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1 – Introduction

Violations of Bell’s Inequalities are long known to provide us with a core and striking
property of Quantum Mechanics, that is, that quantum correlations are stronger
than those of any possible local and realistic theory of “hidden variables” [1]. This,
by the way, complies with the remarkable intuition of E. Schrödinger who, long ago,
regarded entanglement the key-property of Quantum Mechanics (it is in entangled
states that Bell’s Inequalities come out violated). The subject has been the matter
of an impressive literature, with up today more than 90.000 published articles. Now,

the preceeding sentences, the failure of local realism as it is widely accepted by now,
stand at the level of the physical interpretations of Bell’s Inequalities violations. But
as inspection shows, an important point is the existence or non-existence of Joint
Probability Distributions (J.P.D.s for short) for random variables (r.v.s) that are
associated to quantum operators which may or may not all commute. A theorem
can state that J.P.D.s do exist for any given set of n r.v.s associated to n quantum
operators, provided the latter all commute, two by two [2]. This, though interesting
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in itself, is however a bit deceptive at the physical level because if all operators do
commute two by two, then one is lead back to a classical-like situation where the
constant ~→ 0. Not very surprisingly then, J.P.D.s for the r.v.s associated to these
operators can be defined, and inequalities of the Bell’s type are accordingly satisfied.
Our analysis here will pay attention to less trivial situations, where:

1- not all of the quantum operators commute,
2- states are entangled (even maximally),
3- and still, Bell’s inequalities are satisfied.

We define random variables associated to successives measurements of non com-
muting observables. Thus we obtain naturally the notion of statisticall insensivity.

2 – Statistical formalism of Probability theory

A random variable (r.v.) X is defined by:

• its possible values: x1, . . . , xn,

• with probabilities: p(X = x1), . . . , p(X = xn) .

These probabilities are positive numbers such that
∑

i p(X = xi) = 1 and are inter-
preted as the frequencies of occurrence of the respective values over a large number
of realizations.

The mean value of the r.v. X is by definition the number

E(X) =
∑
i

xip(X = xi) .

Definition 1 – Let X and Y be two random variables, we define a joint probability
distribution of (X,Y) as a family of positive numbers pik such that

•
∑

i,k pik = 1

•
∑

i pik = p(Y = yk)

•
∑

k pik = p(X = xi)

We use the notation pik = P (X = xi , Y = yk). Given a joint probability distribu-
tion of (X,Y), we say that X and Y are independant if P (X = xi , Y = yk) = P (X =
xi)P (Y = yk) for all i and k.

Note that if X and Y are two random variables then X + Y or XY or any
function f(X, Y ) is not necessarily defined. For exemple we can say that the values
of the variable X + Y are all the values z = xi + yk but we must defie the probability
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of each of these values. Given a joint probability distribution (pik) of (X, Y ) then we
can define

P (X + Y = z) =
∑

xi+yk=z
i, k

P (X = xi , Y = yk) .

Then we have E(X + Y ) = E(X) +E(Y ) and if for the joint probability distribution
of (X, Y ), X and Y are independant then we have E(XY ) = E(X)E(Y ).

Remark – The distribution pik = P (X = xi)P (Y = yk) is always a JPD of (X,Y)
and for this JPD the variables X and Y are independent.

3 – Kolmogorov formalism of Probability theory

In the Kolmogorov formalism of Probability theory the random variables are repre-
sented as functions on a set Ω. Any occurence of the experiment is represented by
the choice of a value of the hidden variable ω ∈ Ω. The probability is defined by a
positive function p on Ω such that

∑
ω∈Ω p(ω) = 1. If X is a random variable the

values X(ω) are then determined for each occurence and the probability distibution
of X is defined by

p(X = xi) =
∑

ω,X(ω)=xi

p(ω) .

If X and Y are random variables the values (X(ω), Y (ω)) are then determined for each
occurence and in the Kolmogorov formalism there exist a natural joint probability
distribution of (X,Y) defined by

p(X = xi, Y = yk) =
∑

ω,X(ω)=xi

Y (ω)=yk

p(ω) .

