Physics Potential of Future Supernova Neutrino Observations

Amol Dighe

Tata Institute of Fundamental Research Mumbai, India

Neutrino 2008 May 25-31, 2008, Christchurch, New Zealand

Supernova for neutrino physics and astrophysics

SN for neutrino oscillation phenomenology

- Detection of nonzero angle you-know-who
- Normal vs. inverted mass ordering (both possible even if $\theta_{13} \rightarrow 0$)

Neutrino detection for SN astrophysics

- Pointing to the SN in advance
- Tracking SN shock wave in neutrinos
- Diffuse SN neutrino background

The flavour of this talk

- Only standard three-neutrino mixing
- Only standard SN explosion scenario
- Concentrate on the exciting developments in the last two years: "neutrino refraction / collective effects"

Supernova for neutrino physics and astrophysics

SN for neutrino oscillation phenomenology

- Detection of nonzero angle you-know-who
- Normal vs. inverted mass ordering (both possible even if θ₁₃ → 0)

Neutrino detection for SN astrophysics

- Pointing to the SN in advance
- Tracking SN shock wave in neutrinos
- Diffuse SN neutrino background

The flavour of this talk

- Only standard three-neutrino mixing
- Only standard SN explosion scenario
- Concentrate on the exciting developments in the last two years: "neutrino refraction / collective effects"

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst:

 ν_{e} emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec

Emission of 99% of the SN energy in neutrinos

Gravitational core collapse ⇒ Shock Wave

Neutronization burst:

 ν_{e} emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec

Emission of 99% of the SN energy in neutrinos

Gravitational core collapse ⇒ Shock Wave

Neutronization burst:

 ν_{e} emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau}$

Duration: About 10 sec

Emission of 99% of the SN energy in neutrinos

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst:

 ν_{e} emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau}$

Duration: About 10 sec

Emission of 99% of the SN energy in neutrinos

Primary fluxes and spectra

Neutrino fluxes:

$$F_{\nu_i}^0 = N_i E^{\alpha} \exp \left[-(\alpha + 1) \frac{E}{E_0} \right]$$

 E_0 , α : in general time dependent

• Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$

$$egin{aligned} & \emph{E}_0(
u_{
m e}) pprox \mbox{10-12 MeV} \ & \emph{E}_0(ar{
u}_{
m e}) pprox \mbox{13-16 MeV} \ & \emph{E}_0(
u_{\it x}) pprox \mbox{15-25 MeV} \ & lpha_{
u_i} pprox \mbox{2-4} \end{aligned}$$

Flavor-dependence of neutrino fluxes

solid line: $\bar{\nu}_e$ dotted line: $\bar{\nu}_{\rm X}$

Model	$\langle E_0(u_{ m e}) angle$	$\langle E_0(ar{ u}_e) angle$	$\langle E_0(\nu_x) \rangle$	$\frac{\Phi_0(\nu_e)}{\Phi_0(\nu_\chi)}$	$\frac{\Phi_0(\bar{\nu}_e)}{\Phi_0(\nu_X)}$
Garching (G)	12	15	18	0.8	8.0
Livermore (L)	12	15	24	2.0	1.6

G. G. Raffelt, M. T. Keil, R. Buras, H. T. Janka and M. Rampp, astro-ph/0303226 T. Totani, K. Sato, H. E. Dalhed and J. R. Wilson, Astrophys. J. 496, 216 (1998)

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

SN1987A

(Hubble image)

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector:

- $\bar{\nu}_{\rm e} p \to n {\rm e}^+$: $\approx 7000 12000^*$
- $\nu e^- \to \nu e^-$: $\approx 200 300^*$
- $\nu_e + ^{16} O \rightarrow X + e^-$: $\approx 150-800^*$

Carbon-based scintillation detector:

- $\bar{\nu}_{e}p \rightarrow ne^{+}$
- $\nu + {}^{12}C \rightarrow \nu + X + \gamma \text{ (15.11 MeV)}$

Liquid Argon detector:

•
$$\nu_{\rm P} + {}^{40}Ar \rightarrow {}^{40}K^* + e^-$$

^{*} Events expected at Super-Kamiokande with a galactic SN at 10 kpc

Pointing to the SN in advance

- Neutrinos reach 6-24 hours before the light from SN explosion (SNEWS network)
- $\bar{\nu}_e p \rightarrow ne^+$: nearly isotropic background
- $\nu e^- \rightarrow \nu e^-$: forward-peaked "signal"
- Background-to-signal ratio: $N_B/N_S \approx 30-50$
- ullet SN at 10 kpc may be detected within a cone of $\sim 5^\circ$ at SK

J. Beacom and P. Vogel, PRD 60, 033007 (1999)

Neutron tagging with Gd improves the pointing accuracy 2–3 times

R.Tomàs et al., PRD 68, 093013 (2003).

