Solar and Atmospheric Neutrinos in Super-Kamiokande

Jennifer Raaf Boston University

on behalf of the Super-K collaboration

NEUTRINO 2008 Christchurch, NZ

UPER

Super-Kamiokande Collaboration

~130 authors ~35 institutions

K. Abe,¹ Y. Hayato,¹ T. Iida,¹ M. Ikeda,²⁴ J. Kameda,¹ Y. Koshio,¹ A. Minamino,¹ M. Miura,¹ S. Moriyama,¹
M. Nakahata,¹ S. Nakayama,² Y. Obayashi,¹ H. Ogawa,¹ H. Sekiya,¹ M. Shiozawa,¹ Y. Suzuki,¹ A. Takeda,¹ Y. Takeuchi,¹
K. Ueshima,¹ H. Watanabe,¹ S. Yamada,¹ I. Higuchi,² C. Ishihara,² T. Kajita,² K. Kaneyuki,² G. Mitsuka,² H. Nishino,²
K. Okumura,² C. Saji,² Y. Takenaga,² S. Clark,³ S. Desai,³ F. Dufour,³ E. Kearns,³ S. Likhoded,³ M. Litos,³ J.L. Raaf,³
J.L. Stone,³ L.R. Sulak,³ W. Wang,³ M. Goldhaber,⁴ D. Casper,⁵ J. P. Cravens,⁵ J. Dunmore,⁵ W.R. Kropp,⁵ D. W. Liu,⁵
S. Mine,⁵ C. Regis,⁵ M.B. Smy,⁵ H. W. Sobel,⁵ M.R. Vagins,⁵ K.S. Ganezer,⁶ B. Hartfield,⁶ J. Hill,⁶ W.E. Keig,⁶
J.S. Jang,⁷ I.S. Jeong,⁷ J. Y. Kim,⁷ I.T. Lim,⁷ K. Scholberg,⁸ M. Fechner,⁸ N. Tanimoto,⁸ C. W. Walter,⁸ R. Wendell,⁸
S. Tasaka,¹⁰ G. Guillian,¹¹ J. G. Learned,¹¹ S. Matsuno,¹¹ M. D. Messier,¹² T. Hasegawa,¹³ T. Ishida,¹³ T. Ishii,¹³
T. Kobayashi,¹³ T. Nakadaira,¹³ K. Nakamura,¹³ K. Nishikawa,¹³ Y. Oyama,¹³ Y. Totsuka,¹³ A. T. Suzuki,¹⁴ T. Nakaya,¹⁵
H. Tanaka,¹⁵ M. Yokoyama,¹⁵ T.J. Haines,^{5,16} S. Dazeley,¹⁷ R. Svoboda,¹⁷ A. Habig,¹⁹ Y. Fukuda,²⁰ T. Sato,²⁰ Y. Itow,²¹
T. Koike,²¹ T. Tanaka,²¹ C. K. Jung,²² T. Kato,²² K. Kobayashi,²² C. McGrew,²² A. Sarrat,²² R. Terri,²² C. Yanagisawa,²²
N. Tamura,²³ Y. Idehara,²⁴ M. Sakuda,²⁴ M. Sugihara,²⁴ Y. Kuno,²⁵ M. Yoshida,²⁵ S. B. Kim,²⁶ B.S. Yang,²⁶
T. Ishizuka,²⁷ H. Okazawa,²⁸ Y. Choi,²⁹ H. K. Seo,²⁹ Y. Gando,³⁰ K. Inoue,³⁰ Y. Furuse,³¹ H. Ishii,³¹
K. Nishijima,³¹ Y. Watanabe,³² M. Koshiba,³³ S. Chen,³⁴ Z. Deng,³⁴ Y. Liu,³⁴ D. Kielczewska,^{5,35}
H. Berns,³⁶ K. K. Shiraishi,³⁶ E. Thrane,³⁶ and R.J. Wilkes³⁶