4 – Quantum formalism

The formalism of Quantum Mechanics can be developed in terms of the following basic
objects and postulates (evolution, which would complete the quantum mechanical
description, will not be dealt with in the sequel).

4.1 – A Statistical Operator

Over E, a C-Hilbert space endowed with the inner product 〈 | 〉, and H(E), the set of
Hermitian operators on E, the system is described by a statistical operator: ρ ∈ H(E)
(density matrix) satisfying:

• Tr(ρ) = 1
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• ρ positive, i.e., ∀ψ ∈ E, 〈ψ|ρψ〉 ≥ 0 .

4.2 – Postulate 1

For any obsevable A ∈ H(E), one has A =
∑

i ai PAi
, where ai ∈ R, and where the

PAi
are projectors on the proper subspaces spanned by the ais, including the possible

vanishing eigenvalue, i.e., the relation
∑

i PAi
= Id is satisfied in the definition above

for A. Then, to any state ρ and any observable A one can associate the r.v. XA(ρ)
representing the result of the measure of A in state ρ.

By definition, the random variable XA(ρ) has:

• the ai as its values, appearing with.

• probabilities p(XA(ρ) = ai) = Tr(ρPAi
) .

4.3 – Postulate 2

The Wave Packet Reduction postulate. Though this postulate is no longer considered
as such nowadays, and seems to be reducible to a more intuitive statement [3], it can
still be used as a convenient way to put things [1].

After the measure of A in state ρ, the latter gets reduced into the state ΓA(ρ),
where ΓA is the “intertwining operator” defined fon H(E) by

B 7→ ΓA(B) =
∑
i

PAi
B PAi

,

where
∑

i PAi
= Id .

Remark – ∀A, B, C ∈ H(E), one has Tr(ΓC(A)B) = Tr(AΓC(B)) that is, ΓC
is self-adjoint for the scalar product on H(E) defined by (A|B) ≡ Tr(AB) .

5 – Succession of measurements

Let us consider XA→B(ρ), the random variable associated to a sequence where a
measure of an observable B, in a given quantum system, is performed after another
observable A has been measured on the same system (here, “after” is to be understood
in a non-relativistic acceptation; a relativistic one would require the use of a C?-
algebra analysis).

Definition 2 – Let A, B ∈ H(E). One can define XA→B(ρ), the r.v. with values

• b1, . . . , bn, the eigenvalues of B,

• with associated probabilities p(XA→B = bj) = Tr(ΓA(ρ)PBj
) .
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By definition of the intertwinning operator we have XA→B(ρ) = XB(ΓA(ρ)) .

Theorem 1 – Let XA(ρ) and XA→B(ρ), be two random variables. The family

pA→B,ρ(ai, bk) = Tr(PAi
ρPAi

PBk
)

satisfies the conditions

•
∑

k pA→B,ρ(ai, bk) = p(XA(ρ) = ai)

•
∑

i pA→B,ρ(ai, bk) = p(XA→B(ρ) = bk)

that identify it as the natural joint probability distribution of XA(ρ) and XA→B(ρ).
We note p(XA(ρ) = ai, XA→B(ρ) = bk) this JPD.

Postulate 3 – The natural JPD of fXA(ρ) and XA→B(ρ), noted p(XA(ρ) = ai,
XA→B(ρ) = bk) represent the frequency of the obtention of the succesives results
(XA(ρ) = ai followed by XA→B(ρ) = bk), over a large number of occurrences.

The natural JPD of f XA(ρ) and XA→B(ρ), allows us to define other random
variables like XA(ρ)±XA→B(ρ) and XA(ρ)XA→B(ρ). A succession of measurements
is represented by the action of the intertwinning operator

observable state r.v. mean value
ρ

A ↓ XA,ρ → (ρ|A)
ΓAρ

B ↓ XB,ΓAρ → (ρ|ΓAB)
ΓBΓAρ

C ↓ XC,ΓBΓAρ → (ρ|ΓAΓBC)
ΓCΓBΓAρ

6 – Statistical insensitivity

Definition 3 – In a state ρ, B will be said to be (statistically) insensitive to A, if
one has XA→B(ρ) = XB(ρ). That is, in a given state ρ, B is (statistically) insensitive
to A, if

∀ j, T r(ΓA(ρ)PBj
) = Tr(ρPBj

) .

