NEUTRINOS AND FUTURE CONCORDANCE COSMOLOGIES

Neutrino 2008 / Richard Easther (Yale)

INTRODUCTION...

- Integrated History of the Universe...
- Probes:
- CMB
- Large scale structure
- 21 cm
- Summary...

Cosmology: Overview

Image: NASA

COSMOLOGY: OVERVIEW

Overall expansion...

COSMOLOGY: OVERVIEW

Stars, galaxies...

COSMOLOGY: OVERVIEW

Dark Ages...

Cosmology: Overview

Image: NASA

COSMOLOGY: OVERVIEW

CONCORDANCE COSMOLOGY

Ω_{b}	Baryon fraction (Mass known, \#??)	Baryogenesis (? - GUT, Electroweak?) TeV Scale physics??
Ω_{CDM}	Dark matter (Mass ??, \#??) Supersymmetry? LHC?	
Ω_{Λ}	Cosmological constant Quantum Gravity Tooth fairy?	
τ	Reionization	First stars (gastrophysics, nuclear physics)
h	Hubble's "constant"	When we are looking
$\mathrm{A}_{\mathrm{s}, \mathrm{n}}$	Primordial Perturbations	Inflation GUT / string physics?

THE FUTURE...

- Parameter set will expand
- Neutrino sector! Scale dependence of n? Dark energy parameters? Tensor modes? Helium fraction? Curvature? Secondary anisotropies?
- Parameter set will shrink
- Neutrino masses from experiments?
- Recombination observed directly in 21 cm ?
- Specific models of inflation?

NUMBERS...

- Photons: $\mathrm{T}_{\gamma}=2.726 \mathrm{~K}=2.3510^{-4} \mathrm{eV}$ (measured)
- Massless $v: \mathrm{T}_{\mathrm{v}} \sim 1.9 \mathrm{~K}=1.710^{-4} \mathrm{eV}$ (inferred)
- Photons at $\mathrm{z}=1,089: \mathrm{T}_{\gamma}=2.9710^{3} \mathrm{~K}=0.255 \mathrm{eV}$
- Massless v: $\mathrm{T}_{\mathrm{v}} \sim 2.0710^{3} \mathrm{~K}=.17 \mathrm{eV}$
- Minimum $\Sigma \mathrm{m}_{v} \sim 0.05 \mathrm{eV}$ (normal hierarchy)
- Change in equation of state as universe expands!

CMB: WMAP

BEST FIT

- Early universe is a simple system
- General relativity and small inhomogeneities
- $\mathrm{e}^{-}, \mathrm{p}, \mathrm{He}$ nuclei, dark matter, v, γ, also $\Lambda, \mathrm{H}_{\mathrm{o}}$ and k
- Boltzmann equations
- Beautiful and largely classical classical physics
- Compute $\mathrm{C}_{1} \&$ polarization (E and B mode)

THE SPECTRAL INDEX

THE BARYON FRACTION 0.01695

HUBBLE PARAMETER

WHAT DO WE LEARN?

