Results and Status from HARP and MIPP

M. Sorel (IFIC, CSIC-Valencia U.)

Neutrino 08, May 25-31, Christchurch (New Zealand)

Outline

- •The experiments
- •The data
- •Hadron production for neutrino physics:
 - Results for conventional accelerator-based neutrino beams
 - Results for advanced neutrino sources
 - Results for atmospheric neutrinos
- •Future prospects

The Experiments

HARP (CERN, 2001-2002)

Forward Spectrometer:

- track reconstruction with drift chambers + dipole magnet
- PID with threshold Cherenkov + time-of-flight wall (+ electromagnetic calorimeter)

Large-Angle Spectrometer:

track reconstruction and PID with solenoid magnet + TPC (+ RPCs)

MIPP (FNAL, 2004-2006)

Track Reconstruction:

- two dipole magnets deflecting in opposite directions
- TPC + drift chambers + PWCs

Particle Identification:

- Time Projection Chamber
- Time-of-Flight Wall
- Threshold Cherenkov Detector
- Ring Imaging Cherenkov Detector

•*Results presented here based on RICH-only PID*

PID in MIPP

•PID from measurements of secondary momentum and:

- RICH ring radius for p > 17 GeV/c
- Cherenkov light yield for 2.5 < p (GeV/c) < 17
- ToF Velocity for 0.5
- TPC dE/dx for 0.1 < p (GeV(c) < 1

J. Paley's MIPP Neutrino 08 poster

The Data

HARP (Beam, Target) Settings

Beam Settings:

•2-15 GeV/c momenta
•Both postively and negatively-charged beams
•Pure p, π⁺, π⁻ beams

Target Settings:

•From H to Pb (A = 1-207) •2%-200% λ_{I} thicknesses •Only λ_{I} =5% discussed here

- Some results published (2006-2008), more to come Results to be published
- Data collected

HARP Particle Production Phase Space Measured

MIPP (Beam, Target) Settings

Beam Settings:

•20-120 GeV/c momenta

 Both postively and negativelycharged beams

•Pure p, π^{\pm} , K[±] beams

Target Settings:

•From H to U (A = 1-238) •2%-165% λ_{I} thicknesses • λ_{I} =2% and 165% (NuMI) discussed here

MIPP Particle Production Phase Space Measured

• π^+ , π^- , K⁺, K⁻ production

•Regions indicate phase space covered:

• Results with RICH-only PID:

20 $<math>0 < p_{t} (GeV/c) < 2$

•Lines within regions indicate binning

• Use of Cherenkov, ToF, TPC will allow to extend PID to lower secondary particle momenta

Results For Conventional Accelerator-Based Neutrino Beams

Conventional Accelerator-Based Neutrino Beams

Challenges:

•Hadron production uncertainties have big impact on neutrino flux predictions: overall flux, energy spectrum, flavor composition, etc.

•Neutrino rate measurements: degeneracy between v flux and v cross-sections

- •Oscillation experiments alleviate impact of flux uncertainties with two-detector setups and detectors tagging neutrino flavors
- •Still, hadron production affects flux extrapolation between detector sites, and relation between, eg, muon and electron neutrino fluxes

Where we left off at Neutrino 06: HARP+K2K Experiment: HARP Beam particle: proton Beam momentum: 12.9 GeV/c Target Material: Al Target Thickness: 5% λ_{μ} Produced particle: π^{+}

K2K Far-to-near flux ratio

 F/N contribution to uncertainty in number of unoscillated muon neutrinos expected at Super-K reduced from 5.1% to 2.9% with HARP Experiment: HARP Beam particle: proton Beam momentum: 8.9 GeV/cTarget Material: Be Target Thickness: 5% λ_{μ} Produced particle: π^+

Same (beam, target material) as FNAL Booster Neutrino Beam serving Mini/SciBooNE

•5% measurement over 0.75<p<6.5 GeV/c, 30<θ<210 mrad

- •10% bin-by-bin meas. (72 data points)
- •Compares well with beam momentum-rescaled BNL E910 at 6, 12 GeV/c
- •Blue histogram is beam MC prediction tuned with HARP+E910
- •Preliminary proton, π^{-} production results also:
 - π⁻: useful ongoing BNB antineutrino run
 - proton: reinteraction effects in BNB thick target

