Recent vs from IceCube

Spencer Klein, LBNL & UC Berkeley
For the IceCube Collaboration

THE ICECUBE COLLABORATION

USA:

Bartol Research Institute, Delaware Pennsylvania State University UC Berkeley UC Irvine Clark-Atlanta University University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage

Sweden:

Uppsala Universitet
Stockholm Universitet

UK:

Oxford University

Netherlands:

Utrecht University Belgium:
Université Libre de

Switzerland: EPFL.

Germany:

Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen

Japan:

Chiba university

30 institutions, ~250 members http://icecube.wisc.edu

Bruxelles

Universiteit Gent

Vrije Universiteit Brussel

Université de Mons-Hainaut

New Zealand: University of Canterbury

IceCube on One Slide

- IceCube detects Cherenkov radiation from the charged particles produced in v interactions
- 4800+ autonomous digital optical modules (DOMs)
 - ♦ 80+ strings with 60 modules
 - 125 m hexagonal grid
 - ◆ 1450 to 2450 m deep
 - → --> 1 km³ volume
- μ energy threshold ~ 100 GeV
 - ◆ Analysis dependent!!!
- IceTop 1 km² surface array
 - ◆ 160 ice-filled tanks
 - 2 DOMs instrument each tank
 - → ~ 300 TeV threshold for showers

Temperature: -20°C to -40°C (-55°C in IceTop)

Pressure@2450 m ~ 240 atmospheres

Optical Modules

- 35 cm pressure vessel
- 25 cm Photomultiplier w/ HV
- Autonomous data collection
 - ◆ 300 MSPS waveform digitizer
 - 400 nsec recording time
 - 3 channels --> 14 bit dynamic range
 - ◆ 40 MHz 10-bit 'fast' ADC
 - Self triggering
 - ~1/4 photoelectron threshold
 - ♦ 3.5 Watts of power
- Digital data packets sent to surface
- 1-2% of DOMs fail during deployment/freeze-in
- 6+1 DOMs failed after comissioning
 - ◆ 15 year survival probability: 96%

Waveform decomposition into photon arrival times

Construction

South Pole

Amundsen-Scott Station

Skiway

House

AMANDA

Ice<u>Cube</u>

Construction is on schedule for completion in 2011

♦ 18 Strings Deployed 2007/8

40/80 strings complete - 50%

Drilling is now routine

Drill Camp

Ice Properties

Analyses are sensitive to the optical properties of the ice.

Determine light absorption & scattering length vs. depth

- ◆ LED, laser light sources
- ◆ 'Dust logger' profiles dust
 - layers are not 100% planar
 - Up to 70 m/km tilt

Datasets

#Strings	Year	Run Length	CR μ Rate	v rate	Trigger Rate
IC1	2005	_	_	2	_
IC9	2006	137 days	80 Hz	~ 1.5/day	150 Hz
IC22	2007	319 days	550 Hz	~ 20/day	670 Hz
IC40	2008	~ 1year	1000 Hz		1400 Hz
IC80	2011	10 years	1650 Hz	~ 200/day	TBD

Triggers

- Local Coincidence
 - Data currently saved if 2 nearest or next-to-nearest neighbors on a string fire within 1 μs
 - ♦ Will soon save partial information for isolated hits
- Multiplicity Trigger 8 DOMs within 5 μs
- Single String Trigger added 2008
 - ♦ 5 of 7 adjacent DOMs within 1.5 μs
 - ◆ More sensitive for low energy v
- Topological Trigger for low energy horizontal muons is under study

Pole Filters

- Data is filtered with simple reconstructions at Pole, for
 - ◆ Upward going muons
 - ◆ Cascades (v_e & neutral current v_x)
 - **Cascade** filter also finds v_{τ} events
 - Contained Events
 - Low energy v interactions
 - ◆ Extremely high energy events
 - Starting/stopping events
 - ◆ Moon filter
 - ◆ Air Showers
- "Interesting" events sent North via satellite
 - ♦ 6% of events selected (~ 80Hz)
- Total ~ 32.5 GBytes/day

Topological Flavor Identification

- ν_μ produce long μ tracks
 - ♦ Angular resolution ~ 1⁰
- v_e , NC v_x cause showers
 - ◆ ~ point sources ->'cascades'
 - Good energy resolution
- v_{τ} 'double bang events
 - Other v_{τ} topologies under study
- Starting μ also under study

Muon Tracking

- Muons emit Cherenkov radiation
 - ◆ + radiation from showers from bremsstrahlung, e⁺e⁻ pairs and electroproduced hadrons
 - ♦ Emitted at Cherenkov angle, θ ~ 41°
- The photons scatter ($\lambda_s \sim 20-40 \text{ m}$)
- 1st Guess methods based on moving plane & on event shape (Tensor-of-Inertia)

Maximum Likelihood Reconstruction

Functions give arrival time distribution for photons from an infinite linear track to a DOM