GADZOOKS

J.Beacom and M.Vagins, PRL 93, 171101 (2004)

Diffuse SN neutrino background

- Within reach of HK, easier if Gd added
- "Invisible muon" background needs to be taken care of

S. Ando and K. Sato, New J. Phys. 6, 170 (2004) S.Chakraborti, B.Dasgupta, S.Choubey, K.Kar, arXiv:0805.xxxx

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Propagation through matter of varying density

Inside the SN: flavour conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour conversion

MSW matter effects (if detector is on the other side)

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu-\nu$ potential $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lcl} H_{\text{Vac}}(\vec{p}) & = & M^2/(2p) \\ H_{MSW} & = & \sqrt{2}G_F n_{\text{e}^-} \, \text{diag}(1,0,0) \\ H_{\nu\nu}(\vec{p}) & = & \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1-\cos\theta_{pq}) \big(\rho(\vec{q})-\bar{\rho}(\vec{q})\big) \end{array}$$

Coherent scattering and nonlinear effects
 General formalism:

J. Pantaleone, M.Thomson, B.McKellar, V.A.Kostelecky, S. Samuel, G.Sigl, G.G.Raffelt, et al., (1992-1998)

Numerical simulations in SN context

H. Duan, G. Fuller, J. Carlson, Y. Qian, et al. (2006-2008)

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu-\nu$ potential $H = H_{Vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lcl} H_{vac}(\vec{p}) & = & M^2/(2p) \\ H_{MSW} & = & \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) & = & \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1-\cos\theta_{pq}) \left(\rho(\vec{q})-\bar{\rho}(\vec{q})\right) \end{array}$$

 Coherent scattering and nonlinear effects General formalism:

J. Pantaleone, M.Thomson, B.McKellar, V.A.Kostelecky, S. Samuel, G.Sigl, G.G.Raffelt, et al., (1992-1998)

Numerical simulations in SN context:

H. Duan, G. Fuller, J. Carlson, Y. Qian, et al. (2006-2008)

Multi-angle effects

H. Duan, G. Fuller, J. Carlson, Y. Qian, PRL 97, 241101 (2006)

• "Multi-angle decoherence" during collective oscillations suppressed by $\nu - \bar{\nu}$ asymmetry

A.Esteban-Pretel, S.Pastor, R.Tomas, G.Raffelt, G.Sigl, PRD76, 125018 (2007)

Poster by A. Esteban-Pretel

 "Single-angle" evolution along lines of neutrino flux works even for non-spherical geometries, as long as coherence is maintained

B.Dasgupta, AD, A.Mirizzi, G.Raffelt, arXiv:0805.xxxx

"Collective" effects: analytical understanding

Synchronized oscillations:

u and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ pairwise conversions even for extremely small θ_{13} (in IH)

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Spectral split:

In inverted hierarchy, $\bar{\nu}_{\rm e}$ and $\bar{\nu}_{\rm X}$ spectra interchange completely. $\nu_{\rm e}$ and $\nu_{\rm X}$ spectra interchange only above a certain critical energy.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

Collective effects: some insights

- Synchronized oscillations ⇒ No significant flavour changes
- Bipolar oscillations ⇒ preparation for spectral split
- Multi-angle effects only smear the spectra to some extent G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

Collective effects vs. MSW effects (two-favor)

- $\bullet \ \mu \equiv \sqrt{2}G_F(N_\nu + N_{\bar{\nu}})$

- $r \le 200$ km: collective effects dominate
- r > 200 km: standard MSW matter effects dominate

G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

O-Ne-Mg supernovae

H. Duan, G. M. Fuller, J. Carlson Y.Z.Qian, PRL100, 021101 (2008)

C. Lunardini, B. Mueller and H. T. Janka, arXiv:0712.3000

- MSW resonances occur while collective effects are still dominant
- All neutrinos resonate together, the same adiabaticity for all
- Interesting spectral split features

Three-flavor collective effects

Three-flavor results by combining two-flavor ones

- Factorization in two two-flavor evolutions possible
- Pictorial understanding through "flavour triangle" diagrams

