192 days of Borexino

Neutrino 2008 Christchurch, New Zeland May 26, 2008

Cristiano Galbiati on behalf of Borexino Collaboration

Resonant Oscillations in Matter: the MSW effect

- For high energy ⁸B neutrinos object of observation by SNO and SuperKamiokaNDE matter dominated oscillations in the high density of electrons N_e in sun's core
- For low energy neutrinos, flavor change dominated by vacuum oscillations.
- Regime transition expected between I-2 MeV
- Fundamental prediction of MSW-LMA theory Exploring the vacuum-matter transition: untested feature of MSW-LMA solution possibly sensitive to new physics

Solar Neutrino Survival Probability

Solar Neutrino Survival Probability

Neutrinos and Solar Metallicity

- A direct measurement of the CNO neutrinos rate could help solve the latest controversy surrounding the Standard Solar Model
- One fundamental input of the Standard Solar Model is the metallicity of the Sun abundance of all elements above Helium
- The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. 85, 161 (1998)), is in agreement within 0.5% with the solar sound speed measured by helioseismology.
- Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A 777, I (2006)) indicates a metallicity lower by a factor ~2. This result destroys the agreement with helioseismology maybe it was fortuitous agreement before with high metallicity?
- use solar neutrino measurements to help resolve!
 ⁷Be (12% difference) and CNO (50-60% difference)

Solar Model Chemical Controversy

Bahcall, Serenelli and Basu, AstropJ 621, L85(2005)

¢ (cm ⁻² s ⁻¹)	pp (×10 ¹⁰)	⁷ Be (×10 ⁹)	⁸ B (×10 ⁶)	¹³ N (×10 ⁸)	¹⁵ O (×10 ⁸)	¹⁷ F (×10 ⁶)
BS05 GS 98	5.99	4.84	5.69	3.07	2.33	5.84
BS05 AGS 05	6.05	4.34	4.51	2.01	1.45	3.25
Δ	+1%	-10%	-21%	-35%	-38%	-448
σ SSM	±1%	±5%	±16%	±15%	±15%	±15%

Helioseismology incompatible with low metallicity solar models. Could be resolved by measuring CNO neutrinos

Borexino: the Science Goals

- To make the first ever observations of sub-MeV neutrinos in real time, especially for ⁷Be neutrinos, testing the Standard Solar Model and the MSW-LMA solution of the Solar Neutrino Problem
- To provide a strong constraint on the ⁷Be rate, at or below 5%, such as to provide an essential input to check the balance between photon luminosity and neutrino luminosity of the Sun J.N. Bahcall and C. Pena-Garay,

$$\frac{\mathcal{L}_{\odot}(\text{neutrino} - \text{inferred})}{\mathcal{L}_{\odot}(\text{photon})} = 1.4^{+0.2}_{-0.3} \binom{+0.7}{-0.6}$$

balance check at 1% level ideal. Requires ⁷Be flux measured at 5% and pp flux measured at 1% level

- To confirm the solar origin of ⁷Be neutrinos, by checking the expected 7% seasonal variation of the signal due to the Earth's orbital eccentricity
- To explore possible traces of non-standard neutrino-matter interactions or presence of mass varying neutrinos.

Borexino: Additional Possibilities for First Time Measurements

- CNO neutrinos (direct indication of metallicity in the Sun's core)
- pep neutrinos (indirect constraint on pp neutrino flux)
- Low energy (2-5 MeV) ⁸B neutrinos
- Tail end of pp neutrinos spectrum?

Detection Principles

- Detection via scintillation light
- Features:
 - Very low energy threshold
 - Good position recostruction by time of flight
 - Good energy resolution
- Drawbacks:
 - No direction measurements
 - v induced events can't be distinguished from other β/γ due to natural radioactivity
- Experiment requires extreme purity from all radioactive contaminants

Collaboration

Astroparticle and Cosmology Laboratory – Paris, France INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN e Dipartimento di Fisica dell'Università – Genova, Italy INFN e Dipartimento di Fisica dell'Università– Milano, Italy INFN e Dipartimento di Chimica dell'Università – Perugia, Italy Institute for Nuclear Research – Gatchina, Russia Institute of Physics, Jagellonian University – Cracow, Poland Join Institute for Nuclear Research – Dubna, Russia Kurchatov Institute – Moscow, Russia Max-Planck Institute fuer Kernphysik – Heidelberg, Germany Princeton University – Princeton, NJ, USA Technische Universität – Muenchen, Germany University of Massachusetts at Amherst, MA, USA University of Moscow – Moscow, Russia Virginia Tech – Blacksburg, VA, USA

Located in LNGS - 3800 m.w.e. against cosmic rays

1843 with optical concentrators, the rest without for muons

Special Methods Developed

- Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)
- Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)
- Underground purification plant to distill scintillator components.
- Gas stripping of scintlllator with special nitrogen free of radioactive ⁸⁵Kr and ³⁹Ar from air
- All materials electropolished SS or teflon, precision cleaned with a dedicated cleaning module