¹Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu, 506-1205, Japan ²Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ³Department of Physics, Boston University, Boston, Massachusetts 02215, USA ⁴Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA ⁵Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA Department of Physics, California State University, Dominguez Hills, Carson, California 90747, USA ⁷Department of Physics, Chonnam National University, Kwangju 500-757, Korea ⁸Department of Physics, Duke University, Durham, North Carolina 27708, USA ⁹Department of Physics, George Mason University, Fairfax, Virginia 22030, USA ¹⁰Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan ¹¹Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA ²Department of Physics, Indiana University, Bloomington, Indiana 47405-7105, USA ¹³High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ¹⁴Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁶Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA ¹⁷Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA ¹⁸Department of Physics, University of Maryland, College Park, Maryland 20742, USA ¹⁹Department of Physics, University of Minnesota, Duluth, Minnesota 55812-2496, USA ²⁰Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan ²¹Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan ²²Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA ²³Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan ²⁴Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan ²⁵Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ²⁶Department of Physics, Seoul National University, Seoul 151-742, Korea ²⁷Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ²⁸Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka, 425-8611, Japan ²⁹Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea ³⁰Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan ³¹Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan ³²Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan ³³The University of Tokyo, Tokyo 113-0033, Japan ³⁴Department of Engineering Physics, Tsinghua University, Beijing, 100084, China ³⁵Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ³⁶Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

Super-Kamiokande

Kamioka-Mozumi zinc mine 1 km (2700 meters-water-equiv.) rock overburden

Water Čerenkov detector 50 ktons (22.5 ktons fiducial)

Instrumented with 50-cm PMTs in Inner Detector (ID) 20-cm PMTs in Outer Detector (OD)

Goals of Super-K

MeV

Solar neutrinos Supernova neutrinos (+ relic SN) Atmospheric neutrinos Proton decay

~100

GeV

~1

Solar Relic SN V

~5-20 ~20-50

Timeline

During SK-III construction

SK-IV: DAQ Upgrade

- Simplified detector operations unified readout scheme for ID and OD
- Increased reliability/performance
 - fewer discrete components
 - improve energy resolution wider dynamic range
 - improve multiple-hit capability
 efficient ID of μ-decay electrons
 - reduce SPE hit threshold low E solar ν's γ-tagging for proton decay
 - improve supernova burst capability
- Ethernet-based readout increased bandwidth and reduced dead time build DAQ system from commodity network devices!

New DAQ readout scheme

SK-I,II,III DAQ scheme:

SK-IV DAQ scheme:

No hardware trigger. Instead record all hits and apply software triggers.

SK-IV Installation begins August 2008

to be completed by mid-September

~6-month commissioning period before T2K beam

Super-Kamiokande Solar Neutrinos

Solar v's at Super-K

Reconstruct:

energy of recoil electron direction relative to Sun

Measure/observe:

- Day/Night flux differences
- Seasonal flux variations
- Spectral distortion

Observed event rate in Super-K: ~15 evts/day with E_e > 5 MeV

Low energy events in Super-K

	Energy response	Vertex resolution for 10 MeV electron
SK-I	~6 p.e./MeV	~70 cm → <mark>60 cm</mark> *
SK-II	~3 p.e./MeV	~100 cm
SK-III	~6 p.e./MeV	in preparation

*Using SK-II improved algorithm

Solar neutrino data reduction: SK-III

Run period shown: Jan. 24, 2007 - Mar. 2, 2008

Datasets:

- Full Final (FF) sample
 Livetime: 288.9 days
 Energy > 6.5 MeV
- Radon Reduced (RR) sample (shown)

 → periods of high radon activity removed
 Livetime: 191.7 days
 Energy > 5 MeV

100% trigger efficiency at 5 MeV Preliminary SK-III reduction tools

Good agreement of SK-III with SK-I final data sample

SK-III Solar v Measurements

SK-I + SK-II Solar v Flux

	Livetime (days)	Energy range (MeV)	Number of signal events	Flux (x10 ⁶ cm ⁻² sec ⁻¹)
SK-I	1496	5.0-20.0	$22404 \pm 226 \text{ (stat)}^{+784}_{-717} \text{ (sys)}$	2.35 ± 0.02 (stat) ± 0.08 (sys)
SK-II	791	7.0-20.0	$7212.8^{+152.9}_{-150.9}$ (stat) $^{+483.3}_{-461.6}$ (sys)	$2.38 \pm 0.05 \text{ (stat)}^{+0.16}_{-0.15} \text{ (sys)}$