- ◆ Perpendicular distance, position, angles, depth
- Include noise probability
- Use multiple seeds and/or scan direction space
 - ◆ Avoid false and/or shallow minima
- Angular resolution depends on track length
 - → ~ <1 degree for long tracks
 </p>

μ

Neutrinos Observed

Time residuals from fit Direct & scatted photons

A 2005 Neutrino candidate 49 DOMs hit in String 21

run 16621 event 387

600

z, m

-1600

-2400

2006 Neutrino candidate 24 DOMs hit in 2 strings

Coincident Muons

- IceCube is big enough to observe overlapping μ from independent air showers
 - ♦ N ~ (detector size)² ∆t
- These events can mimic upgoing muons and cascades
- Tailored cuts can remove these events, leaving a clean v sample

IC-9 Point source search

- IC-9 found 233 v in 137 d
 - ◆ Rate ~ for atmospheric v
 - ♦ No Sources Seen
 - All-sky search
 - 26 source list

IC22 Point Source Search

5000 v_{μ} map. **Scrambled** in right ascension

22 strings for 250 days

• ~ 20 v_{μ} / day

1.5 degree resolution

~ 5* as sensitive as IC-9 (for E-2 spectrum)

Better than AMANDA 5-year result

IC-22 Diffuse ν_μ search also underway (Gary Hill - poster)

IC22: The quest for v_e

- Searches for extra-terrestrial and atmospheric v_e
 - Atmospheric flux is ~ 2 orders of magnitude below ν_μ
- Select events based on topology, relative likelihood for cascade and muon hypotheses, and zenith angle under muon hypothesis
- Isolation cuts
 - ♦ No activity in detector top/sides
- ~ 1500 v_e interactions after Pole filter
 - → ~ 100 events above 3 TeV
- N.b. NC ν_μ are background(?)

Simulated v_e E = 182 TeV

ν_{μ} & cascades from GRB's

- Triggered burst searches
 - ◆ 93 SWIFT bursts during IC22 running
 - All but a handful are useful
 - Unblinding for northern hemisphere bursts soon
- Untriggered searches in progress
- GRB080319B (seen by SWIFT)
 - Brightest burst ever
 - briefly visible to the naked eye
 - ◆ Redshift 0.94
 - ◆ IceCube was in a 9-string test mode
 - Predict ~ 0.1 v_{μ} w/ a fireball model
 - Assumed Lorentz boost = 300
 - Large model uncertainties

Modelled v energy spectrum for GRB080319B

v from WIMP annihilation in Earth or Sun

- Today: IC22 Results from Sun
- Sun is below horizon
 - ◆ June 1- Sept. 23
- Model WIMPs
 - ◆ Mass (100 GeV to 5 TeV)
 - ◆ Hard or soft v spectrum
- Select upgoing μ
- Count events w/in ~ 30 of sun
 - Exact cut is WIMP mass dependent
- No excess found
 - ◆ Limits at right

Other Physics

- MeV v from supernovae
 - ◆ Look for coherent increase in PMT rates
 - → ~ 350 Hz w/ 51.2 μs deadtime
 - ♦ Sensitive to d ~ 30 kpc
 - Large Magellanic Cloud
 - May be able to observe initial electron capture (deleptonization) pulse
- Supersymmetry
 - ◆ Pairs of upward going particles
 - Typical separation ~ 100 m
- Magnetic Monopoles
 - ◆ Highly ionizing relativistic monopoles
 - ◆ Slow monopoles that catalyze proton decay

Cosmic Ray Spectrum

- Standard shower reconstruction
- Require that flux is independent of zenith angle
 - ◆ Composition dependent
- Fit requires mixed composition
 - Good fit to poly-gonato &2-component (Fe + p) model
 - ◆ Spectral index consistent with previous results
- Systematic Errors still under study

High p_T muons in air showers

- Study μ far from the shower core/μ bundle
- IceTop measures shower energy, direction
 & core position
- Measure μ energy by range or dE/dx
- $\mu p_T = E_{\mu}^* core_distance/production_height$
 - ◆ Need model for production height
- Minimum μ-bundle separation ~ 100 m
 - ♦ p_T (min) ~ 3 GeV/c
- High p_T μ rate sensitive to composition
 - ◆ Analyze in pQCD framework
 - ◆ Collider-like analysis
- Expect a few 1,000 high p_T μ/year in IC80

An IC-22 event
11 IceTop Stations
84 DOMs near the core
12 DOMs 400 m from core

Solar Physics

- IceTop is sensitive to showers from ~ 1
 GeV particles emitted by the sun during outbursts
- Monitor IceTop tank rates, energy
 - Different tanks have different thresholds
 - Can extract energy spectrum in 1-10
 GeV region
- Large rate increase seen during solar outburst, Dec. 13, 2006
 - No large spectral changes during outburst
- IceCube is part of an international monitoring network

Dec. 13, 2006 solar
Outburst
Seen by an international
Monitoring network

Avg. IceTop counting rate

"Toward a graded array

- Broaden energy range
- 6 new "Deep Core" strings
 - ◆ lower energy threshold
 - ◆ Smaller spacing
 - 13 strings total
 - 72 m grid
 - ♦ 60 DOMs/string
 - 7 m spacing in deep clear ice
 - High Quantum Eff. PMTs
 - 30% higher
 - ◆ Rest of IceCube is veto
- Possible EHE optimization
 - ◆ Move outer strings outward
 - ◆ Larger effective area at high energies
 - ◆ Reduces efficiency of Deep Core veto?