Class	Parameter	WMAP 5-year ML			
Primary	WMAP+BAO+SN ML	WMAP 5-year Mean ${ }^{b}$	WMAP+BAO+SN Mean		
	$100 \Omega_{b} h^{2}$	2.268	2.263	2.273 ± 0.062	2.265 ± 0.059
	$\Omega_{c} h^{2}$	0.1081	0.1136	0.1099 ± 0.0062	0.1143 ± 0.0034
	Ω_{Λ}	0.751	0.724	0.742 ± 0.030	0.721 ± 0.015
	n_{s}	0.961	0.961	$0.963_{-0.014}^{+0.015}$	$0.960_{-0.014}^{+0.013}$
	τ	0.089	0.080	0.087 ± 0.017	0.084 ± 0.016
	$\Delta_{\mathcal{R}}^{2}\left(k_{0}{ }^{e}\right)$	2.41×10^{-9}	2.42×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$\left(2.457_{-0.093}^{+0.092}\right) \times 10^{-9}$
Derived	σ_{8}	0.787	0.811	0.796 ± 0.036	0.817 ± 0.026
	H_{0}	$72.4 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$	$70.3 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$	$71.9_{-2.7}^{+2.6} \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$	$70.1 \pm 1.3 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
	Ω_{b}	0.0432	0.0458	0.0441 ± 0.0030	0.0462 ± 0.0015
	Ω_{c}	0.206	0.230	0.214 ± 0.027	0.233 ± 0.013
	$\Omega_{m} h^{2}$	0.1308	0.1363	0.1326 ± 0.0063	0.1369 ± 0.0037
	$z_{\text {reion }}{ }^{f}$	11.2	10.5	11.0 ± 1.4	10.8 ± 1.4
	$t_{0}{ }^{g}$	13.69 Gyr	13.72 Gyr	$13.69 \pm 0.13 \mathrm{Gyr}$	$13.73 \pm 0.12 \mathrm{Gyr}$

WMAP 5 +

- Count the significant figures...
- Cosmology graduated from back of the envelope!

TOTAL NEUTRINO MASS

ERROR FORECASTS
 (Rough \& Overly Optimistic)

Planck'
"Ideal"
Perfect

CURRENT CONSTRAINTS

- WMAP5 + All
- Care needed
- Priors
- Systematics between datasets
- $\Sigma \mathrm{m}_{v}<\sim 1 \mathrm{eV}$

LARGE SCALE STRUCTURE

LARGE SCALE STRUCTURE \& LENSING

- Galaxies clustered in space
- Bubbles and voids
- Orthogonal information to microwave background
- Large scale structure
- Get power spectrum $P(k)$
- Break degeneracies
- Nonlinear at short scales (function of redshift)

MATTER POWER...

HIGH-REDSHIFT 21CM

- Before first stars, universe is mostly neutral H
- Neutral hydrogen emits a 21 cm line
- Redshifted; H at redshift 10: 2.1 meters.

HIGH-REDSHIFT 21CM

- Observe sky at ~100 MHz
- Remove foregrounds (!)
- Map neutral hydrogen density as a function of z
- Needs radio-quiet location
- Get "slices" by tuning receiver

(Steve Furlanetto)

HIGH-REDSHIFT 21CM

- Instruments
- Mileura (Australia)
- LOFAR (Belguim)
- SKA (To be decided)
- Lunar Array (Far side of the moon / vaporware!)

PROSPECT FOR NEUTRINOS

- First observations: "Low" redshift
- Focus on reionization / first stars
- Longer term: High redshift
- Weaker signal
- Probe short wavelengths (uncollapsed)
- Perturbations small; challenging experiments
- Foregrounds??? Terrestrial noise???

A BOLD PREDICTION?

- Total mass: 0.3 eV
- Nonlinear scales at $\mathrm{z}=0.3,4$ and 8

Pritchard and Pierpaoli

A BOLD PREDICTION?

- Total mass 0.12 eV
- Both hierarchies
- Solid z=8
- Theoretically distinguishable

Pritchard and Pierpaoli

COMMENTS AND CONCLUSIONS...

- Neutrinos provide definite target
- Very good reason to believe they are there (WMAP)
- We know their total mass is non-zero
- Probe thermal history of very early universe
- Small effect: precision cosmology
- Terrestrial measurements of neutrino mass constrain other cosmological parameters

COMMENTS AND CONCLUSIONS...

- Current bound ~10 times larger than minimum $\Sigma \mathrm{m}$
- Next few years: Planck, ACT, EBEX, DEC
- Better SN1a bounds \& BAO, first 21cm data
- Somewhat longer term: JDEM, LSST, CMBPol (?)
- Very long term: High precision high-z 21 cm
- GUESS: A factor of 10 on $\mathrm{\Sigma m}$ in 10 years??