Time Variations of Flux

Seasonal Variation

Consistent with expected variations due to eccentricity of Earth's orbit

Correlation with Solar Activity

SK-I + SK-II Solar v Flux

Day-Night Asymmetry

$$\mathcal{A} = \frac{\Phi_{day} - \Phi_{night}}{\frac{1}{2}(\Phi_{day} + \Phi_{night})}$$

SK-I day-night asymmetry: $-0.021 \pm 0.020 \text{ (stat)}^{+0.013}_{-0.012} \text{ (sys)}$

SK-II day-night asymmetry: $-0.063 \pm 0.042 \text{ (stat)} \pm 0.037 \text{ (sys)}$

Consistent with zero

Solar v Oscillation Analysis (SK only)

arXiv:0803.4312

Solar v Oscillation (SK + other solar expts.)

SNO data: 371-day salt phase (CC & NC fluxes) 306-day pure D₂O phase (A_{D-N})

Radiochemical data: Homestake SAGE GALLEX

Combined experimental data allow us to measure the oscillation parameters in this framework...

> ...but we would still like to observe predicted upturn at low energy

Future Prospects for SK Solar

Super-Kamiokande Atmospheric Neutrinos

SK-III run period: July 29, 2006 - present

	Event Rate (events/day)		
Event Category	SK-I	SK-II	SK-III (Preliminary)
Fully Contained (FC)	8.18 ± 0.07	8.22 ± 0.10	8.31 ± 0.22
Partially Contained (PC)	0.61 ± 0.02	0.54 ± 0.03	0.57 ± 0.06
Upward-stopping μ (Upstop)	0.25 ± 0.01	0.28 ± 0.02	0.24 ± 0.03
Upward-thrugoing μ (Upthru)	1.12 ± 0.03	1.07 ± 0.04	1.11 ± 0.06

Event rates consistent across all phases of SK

Atmospheric v's at Super-K (simulated events)

Super-Kamiokande I Run 0 Sub 0 Ev 2 08-05-19:03:56:30 Inner: 2153 hits, 8150 pE Outer: 0 hits, 0 pE (in-time) Trigger ID: 0x00 D wall: 1690.0 cm Fully-Contained Mode Charge (pe) ٠ >26.7 9 23.3-26. 9 20.2-23 • 17 6.2-8. SK-I 4.7-6.2 3.3-4.7 2.2- 3.3 1 GeV muon 0.2-608 456 304 152 500 1000 1500 Times (ns) Super-Kamiokande II Run 0 Sub 0 Ev 2 08-05-19:04:06:05 Inner: 917 hits, 2979 pE Outer: 0 hits, 0 pE (in-time) Trigger ID: 0x00 D wall: 1690.0 cm Fully-Contained Mode

9 17.3-20

14.7-17.
12.2-14.
10.0-12.
8.0-10.
6.2-8.

4.7- 6.2

2.2- 3.3

1.3 - 2.2

0.7-1.3

0.2-0.

SK-II 1 GeV muon

2000

21

1500 2000

SK-III Atmospheric v Zenith Distributions

No oscillation analysis yet, but zenith angle distortion clearly visible

Atmospheric v Analyses

Oscillation:

Zenith angle (2-flavor)

L/E

Non-standard interactions

Poster by G. Mitsuka:

"Limit on Non-Standard Interactions from the Atmospheric Neutrino Data in Super-Kamiokande"

Zenith angle (3-flavor) (Phys. Rev. D 74, 032002 (2006))

 v_{τ} appearance (Phys. Rev. Lett. 97, 171801 (2006))

MaVaNs (Phys. Rev. D 77, 052001 (2008))

Exotic scenarios: LIV, CPT, Sterile

3-flavor with solar term

Non-oscillation:

Nucleon decay searches

Poster by H. Nishino: "Search for proton decays via $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$ in Super-Kamiokande" WIMP search Poster by T. Tapaka

Poster by T. Tanaka "Search for Indirect Signal of WIMPs in Super-Kamiokande" Not presented today

