Search for sterile neutrinos

From cosmology to the LHC

The vMSM model

Minimum extension of the SM to accomodate massive neutrinos

•T. Asaka and M. Shaposhnikov Phys.Lett.B620(2005)17
•M.Shaposhnokov Nucl.Phys.B763(2007)49

•See-saw formula for active neutrinos $m_v = -M^D(1/M_I)(M^D)^T$

-Majorana mass M_I -Dirac mass M_D =fv v=174 GeV v. e. v. of Higgs field

•Usual choice: f as in quark sector, $M = 10^{10}-10^{15} \text{ GeV}$

•Alternative choice: small f

•Inputs: $m(v_1) = 10^{-5} \text{ eV}$, $m(v_2) = 9 \text{ meV}$, $m(v_3) = 50 \text{ meV}$ and mixings

Three sterile neutrinos

•Three singlet RH neutrinos $N_1 N_2 N_3$

→ N₁ Best choice m(N₁) ~10 keV *Very large lifetime, practically stable.*WARM DARK MATTER

• \Rightarrow N₂, N₃ almost degenerate (leptogenesis)

•Masses in range100 MeV-few GeV

Heavy neutrinos at accelerators

•Mixed with active neutrinos

•In all weak decays, they appear at the level U^2_{Nl}

Their mass is limited by the parent particle

$\pi \Rightarrow e N$	m(N) < 130 MeV
$\pi \Rightarrow \mu N$	m(N) < 20 MeV
$K \Rightarrow e N$	m(N) < 450 MeV
$K \Rightarrow \mu N$	m(N) < 350 MeV
$\dots W \Rightarrow e N$	m(N) < 80 GeV

Decays of heavy neutrinos

Purely weak decays:

modes depend on the N mass

first open channel e⁺e⁻v, then μ ev, $\mu^+\mu^-$ v, e⁻ π^+ , $\mu^ \pi^+$ Lifetime for e⁺e⁻v $\tau = 2.8 \ 10^4 \ (1/m(MeV)^5)(1/U^2)$

PS191 experiment (1984!)

5 10¹⁸ pots 19 GeV

PRESENT LIMITS

MiniBoone excess ?

About 100 events depositing 300-400 MeV energy

Obtained with 5 10²⁰ pots of 8 GeV

Decay of the N_2 component mixing predominantly to μ (testing $U_{N\mu}^{2}$)

150 MeV < m < 350 MeV

 $U^2 = few \ 10^{-8}$

NOT EXCLUDED !!

Improving on PS191

- •Modern v beam: NuMI (25 years later)
- •120 GeV, 16 10²⁰ pots
 - Large π , K production
 - $\Rightarrow improvement in U^2 limits$
 - Furthermore, with D production mass range can be extended to 1.3 GeV

What about the LHC?

•LHCb

•10¹² B mesons/year of 100 GeV/c Mass region extended to 4 GeV

•ATLAS/CMS

•3 10⁸ W/year

Mass region extended to 50 GeV

Conclusion: rough expectations

0 0.1 0.2 0.3 0.4 GeV 0 0.5 1.0 GeV 0 10 20 30 40 GeV

Decay of a 10 keV neutrino

 $N_1 \Longrightarrow 3 \nu$, but also radiative decay

Almost stable \Rightarrow DARK MATTER

• \Rightarrow *Warm dark matter*

Limits from cosmology

Search for N₁ radiative decays

Big Bang nucleosynthesis, N_2 , N_3 $U^2 < 10^{-8} (1/m(GeV))^2$

Change in kinematics

Helicity conservation revisited

 $K \rightarrow eN$

Guesstimates

N produced in Kaon decays \Rightarrow Flux 3 1016 U2Corrections due to kinematics x 3And also from focalisation x 5

Decay probability :

 $\beta \gamma c \tau(m) = 10^{13} E(MeV)/m^6 U^2$

 $m = 150 \text{ MeV } U^2 = 10^{-7}$ $m = 200 \text{ MeV } U^2 = 4 \ 10^{-8}$ $m = 250 \text{ MeV } U^2 = 2 \ 10^{-8}$