NEUTRINOS AND FUTURE CONCORDANCE COSMOLOGIES

Neutrino 2008 / Richard Easther (Yale)

INTRODUCTION...

- Integrated History of the Universe...
- Probes:
 - CMB
 - Large scale structure
 - 21 cm
- Summary...

Image: NASA

CONCORDANCE COSMOLOGY

$\Omega_{ m b}$	Baryon fraction (Mass known, #??)	Baryogenesis (? - GUT, Electroweak?)	
$\Omega_{\rm CDM}$	Dark matter (Mass ??, #??)	TeV Scale physics?? Supersymmetry? LHC?	
Ω_Λ	Cosmological constant	Quantum Gravity Tooth fairy?	
τ	Reionization	First stars (gastrophysics, nuclear physics)	
h	Hubble's "constant"	When we are looking	
A _s ,n _s	Primordial Perturbations	Inflation GUT/string physics?	

THE FUTURE...

- Parameter set will *expand*
 - Neutrino sector! Scale dependence of n? Dark energy parameters? Tensor modes? Helium fraction? Curvature? Secondary anisotropies?
 - Parameter set will *shrink*
 - Neutrino masses from experiments?
 - Recombination observed directly in 21cm?
 - Specific *models* of inflation?

NUMBERS...

- Photons: $T_{\gamma} = 2.726 \text{ K} = 2.35 \text{ 10}^{-4} \text{ eV}$ (measured)
 - Massless v: $T_v \sim 1.9K = 1.7 \ 10^{-4} \text{ eV}$ (inferred)
- Photons at z = 1,089: $T_{\gamma} = 2.97 \ 10^3 \text{ K} = 0.255 \text{ eV}$
 - Massless v: $T_v \sim 2.07 \ 10^3 \text{ K} = .17 \text{ eV}$
- Minimum $\Sigma m_v \sim 0.05 \text{ eV}$ (normal hierarchy)
- Change in equation of state as universe expands!

BEST FIT

- Early universe is a *simple* system
 - General relativity and *small* inhomogeneities
 - e⁻, p, He nuclei, dark matter, v, γ , also Λ , H_o and k
- Boltzmann equations
 - Beautiful and largely classical classical physics
 - Compute C₁ & polarization (E and B mode)

THE SPECTRAL INDEX

THE BARYON FRACTION

WHAT DO WE LEARN?

Class	Parameter	$W\!M\!AP$ 5-year ML^a	WMAP+BAO+SN ML	WMAP 5-year Mean ^b	WMAP+BAO+SN Mean
Primary	$100\Omega_b h^2$	2.268	2.263	2.273 ± 0.062	2.265 ± 0.059
-	$\Omega_c h^2$	0.1081	0.1136	0.1099 ± 0.0062	0.1143 ± 0.0034
	Ω_{Λ}	0.751	0.724	0.742 ± 0.030	0.721 ± 0.015
	n_s	0.961	0.961	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.013}$
	au	0.089	0.080	0.087 ± 0.017	0.084 ± 0.016
	$\Delta^2_{\mathcal{R}}(k_0{}^e)$	$2.41 imes 10^{-9}$	2.42×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$
Derived	σ_8	0.787	0.811	0.796 ± 0.036	0.817 ± 0.026
	H_0	72.4 km/s/Mpc	70.3 km/s/Mpc	$71.9^{+2.6}_{-2.7}$ km/s/Mpc	$70.1 \pm 1.3 \text{ km/s/Mpc}$
	Ω_b	0.0432	0.0458	0.0441 ± 0.0030	0.0462 ± 0.0015
	Ω_c	0.206	0.230	0.214 ± 0.027	0.233 ± 0.013
	$\Omega_m h^2$	0.1308	0.1363	0.1326 ± 0.0063	0.1369 ± 0.0037
	$z_{ m reion}{}^{f}$	11.2	10.5	11.0 ± 1.4	10.8 ± 1.4
	$t_0{}^g$	13.69 Gyr	13.72 Gyr	$13.69 \pm 0.13 \text{ Gyr}$	$13.73 \pm 0.12 \text{ Gyr}$

WMAP 5 +

Count the significant figures...

Cosmology graduated from back of the envelope!

ERROR FORECASTS (Rough & Overly Optimistic)

CURRENT CONSTRAINTS

WMAP5 + All

Care needed

Priors

Systematics
 between datasets

• $\Sigma m_v < \sim 1 eV$

LARGE SCALE STRUCTURE

LARGE SCALE STRUCTURE & LENSING

- Galaxies clustered in space
 - Bubbles and voids
 - Orthogonal information to microwave background
- Large scale structure
 - Get power spectrum P(k)
 - Break degeneracies
- Nonlinear at short scales (function of redshift)

HIGH-REDSHIFT 21CM

- Before first stars, universe is mostly neutral H
 - Neutral hydrogen emits a 21cm *line*
 - Redshifted; H at redshift 10: 2.1 meters.

HIGH-REDSHIFT 21CM

- Observe sky at ~100 MHz
 - Remove foregrounds (!)
 - Map neutral hydrogen density as a function of z
- Needs radio-quiet location
- Get "slices" by tuning receiver

HIGH-REDSHIFT 21CM

Instruments

- Mileura (Australia)
- LOFAR (Belguim)
- SKA (To be decided)
- Lunar Array (Far side of the moon / vaporware!)

PROSPECT FOR NEUTRINOS

- First observations: "Low" redshift
 - Focus on reionization / first stars
- Longer term: High redshift
 - Weaker signal
 - Probe short wavelengths (uncollapsed)
 - Perturbations *small*; challenging experiments
- Foregrounds??? Terrestrial noise???

A BOLD PREDICTION?

Total mass: 0.3eV

 Nonlinear scales at z=0.3,4 and 8

A BOLD PREDICTION?

- Total mass 0.12eV
 - Both hierarchies
 - Solid z=8
- Theoretically distinguishable

Pritchard and Pierpaoli

COMMENTS AND CONCLUSIONS...

- Neutrinos provide definite target
 - Very good reason to believe they are there (WMAP)
 - We *know* their total mass is non-zero
 - Probe thermal history of very early universe
- Small effect: precision cosmology
 - Terrestrial measurements of neutrino mass constrain *other* cosmological parameters

COMMENTS AND CONCLUSIONS...

- Current bound ~10 times larger than minimum Σm
- Next few years: Planck, ACT, EBEX, DEC
 - Better SN1a bounds & BAO, first 21cm data
- Somewhat longer term: JDEM, LSST, CMBPol (?)
- Very long term: High precision high-z 21cm
- GUESS: A factor of 10 on Σm in 10 years??