New Results: 192 Days

New Results: 192 Days

Systematic & Measurement

Expected interaction rate in absence of oscillations: 75±4 cpd/100 tons

for LMA-MSW oscillations: 48±4 cpd/100 tons

Estimated I σ Systematic Uncertainties [*] [%			
Total Scintillator Mass	0.2		
Fiducial Mass Ratio	6.0		
Live Time	0.1		
Detector Resp. Function	6.0		
Cuts Efficiency	0.3		
Total	8.5		

*Prior to Calibration

⁷Be Rate: 49±3_{stat}±4_{syst} cpd/100 tons

Neutrino Magnetic Moment

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2}\right]$$

EM current affects cross section σ Spectral shape sensitive \uparrow to μ_{ν} Sensitivity enhanced at low energies ($\sigma \approx I/T$)

$\left(d\sigma \right)$	$- \mu^2 \pi \alpha_{em}^2$	(1)	1
$\checkmark \left(\overline{dT} \right)_{EM}$	$-\mu_{\nu} \overline{m_e^2}$	\sqrt{T}	$\overline{E_{\nu}}$

Estimate	Method	90% C.L. Ι0 ^{-ΙΙ} μ _Β
SuperK	⁸ B	<
Montanino et al.	⁷ Be	<8.4
GEMMA	Reactor	<5.8
Borexino	⁷ Be	<5.4

Solar Neutrino Survival Probability

Ve Survival Probability Global Analysis

- We determine the survival probability for ⁷Be electron neutrinos V_e under the assumption of the high-Z SSM (Bahcall-Pena Garay-Serenelli 2007, BPS07)
 - $\Phi(^{7}Be) = (5.08 \pm 0.25) \times 10^{9} \text{ cm}^{-2} \text{s}^{-1}$
 - $P_{ee} \left({}^{7}\text{Be} \right) = 0.56 \pm 0.10$
- Consistent with expectation from MSW-LMA (S.Abe et al., arXiv:0801.4589v2)
 - $P_{ee} \left({}^{7}\text{Be} \right) = 0.541 \pm 0.017$
 - No oscillations hypothesis ($P_{ee}=I$) excluded at 4σ C.L.

Ve Survival Probability Global Analysis

 We determine the survival probability for ⁷Be and pp electron neutrinos V_e under the assumption of the high-Z BPS07 SSM and using input from all solar experiments (cfr. Barger et al., PRL 88, 011302 (2002))

•
$$P_{ee} \left({}^{7}\text{Be} \right) = 0.56 \pm 0.08$$

•
$$P_{ee}(pp) = 0.57 \pm 0.09$$

Solar Neutrino Survival Probability

Solar Neutrino Survival Probability

⁷Be Neutrinos Flux

• Note:
$$f_i = \frac{\Phi_i}{\Phi_i^{\text{SSM}}}$$

 Best estimate prior to Borexino, as determined with global fit to all solar and reactor data, with the assumption of the constraint on solar luminosity (M.C. Gonzalez-Garcia and Maltoni, Phys. Rep 460, 1 (2008)

•
$$f_{\rm Be} = 1.03^{+0.24}_{-1.03}$$

• Assuming the high-Z BPS07 SSM and the constraint on solar luminosity, we obtain:

•

$$f_{\text{Be}} = 1.02 \pm 0.10$$

 $\Phi (^{7}\text{Be}) = (5.18 \pm 0.52) \times 10^{9} \text{ cm}^{-2} \text{s}^{-1}$

pp and CNO Neutrinos Fluxes

$$R_l [SNU] = \sum_i R_{l,i} f_i P_{ee}^{l,i}$$

$$l = \{Ga, Cl\}$$

$$i = \{pp, pep, CNO, ^7Be, ^8B\}$$

- f_i Ratio between measured and predicted flux
- $P_{ee}^{l,i}$ Survival Probability Averaged over Threshold

 $R_{\text{Ga}}^{\text{th}} [\text{SNU}] = 38.56 f_{\text{pp}} + 2.34 f_{\text{CNO}} + 19.44 f_{\text{Be}} + 5.43 f_{\text{B}}$ $R_{\text{Cl}}^{\text{th}} [\text{SNU}] = 0.12 f_{\text{pep}} + 0.11 f_{\text{CNO}} + 0.59 f_{\text{Be}} + 2.58 f_{\text{B}}$

 $R_{\text{Ga}} = 68.10 \pm 3.75 \text{ SNU}$ $f_{\text{B}} = 0.87 \pm 0.08 \text{ SNO}$ $R_{\text{Cl}} = 2.56 \pm 0.23 \text{ SNU}$ $f_{\text{Be}} = 1.02 \pm 0.10 \text{ Borexino}$

pp and CNO Neutrinos Fluxes

Without Luminosity Constraint:

 $f_{pp} = 1.04^{+0.13}_{-0.20}$ $\mathcal{L}_{CNO}/\mathcal{L}_{\odot} < 13.8\% \ 3\sigma$

$$f_{pp} = 1.04^{+0.18}_{-0.25}$$

J.N. Bahcall and C. Pena-Garay, JHEP 11,004 (2003)

