The GSI Anomaly

M. Lindner

Max-Planck-Institut für Kernphysik, Heidelberg

What is the GSI Anomaly?

 \rightarrow Periodically modulated exponential β -decay law

of highly charged, stored ions at GSI by the FRS/ESR Collaboration

Production of HCI's

Production and Selection of exotic Nuclei

Beam Cooling

Initial momentum spread → **cooling:**

- stochastic cooling for the first ~5 seconds
- electron cooling (permanently on)
- → momentum exchange with 'cold' electron beam → ions get the sharp velocity of the electrons, small size and divergence

→ narrows velocity, size and divergence of stored ions

Schottky-Noise Detection

Observation of Decays of stored Ions

- a) normal β -decay \rightarrow different charge \rightarrow different M/q
- b) bound state β -decay by electon capture
 - → same q, slightly different M' (binding energy, v-emission)

Examples for Decay of Single Ions

- ordinary β-decay and EC clearly separable
- for few ions: intensity allows to see individual decays

Spectroscopy of individual Particles

- sensitive to single ions
- well-defined
 - creation time t₀
 - charge states
- two-body β-decay
- \rightarrow monochromatic v_e
- observation of changes in peak intensities of mother and daughter ions

- investigation of a selected decay branch, e.g. pure EC decay
- time-dependence of the detection efficiency is excluded

Relevant Decays: H-like ¹⁴⁰Pr and ¹⁴²Pm

Examples of measured Time-Frequency Traces

- **→** plot distribution of lifetimes
- **→** expect exponential decay law

140Pr all Runs: 2650 EC Decays from 7102 Injections

142Pm: 2740 EC Decays from 7011 Injections

142Pm: Zoom on the first 35s after Injection

Fits

1) exponential

$$dN_{EC} (t)/dt = N_0 \exp \{-\lambda t\} \lambda_{EC}$$
$$\lambda = \lambda_{\beta+} + \lambda_{EC} + \lambda_{loss}$$

2) exponential plus periodic oscillation

$$dN_{EC}(t)/dt = N_0 \exp \{-\lambda t\} \lambda_{EC}(t)$$
$$\lambda_{EC}(t) = \lambda_{EC} [1+a \cos(\omega t + \phi)]$$

Fit parameters of ¹⁴⁰ Pr data					
Eq.	$N_0\lambda_{EC}$	λ	a	ω	χ^2/DoF
1	34.9(18)	0.00138(10)	-	-	107.2/73
2	35.4(18)	70 07	0.18(3)	0.89(1)	67.18/70
Fit parameters of ¹⁴² Pm data					
Eq.	$N_0\lambda_{EC}$	λ	a	ω	χ^2/DoF
1	46.8(40)	0.0240(42)	-	-	63.77/38

$$T = 7.06 (8) s$$

 $\phi = -0.3 (3)$
 $T = 7.10 (22) s$
 $\phi = -1.3 (4)$

What causes the Oscillations?

- explanations relating the effect to neutrino mixing
 - → discussion of literature → see poster
- why this is <u>NOT</u> related to neutrino mixing
 - → Feynman diagram of neutrino oscillation:
 - energy momentum properties, quantum numbers
 - e.g. observation of solar neutrinos in ν_e channel

Production Propagation Detection

$$A_{ee} = \sum |U_{ei}|^2 e^{ip_i x} = \dots$$

+MSW

The EC Process

Kinematics:

- a) precise measurement of mother and daughter energies and momenta \rightarrow emitted mass eigenstate known \rightarrow one contribution \rightarrow no oscillation, but rate $\sim |U_{ei}|^2 \rightarrow$ not realized here
- b) Finite kinematical resolution much smaller than neutrino masses

 all three mass eigenstates contribute incoherently

$$ightarrow \propto \sum |U_{ei}|^2 = 1$$
 $ightarrow$ independent of flavour mixing

Checks / Questions / Problems

Carefully checks:

- artefacts such as periodic coupling of the Schottky-noise to all sort of backgrounds excluded
- all EC decays are recorded; continuous information on the status of mother- and daughter ion during the whole observation time
- •

Questions / problems?

- 3.5 σ \rightarrow could be a statistical fluctuation
- ? suppressed statistical bin-to-bin fluctuations \ge 15
- ? scaling of amplitude of the Schottky-signal ≥ 9
- ! primary signal unobserved: noise >> individual ion signal \(\geq 6 \)
- ? relative phase Pr / Pm \rightarrow 15+16

Summary and Outlook

- observation of an unexplained periodic modulation of the decay of H-like HCIs (3.5σ)
- *NOT* related to neutrino mixing
- conceivable: tiny splitting of a 2 level mother system
 - how to explain such a tiny split?
 - coherence length?
- many careful checks of all sort of systematics have been performed
- however: some unexplained statistical properties of data
- → new run with different element approved ~fall