In other words, a measure of A in state ρ does not affect the statistical behavior of
XB, when B is measured after A.

Definition 4 – In a state ρ, A and B are mutually insensitive if XA→B(ρ) = XB(ρ)
and XB→A(ρ) = XA(ρ). That is, if the following conditions are met:
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• ∀ k, Tr(ΓA(ρ)PBk
) = Tr(ρPBk

) .

• ∀ j, Tr(ΓB(ρ)PAj
) = Tr(ρPAj

) .

At this level, one may note that the more intuitive basis from which Postulate
2 can be deduced can be stated as the condition XA→A(ρ) = XA(ρ), when the two
measures of A are performed at very close instants in time (W. H. Zurek [3]).

As a first result, it is elementary to check that the following result holds.

Theorem 2 – If [A,B] = 0, then ∀ ρ:

XA→B(ρ) = XB(ρ) ,

XB→A(ρ) = XA(ρ) ,

that is, A and B are mutually insensitive in all states ρ.

In the case of commuting observables, of course, things simplify to a large extent.
If [A,B] = 0, then the natural J.P.D. for XA and XB is simply

pA→B,ρ(ai, bk) = pB→A,ρ(ai, bk) = Tr(ρPBk
PAi

) ,

and the following result holds:

Theorem 3 – If [A,B] = 0, then, for all state ρ, one has, with the natural J.P.D.

XA(ρ) +XB(ρ) = XA+B(ρ) , XA(ρ)XB(ρ) = XAB(ρ) .

In this situation, a simple mapping of the algebra generated by a complete set of
commuting observables (CSCO), into the corresponding r.v.s one is realized.

7 – J.P.D.’s associated to statistical insensitivity

In view of the preceding section, one may look for J.P.D.s that, given a state ρ,
could be canonically associated with r.v.s related to observables that are mutually
insensitive in that state.

If B is insensitive to A in state ρ, that is if XB(ρ) = XA→B(ρ), then a natural
J.P.D. of (XA(ρ), XB(ρ)) is provided by

pA→B,ρ(ai, bk) = p(XA(ρ) = ai, XA→B(ρ) = bk) = Tr(PAi
ρPAi

PBk
) .

Now, this implies that if A, B are mutually insensitive in state ρ, then two natural
J.P.D.s of (XA(ρ), XB(ρ)) can be devised,

pA→B,ρ(ai, bk) = Tr(PAi
ρPAi

PBk
) ,

pB→A,ρ(ai, bk) = Tr(PBk
ρPBk

PAi
) ,

which are not necessarily the same. But the following theorem holds:
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Theorem 4 – Theorem of the “Joint Distributions” – Two observables A and B are
mutually insensitive in a state ρ iff for all α ∈]0, 1[

pi,j = αTr(ρΓPAi
(PBj

)) + (1− α)Tr(ρΓPBj
(PAi

)) ,

is a joint distribution for (XA(ρ), XB(ρ)).

8 – Insensitivity and independence

a) It is interesting to compare independence and insensitivity. Having a J.P.D for
(XA(ρ), XA→B(ρ)), one may analyze their statistical independence. Indeed, one can
see that these variables can be independent in a context where a statistical insensi-
tivity does not hold. In other words, a measure of A modifies the law of XB, while
XA(ρ) et XA→B(ρ) display no correlation.

Example – Consider E = C2 and

ρ =

(
α β
β 1− α

)
,

with 0 < α2 + β2 ≤ α < 1, and

A =

(
0 1
1 0

)
,

whose eigenvalues are a1 = 1 et a−1 = −1. The law of XA(ρ) reads as

P (XA(ρ) = 1) = β +
1

2
, P (XA(ρ) = −1) = −β +

1

2
.

Also, consider

B =

(
1 0
0 −1

)
,

whose eigenvalues are b1 = 1 et b−1 = −1. The law of XB(ρ) reads as

P (XB(ρ) = 1) = α, P (XB(ρ) = −1) = 1− α .

