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Aim of the talk:

to argue that the existing high intensity protons beams

NuMi beam at FNAL, CNGS beam at CERN

and future accelerator facilities

J-PARC in Japan, Project X at FNAL

can be used to search for physics beyond the Standard Model in

new dedicated experiments
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Possible outcome of these new experiments

Discover new neutrino states – massive neutral leptons
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Possible outcome of these new experiments

Discover new neutrino states – massive neutral leptons

Uncover the origin of neutrino masses

Fix the pattern of neutrino mass hierarchy

and eventually

Discover CP-violation in neutrino sector

Reveal the origin of baryon asymmetry of the universe and fix its

sign
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Guaranteed outcome of these new experiments

Improving constraints of the couplings of new particles by several

orders of magnitude
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Theoretical motivation: neutrino masses

Neutrinos have mass. Possible origin of this mass - existence of

right-handed neutrinos (singlet fermions, sterile neutrinos...) with mass

MN and Yukawa couplings to the SM leptons and the Higgs boson.

See-saw formula:

mν = −MD

1

MN

[MD]T , MD = Fv, v = 174 GeV

tells nothing about scale of MN !
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Popular choice: GUT see-saw

Assume that Yukawa couplings of N to the Higgs and left-handed

lepton doublets is similar to those in quark or charged lepton sector

(say, F ∼ 1, as for the top quark) and find MN from requirement that

one gets correct active neutrino masses:

MN ≃ F 2v2

matm

≃ 6 × 1014 GeV

matm ≃ 0.05 eV is the atmospheric neutrino mass difference.
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GUT see-saw: problems

Hierarchy problem: MN is much larger than EW scale: one has

to understand not only why MW ≪ MP l, but also why

MW ≪ MN and why MN ≪ MP l. Three fine tunings instead

of one.

Stabilization of hierarchy - SUSY. SUGRA - gravitino production

problem. Reheating temperature must be smaller than

Treh
<∼ 1010 GeV. Problem with leptogenesis. Extra scale - extra

(4th) hierarchy problem! Why MN ≪ MGUT ?

Unfortunately, no direct experimental verification is foreseen
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Alternative: EW see-saw

Assume that the Majorana masses of N are smaller or of the same

order as the mass of the Higgs boson and find Yukawa couplings from

requirement that one gets correct active neutrino masses:

F ∼
√

matmMN

v
∼ (10−6 − 10−13),

Advantages:

No new energy scale - no new hierarchy or fine tuning problem in

comparison with the Standard Model.

Different approach to hierarchy problem

Neutrino 2008, 30 May 2008 – p. 9



Highlights

An extension of the Standard Model by three singlet fermions (the

νMSM, neutrino minimal SM) allows to address all experimentally

confirmed signals in favour of physics beyond the SM:

Consistent description of neutrino masses and oscillations

Can explain dark matter in the Universe

Can explain baryon asymmetry of the Universe

Can provide inflation (as well as the Standard Model)

Masses of new leptons are small: they can be found

experimentally.
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the νMSM
There are 36 quark states: left fermionic doublets:

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR,

9 + 3 leptonic states

(νe, e)L, (νµ, µ)L, (ντ , τ )L and ND, eR, NC , µR, NB, τR

12 SU(3) × SU(2) × U(1) gauge bosons (8+3+1)

and one Higgs doublet,

in total (3 × 2 + 3 × 2 + 2 + 1 + 0) × 3 × 2 = 90 fermionic and

(8 + 3 + 1) × 2 + 4 = 28 bosonic degrees of freedom
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Theoretical motivation: dark matter

Dodelson, Widrow; Shi, Fuller; Dolgov, Hansen;
Abazajian, Fuller, Patel; Asaka, Blanchet, M.S., Laine

Yukawa couplings are small →
sterile N can be very stable.

N

ν
ν

ν
Z

Main decay mode: N → 3ν.

Subdominant radiative decay

channel: N → νγ.

For one flavour:

τN1
= 1014 years

(

10 keV

MN

)5
(

10−8

θ2
1

)

θ1 =
mD

MN
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Constraints on DM sterile neutrino

Production. N1 are created in the early Universe in reactions

ll̄ → νN1, qq̄ → νN1 etc. We should get correct DM

abundance.

X-rays. N1 decays radiatively, N1 → γν, producing a narrow line

which can be detected. This line has not been seen (yet).

Structure formation. If N1 is too light it may have considerable

free streaming length and erase fluctuations on small scales. This

can be checked by the study of Lyman-α forest spectra of distant

quasars.
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DM: production+ X-ray constraints + Lyman-α bounds
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Theoretical motivation: baryon asymmetry

Asaka, M.S; Akhmedov, Rubakov, Smirnov

Lepton number violation: N2,3 ↔ ν

Baryon number violation: electroweak anomaly, sphalerons

CP - violation: Dirac and Majorana phases in N2,3 − ν

interactions

Arrow of time: N2,3 are out of thermal equilibrium for small

Yukawa couplings
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Value of baryon asymmetry

nB

s
≃ 1.7 · 10−10 δCP

(

10−5

∆M2
32/M2

3

)
2

3(

M3

10GeV

)
5

3

.

δCP = 4sR23cR23

[

sL12sL13cL13

(

(c4
L23

+ s4
L23

)c2
L13

− s2
L13

)

· sin(δL + α2)

+ cL12c3
L13

sL23cL23 (c2
L23

− s2
L23

) · sin α2

]

.

δCP ∼ 1 may be consistent with observed ν oscillations.

Nontrivial requirement: |M2 − M3| ≪ M2,3, i.e. heavier neutrinos

must be degenerate in mass.