B.Dasgupta and AD, arXiv:0712.3798, PRD

Poster by B. Dasgupta

New three-flavor effects

• In early accretion phase, large μ - τ matter potential causes interference between MSW and collective effects, sensitive to deviation of θ_{23} from maximality

A.Esteban-Pretel, S.Pastor, R.Tomas, G.Raffelt, G.Sigl, PRD77, 065024 (2008)

Poster by S. Pastor

 Spectral splits develop at two energies, in a stepwise process

H.Duan, G.M.Fuller and Y.Z.Qian, arXiv:0801.1363

B.Dasgupta, AD, A.Mirizzi and G. G. Raffelt, arXiv:0801.1660

MSW Resonances inside a SN

Normal mass ordering

Inverted mass ordering

AD, A.Smirnov, PRD62, 033007 (2000)

H resonance: ($\Delta m^2_{ m atm}$, $heta_{13}$), $ho \sim 10^3 - 10^4$ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: $(\Delta m_{\odot}^2, \theta_{\odot}), \rho \sim 10$ –100 g/cc

ullet Always adiabatic, always in u

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$F_{\nu_{e}} = \rho F_{\nu_{e}}^{0} + (1 - \rho) F_{\nu_{x}}^{0},$$

$$F_{\bar{\nu}_{e}} = \bar{\rho} F_{\bar{\nu}_{e}}^{0} + (1 - \bar{\rho}) F_{\nu_{x}}^{0},$$

$$4F_{\nu_{x}} = (1 - \rho) F_{\nu_{e}}^{0} + (1 - \bar{\rho}) F_{\bar{\nu}_{e}}^{0} + (2 + \rho + \bar{\rho}) F_{\nu_{x}}^{0}.$$

Survival probabilities in different scenarios:

	Hierarchy	$\sin^2 \theta_{13}$	р	Ρ̄
Α	Normal	Large	0	$\sin^2 heta_\odot$
В	Inverted	Large	$\cos^2 heta_\odot$ 0	$\cos^2 heta_\odot$
С	Normal	Small	$\sin^2 heta_\odot$	$\cos^2 heta_\odot$
D	Inverted	Small	$\cos^2 heta_\odot$ 0	0

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- All four scenarios separable in principle !!

Final spectra for inverted hierarchy

4□ > 4□ > 4□ > 4□ > 4□ > 9

Normal vs. inverted hierarchy even when $\theta_{13} \rightarrow 0$??

Survival probabilities in different scenarios:

	Hierarchy	$\sin^2 \theta_{13}$	p	Ρ̄
Α	Normal	Large	0	$\sin^2 heta_\odot$
В	Inverted	Large	$\cos^2 heta_\odot$ 0	$\cos^2 heta_\odot$
С	Normal	Small	$\sin^2 heta_\odot$	$\cos^2 heta_\odot$
D	Inverted	Small	$\cos^2 heta_{\odot}$ 0	0

- Spectral split in neutrinos present for IH, absent for NH
 H.Duan, G.M.Fuller, J.Carlson and Y.Q.Zhong, PRL 99, 241802 (2007)
- Earth matter effects in antineutrinos present in IH, absent for NH.

B.Dasgupta, AD, A.Mirizzi, arXiv:0802.1481

• Valid even for $\sin^2 \theta_{13} \le 10^{-10} !!$

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Earth matter effects

- Total number of events change
- "Earth effect" oscillations are introduced

Presence or absence of Earth matter effects:

	Hierarchy	$\sin^2 \theta_{13}$	$ u_{e}$	$ar{ u}_{e}$
Α	Normal	Large	Χ	
В	Inverted	Large	Χ	
С	Normal	Small		
D	Inverted	Small	Χ	Χ

IceCube as a co-detector with HK

 Total Cherenkov count in IceCube increases beyond statistical backround fluctuations during a SN burst
 F.Halzen, J.Jacobsen, E.Zas, PRD53, 7359 (1996)

- This signal can be determined to a statistical accuracy of $\sim 0.25\%$ for a SN at 10 kpc.
- The extent of Earth effects changes by 3–4 % between the accretion phase (first 0.5 sec) and the cooling phase.
- Absolute calibration not essential

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

IceCube as a co-detector with HK

 Total Cherenkov count in IceCube increases beyond statistical backround fluctuations during a SN burst

F.Halzen, J.Jacobsen, E.Zas, PRD53, 7359 (1996)