With Luminosity Constraint:

$$f_{pp} = 1.004^{+0.008}_{-0.020}$$

 $\mathcal{L}_{\rm CNO}/\mathcal{L}_{\odot} < 6.2\% \ 3\sigma$

J.N. Bahcall and C. Pena-Garay, JHEP II, 004 (2003) $f_{pp} = 1.02 \pm 0.02$

 $\mathcal{L}_{\rm CNO}/\mathcal{L}_{\odot} < 6.5\% \ 3\sigma$

M.Altmann et all. (GNO Coll.), PLB **616**, 574 (2005)

Removal of ¹¹C Background

Measuring 25 cpd/100 tons of ¹¹C

Major background for CNO and pep CNO: 5 cpd/100 tons pep: 2 cpd/100 tons

Long-lived isotope (30 min mean life) Simple coincidence with muon impractical (dead time kills!)

Deutsch 1995:

Neutron must be emitted with ¹¹C formation

Tag in coincidence with muon and neutron capture (300 $\mu s, 2.2$ MeV $\gamma\text{-ray})$

@Princeton 2005:

First detailed calculation of cosmogenic production rate!

95% of ¹¹C produced in conjuction with a neutron!

¹¹C background can be reduced very significantly in Borexino and KamLAND! Opens opportunity for measurement of CNO and *pep* neutrinos in Borexino and KamLAND! PHYSICAL REVIEW C 71, 055805 (2005)

Cosmogenic ¹¹C production and sensitivity of organic scintillator detectors to *pep* and CNO neutrinos

Cristiano Galbiati* and Andrea Pocar[†] Physics Department, Princeton University, Princeton, New Jersey 08544

Davide Franco[‡] Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy

> Aldo Ianni Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy

Laura Cadonati

Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

$E_{\mu} [GeV]$	100	190	285	320	350
	Rate				
Process	$[10^{-4}/\mu/m]$				
${}^{12}C(p,p+n){}^{11}C$	1.8	3.2	4.9	5.5	5.6
${}^{12}C(p,d){}^{11}C$	0.2	0.4	0.5	0.6	0.6
${}^{12}C(\gamma,n){}^{11}C$	19.3	26.3	33.3	35.6	37.4
${}^{12}C(n,2n){}^{11}C$	2.6	4.7	7.0	8.0	8.2
${}^{12}C(\pi^+,\pi+N){}^{11}C$	1.0	1.8	2.8	3.2	3.3
$^{12}C(\pi^-,\pi^-+n)^{11}C$	1.3	2.3	3.6	4.1	4.2
${}^{12}C(e,e+n){}^{11}C$	0.2	0.3	0.4	0.4	0.4
${}^{12}C(\mu,\mu+n){}^{11}C$	2.0	2.3	2.4	2.4	2.4
Invisible channels	0.9	1.6	2.4	2.7	2.8
Total	28.3	41.3	54.8	59.9	62.2
1σ systematic	1.9	3.1	4.4	5.0	5.2
Measured	22.9	36.0			
1σ experimental	1.8	2.3			
Extrapolated			47.8	51.8	55.1

Run56_48853

Improved Electronics

Conclusions

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (4 MeV)
 - Two measurements reported for ⁷Be neutrinos, favor MSW-LMA solution
 - Best limits for pp and CNO neutrinos, combining information from all solar and reactor experiments Opportunities to tackle pep and CNO neutrinos in direct measurement
- Borexino will run comprehensive program for study of antineutrinos (from Earth, Sun, and Reactors)
- May prove solar origin of ⁷Be signal by study of seasonal oscillations
- Borexino a powerful observatory for neutrinos from Supernovae explosions within few tens of kpc

1989-92: Conception, start of CTF program

1995-96: Low background achieved in CTF

1997-98: Borexino Funded

August 16 2002: Borexino Mishap

2005: Restarts of Fluid Operations

August 16 2007: Borexino Paper 1989-92: Conception, start of CTF program

1995-96: Low background achieved in CTF

1997-98: Borexino Funded

August 16 2002: Borexino Mishap

2005: Restarts of Fluid Operations

August 16 2007: Borexino Paper

Martin Deutsch January 29, 1917 August 16, 2002

John Bahcall December 30, 1934 August 17, 2005 1989-92: Conception, start of CTF program

1995-96: Low background achieved in CTF

1997-98: Borexino Funded

August 16 2002: Borexino Mishap

2005: Restarts of Fluid Operations

August 16 2007: Borexino Paper

Martin Deutsch January 29, 1917 August 16, 2002

More Info

- Letter submitted to online pre-print server
 - arXiv:0805.3843
- See also mini-talks and posters by:
- D. d'Angelo:
 - "The Borexino detector: very low background levels in the scintillator"
- D. Franco:
 - "Performances of the Borexino Deetector"
- S. Hardy:
 - "Source Insertion and Location Systems for the Borexino Solar Neutrino Detector"
- P. Lombardi:
 - "The Borexino detector: photomultipliers system"
- R. Saldanha:
 - "Cosmogenic ¹¹C tagging in organic liquid scintillators"

The End