Works best if

M2
2

− M2
3

∼ T 3
W /M0 ≃ 4 (keV)2, |M2

2
− M2

3
| ∼ M2

1
???
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Constraints on BAU sterile neutrinos

BAU generation requires out of equilibrium: mixing angle of N2,3

to active neutrinos cannot be too large

Neutrino masses. Mixing angle of N2,3 to active neutrinos cannot

be too small

Dark matter and BAU. Concentration of DM sterile neutrinos must

be much larger than concentration of baryons

BBN. Decays of N2,3 must not spoil Big Bang Nucleosynthesis

Experiment. N2,3 have not been seen (yet).
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N2,3: BAU+ DM + BBN + Experiment
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CERN PS191 experiment, F. Vannucci (1988)

Conclusion: M2,3 > 140 MeV
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Summary of predictions from cosmology

Robust:

Absolute values of the active neutrino masses (Asaka, Blanchet,

M.S.):Nor hierarchy: m1 ≤ O(10−5) eV

Normal hierarchy: m2 ≃
√

∆m2
solar ≃ 9 · 10−3 eV ,

Normal hierarchy : m3 ≃
√

∆m2
atm ≃ 5 · 10−2 eV ,

Inverted hierarchy: m2,3 ≃
√

∆m2
atm ≃ 5 · 10−2 eV .

Effective Majorana mass for neutrinoless double beta decay

(Bezrukov)

Normal hierarchy: 1.3 meV < mββ < 3.4 meV

Inverted hierarchy: 13 meV < mββ < 50 meV

M1 > 0.3 keV, 140 MeV < M2,3 <∼ MW ,

δM < 800matm

(

M
GeV

)2
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Summary of predictions from cosmology

Depend on initial condition for Big Bang (no sterile neutrinos at the

beginning)

Dark matter sterile neutrino mass: 4 keV < M1 < 50 keV

Dark matter sterile neutrino mixing angle:

2 × 10−15 < θ2
1

< 2 × 10−10

M2 ∼ 2 GeV, ∆M <∼ 10−4matm, θ2
2

≃ 10−11

CP asymmetry in N2,3 decays is on the level of 1%
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How to search for new leptons: laboratory

Missing energy signal in K, D and B decays (θ2 effect)

Example:

K+ → µ+N, M2
N = (pK − pµ)2 6= 0

Similar for charm and beauty.

MN < MK : KLOE, NA48, E787

MK < MN < 1 GeV: charm and τ factories

MN < MB: B-factories (planned luminosity is not enough)
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How to search for new leptons: laboratory

Decay processes N → µ+µ−ν, etc ("nothing"→ µ+µ−)

(θ4 effect)

First step: proton beam dump, creation of N in decays of K, D

or B mesons

Second step: search for decays of N in a near detector, to collect

all Ns.

MN < MK : Any intense source of K-mesons (e.g. from

proton targets of MiniBooNE, NuMi, CNGS, T2K)

MN < MD: NuMi or CNGS or T2K beam + near detector

MN < MB: Project X (?) + near detector

MN > MB: extremely difficult

MINERνA, NuSOnG, HiResMν Neutrino 2008, 30 May 2008 – p. 30
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Number of N-decays in near detector, CNGS

5 m long detector

1 year of observations

BAU + experiment

BBN + see-saw
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Number of N-decays in near detector, NuMi

5 m long detector

1 year of observations
BAU + experiment

BBN + see-saw
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Number of N-decays in near detector, JPARC

5 m long detector

1 year of observations
BAU + experiment

BBN + see-saw

Neutrino 2008, 30 May 2008 – p. 34



What to expect at LHC?

Couplings of N2,3 are too small to see them at LHC, however:
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What to expect at LHC?

Couplings of N2,3 are too small to see them at LHC, however:

Important condition for the νMSM to solve the SM problems:

its validity up to the Planck scale.

Prediction for LHC: nothing but the Higgs in the mass interval

MH ∈ [129, 189] GeV
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Consistency of the νMSM and SM as effective theory

Maiani, Parisi, Petronzio;
Krasnikov;Politzer, Wolfram
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Conclusions

New physics, responsible for neutrino masses and mixings, for

dark matter, and for baryon asymmetry of the universe may hide

itself below the EW scale
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Conclusions

New physics, responsible for neutrino masses and mixings, for

dark matter, and for baryon asymmetry of the universe may hide

itself below the EW scale

It can be searched for with the use of existing intensive proton

beams at CERN, FNAL and planned neutrino facilities in Japan,

for neutral fermion masses up to 2 GeV

The search of singlet fermions in the mass interval 2 − 5 GeV

would require a considerable increase of the intensity of proton

accelerators or the detailed analysis of kinematics of more than

1011 B-meson decays.

Intensity versus high energy for new physics!
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Conclusions

Dark matter search: high resolution and wide field of view X-ray

spectrometer in Space looking at narrow photon line in direction of

dwarf galaxies
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Conclusions

Dark matter search: high resolution and wide field of view X-ray

spectrometer in Space looking at narrow photon line in direction of

dwarf galaxies

Collaborators:

Takehiko Asaka, Fedor Bezrukov, Steve Blanchet, Alexey Boyarsky,

Dmitry Gorbunov, Mikko Laine, Andrei Neronov, Oleg Ruchayskiy, Igor

Tkachev
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How to search for DM sterile neutrino:
astrophysics, N1 → νγ

Over the last year restrictions on sterile neutrino parameters were improved

by several orders of magnitude.

The new data from Chandra and

XMM-Newton can hardly im-

prove constraints by more than

a factor 10. One needs:

Improvement of spectral
resolution up to the natural line
width (∆E/E ∼ 10−3).

FoV ∼ 1◦ (size of a dSph).

Wide energy scan, from O(100)

eV to O(10) MeV.

��
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Spectrometer @ 1 keV
EDGE Wide−Field

EDGE Wide−Field
Imager @ 6 keV
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