Atmospheric v Analyses

Exotic Scenarios

Model	Exclusion level or limit
$\nu_{\mu} \rightarrow \nu_{s}$ oscillation	SK-I+II: 7.3σ
Admixture (2+2 hierarchy)	SK-I+II: 23% allowed
Decay I (sin ⁴ θ + cos ⁴ θ e ^{-αL/E})	SK-I+II: 17σ
Decay II (sin ² θ + cos ² θ e ^{-αL/2E}) ²	SK-I+II: <mark>3.9</mark> σ
Decay Limit (GeV ²)	SK-I+II: 6.5 x 10 ⁻²³
Decoherence ((1+e ^{-_{βL/E})/2)}	SK-I+II: <mark>4.2</mark> σ
Decoherence Limit (GeV)	SK-I+II: 6.0 x 10 ⁻²⁴
LIV Limit	SK-I+II: 1.2 x 10 ⁻²⁴
CPTV Limit (GeV)	SK-I+II: 0.9 x 10 ⁻²³
MaVaNs (various models)	SK-I: <u>3.5-3.8</u> σ
Non-Standard Interactions	See poster by G. Mitsuka

Neutrinos frequently set stringent limits, although not usually testing exactly the same parameters.

e.g., cosmic ray spectrum LIV < 10^{-15} , NMR LIV < 10^{-22} K⁰K⁰bar CPTV < 10^{-18}

Super-K Simulation/Reconstruction Updates

Re-analysis of SK-I and SK-II data due to many changes/improvements:

Oscillation Analyses

Zenith angle 2-flavor analysis (fine-binned)

Use many subsamples of data Look for zenith angle distortion

L/E analysis

Use much more selective subsample of data Require good L/E resolution Look for first oscillation dip

Zenith Angle Analysis (2-flavor)

Datasets	
SK-I FC/PC:	1489 days
SK-I Upmu:	1646 days
SK-II FC/PC:	799 days
SK-II Upmu:	828 days

 χ^2 fit in bins of zenith angle with systematic error pull terms:

$$\chi^{2} = \sum_{i=1}^{N_{bins}} 2\left(N_{i}^{exp} - N_{i}^{obs} + N_{i}^{obs} \ln \frac{N_{i}^{obs}}{N_{i}^{exp}}\right) + \sum_{j=1}^{N_{sys}} \left(\frac{\varepsilon_{j}}{\sigma_{j}^{sys}}\right)^{2}$$

here $N_{i}^{exp} = N_{i}^{0} \cdot P(\nu_{\alpha} \rightarrow \nu_{\beta}) \left(1 + \sum_{j=1}^{N_{sys}} f_{j}^{i} \varepsilon_{j}\right)$

wh

90 systematic error terms to account for uncertainties in: Neutrino flux Cross sections Event reconstruction Data reduction

Zenith Angle Analysis: SK-I + SK-II

- SK-I data
- Monte Carlo (no oscillations)
- Monte Carlo (best fit oscillations)

Zenith Angle Analysis: SK-I + SK-II

L/E Analysis: SK-I + SK-II

Datasets

SK-I FC/PC μ -like: 1489 days SK-II FC/PC μ -like: 799 days

Use only event categories with good L/E resolution:

Partially-contained muons Fully-contained muons

 χ^2 fit to 43 bins of log₁₀(L/E) with 29 systematic error terms

Compare against:

Neutrino decoherence (5.0 σ) Neutrino decay (4.1 σ)

Grossman and Worah: hep-ph/9807511 Lisi *et al*.: PRL85 (2000) 1166 Barger *et al*.: PRD54 (1996) 1, PLB462 (1999) 462

Summary

SK-I + II + III

12 years dataset for atmospheric & solar neutrinos

SK-IV

detector improvements by upgraded electronics

By Neutrino2010...

~40,000 solar v

~30,000 atmospheric ν

Search for sub-dominant, exotic, and non-oscillation physics

Study "Standard Model" oscillation physics

- help constrain solar parameters
- precisely measure atmospheric parameters

best constraint on mixing angle

- try to observe every predicted effect