- This signal can be determined to a statistical accuracy of $\sim 0.25\%$ for a SN at 10 kpc.
- The extent of Earth effects changes by 3–4 % between the accretion phase (first 0.5 sec) and the cooling phase.
- Absolute calibration not essential

AD, M. Keil, G. Raffelt, JCAP 0306:005 (2003)

Collective effects will change the ratio

Earth effects through Fourier Transform

Power spectrum:
$$G_N(k) = \frac{1}{N} \left| \sum_{events} e^{iky} \right|^2$$

$$(y \equiv 25 MeV/E)$$

• Model independence of peak positions at a scintillator:

AD, M. Kachelrieß, G. Raffelt, R. Tomàs, JCAP 0401:004 (2004)

Collective effects will not change peak positions

Earth effects through Fourier Transform

Power spectrum:
$$G_N(k) = \frac{1}{N} \left| \sum_{events} e^{iky} \right|^2$$

$$(y \equiv 25 MeV/E)$$

• Model independence of peak positions at a scintillator:

AD, M. Kachelrieß, G. Raffelt, R. Tomàs, JCAP 0401:004 (2004)

Collective effects will not change peak positions

Earth matter effects from two Water Cherenkovs

$$R \equiv \frac{\textit{N(shadowed)} - \textit{N(unshadowed)}}{\textit{N(unshadowed)}}$$

Robust experimental signature, thanks to Collective Effects

• Earth effects can distinguish hierarchies even for $\theta_{13} \rightarrow 0$

Outline

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Shock wave and adiabaticity breaking

When shock wave passes through a resonance region (density ρ_H or ρ_L):

 adiabatic resonances may become momentarily non-adiabatic

scenario A → scenario C scenario B → scenario D

 Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390

G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

Time dependent spectral evolution

Double/single dip at a megaton water Cherenkov


```
Single (Double) dip in \langle E_e \rangle
Single (Double) peak in \langle E_e^2 \rangle / \langle E_e \rangle^2 for Forward (+ Reverse) shock
```

Double/single dip

- robust under monotonically decreasing average energy
- In ν_e ($\bar{\nu}_e$) for normal (inverted) hierarchy for $\sin^2\theta_{13}\gtrsim 10^{-5}$

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck JCAP **0409**, 015 (2004)

Collective effects \Rightarrow dip \leftrightarrow peak

Double/single dip at a megaton water Cherenkov


```
Single (Double) dip in \langle E_e \rangle
Single (Double) peak in \langle E_e^2 \rangle / \langle E_e \rangle^2 for Forward (+ Reverse) shock
```

Double/single dip

- robust under monotonically decreasing average energy
- In ν_e ($\bar{\nu}_e$) for normal (inverted) hierarchy for $\sin^2\theta_{13}\gtrsim 10^{-5}$

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck JCAP **0409**, 015 (2004)

Collective effects \Rightarrow dip \leftrightarrow peak

Tracking the shock fronts

- At $t \approx 4.5$ sec, (reverse) shock at ρ_{40}
- At $t \approx 7.5$ sec, (forward) shock at ρ_{40}
- Multiple energy bins \Rightarrow the times the shock fronts reach different densities of $\rho \sim 10^2 10^4$ g/cc

Shock wave giving rise to neutrino oscillations

- Oscillations smeared out at a water Cherenkov
- At a scintillator, $\mathcal{O}(10^5)$ events needed in a time bin

Shock wave signals

Presence or a	bsence of	shock	wave signal:
---------------	-----------	-------	--------------

	Hierarchy	$\sin^2 \theta_{13}$	$ u_{e}$	$ar{ u}_{e}$
Α	Normal	Large		
В	Inverted	Large	Χ	
С	Normal	Small	Χ	Χ
D	Inverted	Small	Χ	Χ

Shock wave signal may be diluted by:

 Stochastic density fluctuations: may partly erase the shock wave imprint

G. Fogli, E. Lisi, A. Mirizzi and D. Montanino, JCAP 0606, 012 (2006)

Turbulent convections behind the shock wave: gradual depolarization effects

A. Friedland and A. Gruzinov, astro-ph/0607244 S.Choubey, N.Harries, G.G.Ross, PRD76, 073013 (2007)

Outline

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Outline

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Vanishing ν_e burst

M. Kachelriess, R. Tomas, R. Buras, H. T. Janka, A. Marek and M. Rampp PRD **71**, 063003 (2005)

• Time resolution of the detector crucial for separating $\nu_{\rm e}$ burst from the accretion phase signal

Burst signal vanishes for Normal hierarchy \oplus large θ_{13}

Stepwise spectral split in O-Ne-Mg supernovae

- MSW resonances deep inside collective regions
- "MSW-prepared" spectral splits: two for NH, one for IH
 H.Duan, G.Fuller, Y.Z.Qian, PRD77, 085016 (2008)
- Positions of splits fixed by initial spectra
 B.Dasgupta, AD, A. Mirizzi, G.G.Raffelt, arXiv:0801.1660, PRD

Stepwise ν_e suppression much more at low energy

Identification of O-Ne-Mg supernova ??

