc = 12 GeV2 (beginning of the tc-stability); c) tc-behaviour
of the DR rds

2 giving τ = 1 GeV−2.

show the τ -behaviour of the different DR in Fig. 4a).
From this figure, we shall not retain rds

21 which differs
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completely from rds
1 and rds

2 . We show the same τ -
behaviour in Fig. 4b) but for tc = 12 GeV2 (beginning
of the tc-stability). Given the optimal value of τ = 1
GeV−2, we show the tc-behaviour of the DR rds

1 and rds
2

in Fig. 4c). The final result is the mean from rds
1 and

rds
2 :

rsd
Ω∗

c
= 1.135(6)(0.4)(7.5)(11.5)(14)(30.5)(0.5) . (42)

The 1st error is due to the choice of rsd
i . The other

ones are due to τ = (1.0 ± 0.2) GeV−2, tc, mc, ms, κ
and ρ. The most important error comes from κ while
the ratio of masses increases when the one of the quark
condensate decreases. The other QCD parameters give
negligible errors. Using the averaged data in Eq. (41),
and adding the different errors quadratically, one can
deduce the result in Table 2.

• Ω∗

b(bss)/Σ∗

b(bqq)
We repeat the previous analysis in the b-channel. The
curves are qualitatively analogue to the ones of the
charm. We shall not consider rsd

21 because of its incom-
patibility with the other ones. From the mean of rds

1

and rds
2 , we deduce:

rsd
Ω∗

b
= 1.051(5.5)(0.3)(2)(1.5)(4)(15)(1.5) , (43)

where the sources of the errors are the same as for Ω∗
b ,

where τ = (0.30±0.05) GeV−2. Using the averaged data
in Eq. (41), and adding the different errors quadrati-
cally, one can deduce the result in Table 2.

7. Summary and Conclusions

Table 2
QSSR predictions of the strange heavy baryon masses in units of MeV
from the double ratio (DR) of sum rules with the QCD input pa-
rameters in Table 1 and using as input the observed masses of the
associated non-strange heavy baryons.

Baryons rsd
B∗

Q
Mass Data

Octet

Ξc 1.075(21) 2458(50) 2467.9 ± 0.4
Ωc 1.141(39) 2800(96) 2697.5 ± 2.6
Ξb 1.048(15) 5888(81) 5792.4 ± 3.0
Ωb 1.051(12) 6108(71) 6165.0 ± 13
Decuplet

Ξ∗
c 1.065(21) 2682(53) 2646.1 ± 1.3

Ω∗
c 1.135(37) 2858(92) 2768.3 ± 3.0

Ξ∗
b 1.024(8) 5973(44) −

Ω∗
b 1.051(17) 6130(99) −

• We have directly extracted (for the first time) the
heavy baryons decuplet mass-splittings due to SU(3)
breaking using double ratios (DR) of QCD spectral sum
rules(QSSR), which are less sensitive to the exact value
and the definition of the heavy quark mass and to the
QCD continuum contributions than the simple ratios
commonly used in the current literature for determin-
ing the heavy baryon masses. As a result, we have

provided (relatively) robust predictions of the Ξ
(∗)
Q and

Ω
(∗)
Q masses once the ones of the associated non-strange

heavy baryons are known from the data. The different
results are summarized in Table 2.

Table 3
QSSR predictions of the strange heavy baryon hyperfine splittings in
units of MeV from the double ratio (DR) of sum rules with the QCD
input parameters in Table 1 and using as input the predicted values
in Table 2

Hyperfine Splittings Observed

MΞ∗

c
− MΞc=224(52) 179(1)

MΩ∗

c
− MΩc=58(94) 70(3)

MΞ∗

b
− MΞb

=85(63) −

MΩ∗

b
− MΩb

=22(85) MΣ∗

b
− MΣb

= 22

• Combining the previous predictions for the decuplet
with the ones for the octet, we give in Table 3 pre-
dictions of the hyperfine mass-splittings. These results
agree quite well with the data and with some expecta-
tions from quark models.
• Like in the case of the light baryons [29], it is re-
markable to notice that the leading term controlling
the mass-splittings is the ratio κ ≡ 〈s̄s〉/〈d̄d〉 of the
condensate rather than the running mass m̄s. This
ratio gives, after the choice of the continuum threshold
tc, the largest errors in rsd

B
(∗)

Q

.

• One can notice that for SU(3) symmetric quark
condensates 〈s̄s〉 ≃ 〈d̄d〉, the predictions tend to be
lower than the present predictions which deteriorate
the agreement with the observed masses in different
channels. This feature might explain the understimate
of the Ωb predictions observed in some quark models
[11,?].
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