One has

ΓA(ρ) =

(
1
2

β
β 1

2

)
,

and the law of XB(ΓA(ρ)) is given by

P (XB(ΓA(ρ)) = 1) = P (XB(ΓA(ρ)) = −1) =
1

2
.
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The natural J.P.D for XA(ρ) and XB(ΓA(ρ)) reads

pA→B,ρ (1, 1) =
1

2
β +

1

4
,

pA→B,ρ (1,−1) =
1

2
β +

1

4
,

pA→B,ρ (−1,−1) = −1

2
β +

1

4
,

pA→B,ρ (−1, 1) = −1

2
β +

1

4
.

One then observes that XA(ρ) et XB(ΓA(ρ)) are stochastically independent. Still, if
α < 1/2 one has

XB(ΓA(ρ)) 6= XB(ρ) .

b) On the other hand, if one takes B = A, then [A,A] = 0, but XA(ρ) and
XA(ΓA(ρ)) = XA(ρ) are not stochastically independent if XA(ρ) is not a constant
r.v., that is if A 6= cste . Id . That is, commutativity does not imply independence.

c) Insensivity does not involve independence (as commutativity does not involve
independence).

Example – E = C2 and

ρ =
1

2

(
1 0
0 1

)
, A =

(
a1 0
0 a2

)
, B =

(
b1 0
0 b2

)
.

One has AB = BA and

P (XA(ρ) = a1) = Tr(ρpA1) =
1

2
,

P (XB(ρ) = b1) = Tr(ρpB1) =
1

2
.

Now, it can be checked that

pρ(a1, b1) = Tr(ρpA1pB1) =
1

2
6= Tr(ρpA1)Tr(ρpB1) .
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The following diagram summarizes some of the implications we have just dealt with.

[A,B] = 0

��

fn /UUUUUUUUUUUUUUU

UUUUUUUUUUUUUUU

&.UUUUUUUU
UUUUUUUU

A and B mutually
insensitive
in state ρ

��

ks
/

+3
XA(ρ) and XA→B(ρ)

are
independent

A is insensitive to B
in state ρ

qy

∖
jjjjjjjjjjjj

jjjjjjjjjjjj

19jjjjjjjjj
jjjjjjjjj

9 – Bell’s Inequalities

9.1 –A simple inequality

Let us consider the case of four bivalent (±1) random variables: X, X ′, Y and Y ′,
and assume that we can apply the Kolmogorov formalism, that is for each occurrence
ω of the experiment, the numbers X(ω), X ′(ω), Y (ω), Y ′(ω) are determined. This
implies that Z = (X +X ′)Y + (X −X ′)Y ′ is well defined as a random variable by

Z(ω) = (X(ω) +X ′(ω))Y (ω) + (X(ω)−X ′(ω))Y ′(ω).

By inspection of all the possible values of X(ω), X ′(ω), Y (ω), Y ′(ω), we check that
|Z(ω)| ≤ 2. Thus in the Kolmogorv formalism, the following Bell’s Inequality obtains
trivially

|E(Z)| = |E(XY ) + E(X ′Y ) + E(XY ′)− E(X ′Y ′)| ≤ 2 .

9.2 – Quantum mechanics violation of Bell’s inequality

Let us consider the quantum mechanical situation where one has:

• Four observables A, A′, B and B′,

• The “As ” commute only with the “Bs ” but [A,A′] 6= 0 and [B,B′] 6= 0 .

By the commutation of ‘As ’ with the ‘Bs ’ there are JPD’s for (XA, XB), (XA, XB′),
(XA′ , XB) and (XA′ , XB′). In view of A. Fine’s Theorem, however, [2], no joint
distribution can be defined for the whole set of associated r.v.s, X = XA, X ′ =
XA′ , Y = XB and Y ′ = XB′ compatible with all four probability distributions for
(XA, XB) , (XA, XB′), (XA′ , XB) and (XA′ , XB′). In consequence a combination like
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Z = (XA +XA′)XB + (XA −XA′)XB′ does not define a random variable. Still, the 4
products XAXB, XA′ XB, etc. . . define 4 r.v.s, separately, so that an expression like

|E(XY ) + E(X ′Y ) + E(XY ′)− E(X ′Y ′)|

is meaningful and can certainly be measured experimentally, but is not bound to com-
ply with the Bell’s inequality. And effectively, in some entangled states the absolute
value written above is found to display values greater than 2 (up to 2

√
2 indeed!).