Outline

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

Spectral split in ν_e

- Happens only in inverted hierarchy
- Takes place at low energies (5-10 MeV)
- Needs liquid Ar detector with a low threshold
- Signal at a detector almost washed out due to the difference in E_{νe} and E_e and detector resolution

Shock wave effects

Presence or absence of shock wave signal:

	Hierarchy	$\sin^2 \theta_{13}$	$ u_{e}$	$ar{ u}_{e}$
Α	Normal	Large		
В	Inverted	Large	Χ	
С	Normal	Small	Χ	Χ
D	Inverted	Small	Χ	Χ

Time dependent spectral evolution

Dips / peaks in $\langle E^n \rangle$

Earth matter effects

Presence or absence of Earth matter effects:

		Hierarchy	$\sin^2 \theta_{13}$	$ u_{e}$	$ar{ u}_{e}$
	Α	Normal	Large	Χ	
•	В	Inverted	Large	Χ	
	С	Normal	Small		
	D	Inverted	Small	Χ	Χ
	ט	Inverted	Small	X	Х

- Comparison of IceCube/HK luminosities during accretion and cooling phases
- Earth effect oscillations through Fourier transforms of neutrino spectra
- Energy dependent ratio of events at shadowed/ unshadowed detectors

Outline

- Neutrino production and detection
 - Neutrino emission and primary spectra
 - Detection of a galactic supernova
- Neutrino propagation and flavor conversions
 - Matter effects inside the star: collective and MSW
 - Earth matter effects
 - Shock wave effects
- Smoking gun signals
 - During neutronization burst
 - During the accretion and cooling phase
- Concluding remarks

- Supernova neutrinos probe neutrino mass hierarchy and θ_{13} range, even for $\theta_{13} \rightarrow 0$, thanks to collective effects and MSW resonances inside the star
- Smoking gun signals of neutrino mixing scenarios through
 - Neutronization burst suppression
 - Time variation of signal during shock wave propagation
 - Earth matter effects
- Implications for SN astrophysics
 - Pointing to the SN in advance
 - Diffuse supernova neutrino background
 - Tracking the shock wave while still inside mantle

A rare event is a lifetime opportunity

– Anon

- Supernova neutrinos probe neutrino mass hierarchy and θ_{13} range, even for $\theta_{13} \rightarrow 0$, thanks to collective effects and MSW resonances inside the star
- Smoking gun signals of neutrino mixing scenarios through
 - Neutronization burst suppression
 - Time variation of signal during shock wave propagation
 - Earth matter effects
- Implications for SN astrophysics
 - Pointing to the SN in advance
 - Diffuse supernova neutrino background
 - Tracking the shock wave while still inside mantle

A rare event is a lifetime opportunity

- Supernova neutrinos probe neutrino mass hierarchy and θ_{13} range, even for $\theta_{13} \rightarrow 0$, thanks to collective effects and MSW resonances inside the star
- Smoking gun signals of neutrino mixing scenarios through
 - Neutronization burst suppression
 - Time variation of signal during shock wave propagation
 - Earth matter effects
- Implications for SN astrophysics
 - Pointing to the SN in advance
 - Diffuse supernova neutrino background
 - Tracking the shock wave while still inside mantle

A rare event is a lifetime opportunity

- Supernova neutrinos probe neutrino mass hierarchy and θ_{13} range, even for $\theta_{13} \rightarrow 0$, thanks to collective effects and MSW resonances inside the star
- Smoking gun signals of neutrino mixing scenarios through
 - Neutronization burst suppression
 - Time variation of signal during shock wave propagation
 - Earth matter effects
- Implications for SN astrophysics
 - Pointing to the SN in advance
 - Diffuse supernova neutrino background
 - Tracking the shock wave while still inside mantle

A rare event is a lifetime opportunity

– Anon