Near-Future Plans

- Multi-Messenger Astronomy
 - ◆ Correlations w/ ROTSE, AGILE, MAGIC, LIGO
- Use Moon Shadow to Check pointing, angular resolution
 - ♦ Expect 1.6σ deficit w/ IC22
- 3 Prototype Digital Radio Modules deployed with IceCube strings
 - ◆ Coincident events observed from surface sources
- Hydrophones deployed in 4 Icecube holes
 - ◆ Speed of pressure and shear waves measured

Acoustic

Conclusions

- IceCube deployment is 50% complete
 - ◆ The hardware is working very well
 - Good predicted long-term reliability
- IC-22 Analyses are emerging
 - ♦ We have observed atmospheric neutrinos and solar flares, and set limits on WIMP annihilation in the sun
 - Future plans include a move toward a graded array, and radio and acoustic extensions
- For more information see these posters
 - ◆ Enhanced Energy Reach of IceCube Albrecht Karle
 - Diffuse ν_μ Gary Hill
 - ◆ Acoustic Properties of Ice Rolf Nahnhauer
 - ◆ IceCube Deep Core Doug Cowen

Backups, etc.

Installation Status & Plans AMANDA 40 strings IceCube string deployed IceCube string deployed 12/05 - 01/06IceCube string and IceTop station deployed 12/06 - 01/07IceCube string deployed 12/07 - 01/08IceCube Lab commissioned Planning for at least 16 strings in 2008/09 (16 + 3 + 1)

DOMs + special devices: pressure sensors, Standard Candle (N₂ laser), dust logger, radio & acoustic sensors

Optical properties of the ice

Angular & Energy Resolution

Resolution depends on track length in detector & on event selection For IC22 (and even IC40), the maximum depends on the Azimuthal angle

Energy Resolution $\sigma(\log_{10}E) \sim 0.3$

DOM Occupancy

probability a DOM is hit in events that have >7 hits on a string

Shows depth-dependence of ice properties

IceCube and GRB080319B

Detector was operating in maintenance mode during GRB080319B

Standard fireball model Calculation

Analysis under way

Expected # of obs. events ~0.1 but large fluctuations in neutrino flux possible

IC22 point source searches

- Two independent analyses
- Much work on optmization
 - ◆ Angular resolution ~ 1.5 degrees
 - Resolution is improved by the cuts
- Nearly ready for unblinding
- Expect ~ 20 atmospheric v
- Expected sensitivity (E-2) -
 - ♦ 5 times better than IC9

Measuring σ_{νN} by neutrino absorption in the earth

- The earth becomes opaque to neutrinos with energies > ~ 200 TeV
 - ◆ Higher energy v are horizontal or downward going
- Measure cross section by studying v flux as f(zenith angle, energy)
 - ♦ Measure $σ_{vN}$ for 100 TeV < E_v < few PeV
 - Sensitive to weak charge (quarks) to x~ few 10-4

Absorber thickness
Depends on zenith angle

J. Jalilian-Marian, 2004

Supernova Monitor

AMANDA II: 95% of Galaxy

IceCube: Milky Way + LMC

msec time resolution

Radio v detection

- 3 "Digital Radio Modules" deployed on IceCube strings
 - Modified DOMs, with 4 radio receivers + 1 transmitter
 - One DRM was transmitter only
 - ◆ 2 antenna above, 2 below
- Coincident events observed
 - ◆ Timing allows localization
 - ◆ 10 m telescope clearly seen
- Discussions about future array configuration, antenna optimization etc. ongoing

Will hear 'overview' from Peter Gorham. I will cover ice cube activities

Acoustic v detection

- Hydrophones deployed in 4 IceCube holes
 - ◆ Transmitters & receivers
- Pingers deployed in watery holes
- Noise levels are stable
- Attenuation length at least 80 to 300 m, depending on method
 - ◆ Many systematics
- Velocity of pressure and shear waves measured
 - Depth dependence follows density dependence
- Working toward a hybrid radio/acoustic/optical detector
- coincident events == gold!

An acoustic test string being deployed in an IceCube hole

Pressure and Shear Waves

- Two distinct transmission methods
- Velocities measured for both
- Depth dependence due to ice density variation in firn

Working toward a hybrid radio/acoustic/optical detector coincident events == gold!