It is this surprising result of Quantum Mechanics that has been verified experimen-
tally and has given rise to the notions of failure of the local realism hypothesis and of
quantum non-separability.

9.3 – Inequality for a succession of measurements

Intuitively it seems plausible that the Kolmogorv formalism can be applied to the
variables obtained when we perform a succession of measurements:

XA ; XA→A′ ; XA→A′→B ; XA→A′→B→B′

Thus it seems that Bell’s inequalities remain valid whithin the context of a succession
of measurements. We prove this in the following theorem.

Theorem 5 – If measures are performed sequentially, then the 4-uplet (XA, XA→A′,
XA→A′→B, XA→A′→B→B′) admit a J.P.D. The random variable

XZ = XA XA→A′→B + XA→A′ XA→A′→B

+ XA XA→A′→B→B′ − XA→A′ XA→A′→B→B′

is well defined; its mean value is given by

E(XZ) = Tr(ρK) ,

where
K = A(B + ΓB(B′)) + ΓA(A′)(B − ΓB(B′)) .

And we have
|E(XZ)| ≤ 2 .

9.4 – When Bell’s Inequalities Complies with Quantum Me-
chanics

As an illustration of the preceding theorem, we here provide a simple, the particular
case of the four operators:

A = σz ⊗ Id , A′ = σx ⊗ Id ,

B = − 1√
2

Id⊗ (σz + σx) , B′ =
1√
2

Id⊗ (σz − σx) ,
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with [A,A′] 6= 0 and [B,B′] 6= 0 and the A′s commute with the B′s. Then, there
exists a family of states, F = {ρ•}, which are such that, in them, A, A′, B and B′

are all mutually insensitive. Elements of F can be parametrized as follows:

ρ• =


1
4

+ a u v∗ w
u∗ 1

4
− a h k∗

v h∗ 1
4
− a p

w∗ k p∗ 1
4

+ a

 ,

where |a| ≤ 1/4, <e(k+ v) = 0 and <e(p+ u) = 0. The entangled (spin zero singlet)
state peculiar to Bell’s states reads

ρs =
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ,

and turns out to be an element of F . Even in maximally entangled states, such
as ρs, and even though not all of the 4 operators do commute two by two, one
should accordingly expect the Bell’s inequality to be satisfied. And effectively, explicit
calculation shows that one has

E(XZ) = Tr(ρsK) = −2
√

2 a =

√
2

2
≤ 2 .

that is Bell’s inequality is clearly satisfied in this example (this result is indeed more
general in the sense that it specifies more accurately the upper bound of 2, appearing
in the previous theorem).

10 – Conclusion

Quantum Non-Separability, an unavoidable consequence of the Bell’s inequality vi-
olation is undoubtly one of the most striking aspects of Quantum Mechanics, as
advocated by E. Schrödinger long before any experimental check could be performed.
Since then, several experiments have provided this amazing phenomenon with enough
support, even though solely 5% of the entangled produced pairs are effectively mea-
sured [1]. Now, Quantum Non-Separability as well as the failure of Local Realism
stand at the level of physical interpretations; the essential formal point being the ex-
istence or non existence of J.P.D.s. It matters to specify the environment of such an
important phenomenon as the one under consideration; one can realize thus that this
environment is essentially contextual depending on the experimental protocol at play:
It is it which (in line with the basics of the Copenhagen interpretation of Quantum
Mechanics) decides of the existence or non-existence of J.P.D.s. In this article we have
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proven that J.P.D.s can be defined for observables under more general circumstances
than prescribed in A. Fine’s theorem, provided measures are performed sequentially.

This preliminary analyses need to be extended and this could be done in several
different directions. Also, what is the general determination concerning the observ-
ables to satisfy the Bell’s inequalities within “sequential protocols”? Also, it would be
interesting to investigate more closely the so-called “statistical insensivity” introduced
here, in particular in its possible relations to relativistic and non-relativistic causal
independence. Eventually, an extension to Quantum Field Theories and C?-algebras
would allow us to take proper account of a relativistic treatment of the matter.
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