Implications for MiniBooNE, SciBooNE

•MiniBooNE v_{μ} -> v_{e} oscillations: HARP π^{+} production + MB v_{μ} interaction measurements put tight constraints on beam v_{e} contamination from π^{+} -> μ^{+} -> v_{e} , allowing not to spoil v_{μ} -> v_{e} sensitivity

•SciBooNE/MiniBooNE neutrino cross section measurements:

Early estimates: 16% v_{μ} flux normalization uncertainty from HARP π^+ production data. Ongoing work to reduce this by factor >2 via model-independent use of HARP data

Hadron Production and MINOS

Phase space at production of π^* 's producing v_{μ} CC interactions in MINOS far:

Hadron Production and MINOS

Phase space at production of π^* 's producing v_{μ} CC interactions in MINOS far:

 Hadron production constrained in two ways:

1) MINOS near spectrum fit

Several beam configurations and fit parameters, including pion (p_z, p_t) yields and kaon yield normalization

π^* weights wrt FLUKA MC from spectrum fit:

Hadron Production and MINOS

Phase space at production of π^* 's producing v_{μ} CC interactions in MINOS far:

 Hadron production constrained in two ways:

2) Hadron production data

MIPP

- preliminary results only cover high E₁
- NuMI beam momentum: 120 GeV/c
- both thin C and NuMI targets
- preliminary: fully corrected π^{\pm} , K[±] particle yield ratios only
- K^{\pm} important for MINOS $v_{\mu} \rightarrow v_{e}$

NA49

- excellent phase space coverage
- higher beam momentum: 158 GeV/c
- thin C target
- π^{\pm} production cross sections

Experiment: MIPP Beam particle: proton Beam momentum: 120 GeV/c Target Material: C Target Thickness: 2% λ_{μ} ,NuMI Produced particle: π^{\pm} , K^{\pm}

 $\bullet p_{t} < 0.2$ GeV/c particle ratios for:

- thin C target
- NuMI target
- •Errors include preliminary systematic uncertainty evaluation
- •Good agreement between thin and NuMI particle ratios
- •Reasonable agreement of MIPP data with NA49 and MINOS spectrum fit results up to p ~ 40 GeV/c
- Discrepancies to investigate at high momenta

Results For Advanced Neutrino Sources

Neutrino Factory

•Proposed idea to store 4-50 GeV muons in a ring with long straight sections

•Stored beam properties and muon decay kinematics well known -> small neutrino flux uncertainties

•Challenge here is not flux uncertainty, but flux optimization:

- need to optimize collection efficiency of π^+ and π^- produced in the collisions of protons with high-Z target (eg, Hg)
- which proton beam momentum is best, which range acceptable?
- accurate knowledge of produced pion kinematics needed for detailed design

• π^{\pm} production measured over 0.1 \theta (mrad) < 2150

•Good match with "typical" neutrino factory acceptance (~70%, design-dependent)

Forward production

Backward production

Implications for Neutrino Factory Designs

•Pion yield normalized to beam proton kinetic energy

•Restricted phase space shown most representative for NuFact designs

•Optimum yield in HARP kinematic coverage for 5-8 GeV/c beam momenta

•Same conclusions for Ta target results

Eur. Phys. J. C 51, 787 (2007)

•Quantitative optimization possible with detailed spectral information available: ~100 (p, θ) data points for 4 beam momentum settings (3-12 GeV/c) each

Results For

Atmospheric Neutrinos

Atmospheric Neutrinos

•Challenges for accurate atmospheric neutrino flux predictions:

- Primary cosmic ray spectrum
- Hadronic interactions determining shower development, particularly interaction of primary with nuclei
- •As for accelerator-based beams, unoscillated flux ratios (flavor, direction) better known than absolute fluxes, but not error-free!
- Rule-of-thumb: E(primary) / E(v) ~ 10
 -> HARP data for sub-GeV neutrinos,
 MIPP data for multi-GeV neutrinos

•Stat. + syst. uncertainties:

- 6% measurement for π^{\pm} over 0.5 \theta (mrad) < 250
- 15% bin-by-bin measurement (40 data points)
- •Results also for oxygen, carbon targets, π^{\pm} beams

Astropart. Phys. 29, 257 (2008)

•Useful resource to benchmark/tune hadronic interaction models used in air shower simulations

p [GeV/c]

Preliminary

•Important for multi-GeV contained, uncontained atmospheric neutrinos

- Particle ratios for two p_t slices shown:
 - $p_{_{+}} < 0.2 \text{ GeV/c}$
 - $0.2 < p_t < 0.4 \text{ GeV/c}$
- •Agreement with past C results and parametrization from Be data at ~30% level
- •Opposite charge ratios important for atmospheric neutrino detectors with no final lepton charge ID

A. Lebedev, Ph.D. Thesis, Harvard U. (2007)

Future Prospects

MIPP

- •First pion/kaon absolute differential cross-sections for 120 GeV/c protons:
 - NuMi target
 - C/Be/Bi thin targets
- •Results will include p < 20 GeV/c secondary momenta as well
- n/p production ratio measurement
 for all beam momenta, all thin targets
- •Pion/kaon production for 20, 60 GeV/c protons/pions/kaons on C thin target
- •K0 production cross-sections

•First cross-sections expected later this year

MIPP Upgrade

• Proposal to upgrade the MIPP experiment under consideration arXiv: hep-ex/0609057

•MIPP was limited by DAQ rate, dominated by the TPC readout time (~30 Hz) -> ~1/5 of desired statistics for NuMI target run In addition, the Jolly Green Giant magnet failed at end of run

•An upgrade of the TPC electronics can increase this readout speed by a factor of 100. Other improvements would result in:

- more stable TCP performance
- greatly reduced ExB effects in the TPC
- an improved beamline for low (down to $\sim 1 \text{ GeV/c}$) momentum running

•An upgraded MIPP would allow for the measurement of hadron production for any target in a matter of just a few days

•FNAL has purchased ALTRO chips for the TPC upgrade and repair of the JGG dipole magnet has begun

HARP

•Complete the analysis and publication of pion/proton production cross-sections in both forward direction and at large angles, for all (beam, thin target) settings

•Detailed study of particle production as a function of incoming particle momentum and target material. Unprecedented tuning and benchmarking tool for general-purpose hadronic interaction simulations

Example: π^+ yield for 0.1 350 < θ (mrad) < 1550

•*Kaon production in highest beam momentum* settings

•Particle yields from thick targets

NA61/SHINE

•New hadron production experiment at CERN

•Commissioning run in 2007, physics run late 2008

•Reuse NA49 detector, extended forward acceptance with new ToF wall

Neutrino physics in NA61 program:

• Measurement of hadron production off the T2K target (p+C) needed to characterize the T2K neutrino beam

• Measurement of hadron production in p+C interactions needed for the description of cosmic-ray air showers (Pierre Auger Observatory and KASCADE experiments)

Summary

Hadron production and neutrino physics:

- Precision v oscillation and interaction measurements <-> precision v production
- Hadron production knowledge is limiting factor in understanding and optimization of a variety of neutrino sources:

conventional & advanced accelerator-based neutrino beams, atmospheric neutrinos

HARP

- NuFact and ~GeV neutrinos: K2K, MiniBooNE, SciBooNE, atmospheric neutrinos
- Lots of new results! Physics program completion well underway

MIPP

- Multi-GeV neutrinos: *MINOS, atmospheric neutrinos , NuMI-future (MINERvA, NOvA)*
- Complete understanding of detector performance and physics analyses well underway. First MIPP hadron production cross sections later this year

HARP Beam Instrumentation

Beam instrumentation:

- incoming particle impact point and direction with MWPC
- incoming particle ID with beam time-of-flight + theshold Cherenkov detectors
- (+ beam muon-identifier)

Track Reconstruction in HARP

Forward spectrometer

•Unit-area normalized momentum distributions of beam pions for different beam settings:

momentum scale understood to 2%
4% momentum resolution at p=3 GeV/c

Large-angle spectrometerMissing mass squared in pp elastic data:

 $m_{\chi}^{2} = (p_{beam} + p_{target} - p_{TPC})$

•p_{beam}: incident protons from 3 GeV/c beam and beam instrumentation measurements
•p_{target}: target protons at rest in H target
•p_{TPC}: 4-momentum as measured by TPC

More on HARP TPC Track Reconstruction

Momentum Resolution

- 1/p, fractional resolution versus p, from:
 - separate fit of cosmic ray track halves
 - dE/dx in $1/\beta^2$ region (triangles)
 - MC simulation (shaded area)

Momentum Scale

- Obtained from dE/dx slice in $1/\beta^2$ proton region
- •Consistency within ±2% of all (beam, target) settings with one used in pp elastic analysis

Particle Yield Corrections in HARP

Numbers for forward π^+ production from 8.9 GeV/c protons on Be as example:

- Track reconstruction efficiency: 3% up (data)
- Momentum scale, resolution, energy losses: affects shape (data/MC)
- Geometric acceptance: ~100-160% up (analytical)
- Pion ID efficiency: 2% up (data)
- Pion-to-proton migration: <1% down (data)
- Absorption/decay of secondaries: 20-30% up (MC)
- Tertiary production: 5% down (MC)
- Electron veto efficiency: 1% up (data)
- Kaon subtraction: 1-3% down (data/MC)
- Targeting efficiency: 1% up (data)
- Empty target subtraction: 20% down (data)
- π^0 subtraction (large-angle spectrometer analyses)

Typical dominant systematic uncertainties:

- pion absorption, momentum scale, momentum resolution unfolding (forward)
- momentum scale, π^0 subtraction, target region cut (large-angle)

Experiment: HARP Beam particle: proton Beam momentum: 8.9 GeV/cTarget Material: Be Target Thickness: 5% λ_{l} Produced particle: proton, π^{-1}

π

•Preliminary proton, π^- production results also available for same (beam, target) settings

- π : useful for ongoing BNB antineutrino run
- proton: useful for reinteraction effects in BNB thick target

•Blue beam MC histograms:

- π^- : tuned with HARP+E910
- proton: prediction independent from HARP

proton

HARP & BNB

 $\pi^+ \rightarrow v_{\mu}$

 $\pi^+ extsf{->} \mu^+ extsf{->}
abla_{ extsf{e}}$

MIPP Beam Instrumentation

Incoming particle impact point and direction with drift chambers
Incoming particle ID with beam threshold Cherenkov detectors

•Beam Cherenkov detector performance as measured by RICH:

Track and Vertex Reconstruction in MIPP

- •Primary vertex resolution is ~8 mm
- •Momentum resolution is ~5% at 120 GeV/c, better at lower momenta
- •Reconstructed track momenta systematically underestimated by 2-3%

NuMI Target Radiograph with MIPP

•Color coding related to material density, using beam tuning data

Output Be-window

faraet seament

1etal-ceramic adapters

Tanget canister

Aluminum calsing

•Sub-mm beam-target alignment:

Cooling water pipes

• Circle: beam centroid from trigger

Input Be-window

• Cross hairs: center of graphite slabs

More on MIPP PID

TPC

dE/dx for 0.32 m^2 = p^2 (1/\beta^2 - 1) for p < 1.1 GeV/c:

ToF

Particle Yield Corrections in MIPP

Overall correction applied to extract particle yield ratios typically <10%. Those are:

- RICH geometric acceptance
- Pileup removal
- Target-out subtraction
- Interaction trigger efficiency
- Interactions/decays in detector
- Particle ID efficiency
- Misidentified particles subtraction
- Momentum reconstruction performance

Dominant systematic uncertainties:

detector modeling in MC simulation, misidentified particles modeling, momentum scale

Atmospheric Neutrino Flux Predictions

•Rule-of-thumb: (primary cosmic ray energy) / (atmospheric v energy) ~ 10-20 -> HARP data for sub-GeV neutrinos, MIPP data for multi-GeV neutrinos

- •The situation prior to HARP and MIPP:
 - absolute flux uncertainties at 15-20% level
 - flux flavor ratio and flux directional ratio uncertainties at few % level
- •Energy-dependent and dominated by hadron production uncertainties

