

Double Beta Decay: Scintillators

Mark Chen Queen's University

Neutrino 2008 Christchurch, New Zealand

Talk Outline

- □ scintillators for double beta decay:
 - what they can offer
- survey of experimental programs
 - XMASS double beta decay
 - ELEGANT / CANDLES
 - Kiev group
 - SNO+ double beta decay
- summary

[liquid xenon]

[inorganic crystals]

[inorganic crystals]

[loaded liquid]

Why Good Energy Resolution is Needed?

- □ to separate 0νββ from 2νββ
- to separate 0νββ signal from other gamma lines

from H.V. Klapdor-Kleingrothaus et al.

from S. Elliott and P. Vogel

Can You Live With Worse Resolution?

- \Box to separate 0νββ from 2νββ
 - YES! by fitting the endpoint shape...resolution is far less important when fitting spectral shapes than simply counting signal and background events in an energy bin
 - this is already done (e.g. NEMO-3)
 - I to separate $0\nu\beta\beta$ signal from other gan
 - YES! if there are no backgrounds!
- \square how to achieve zero (low) γ backgroun
 - use B-field tracking detector: tags $\beta^-\beta^-$ from or
 - choose a high Q-value isotope
 - with an ultra-low background detector

Above the ²⁰⁸TI Line at 2.614 MeV

highest energy line from natural radioactivity

continuum background from internal Th chain contamination

continuum background from internal U chain (radon) contamination ends at 3.2 MeV

if you are searching for a peak, you can live with a low-level continuum background

ββ Isotopes with High Q-values

isotope	Q-value [MeV]	natural abundance
⁴⁸ Ca	4.27	0.19%
¹⁵⁰ Nd	3.37	5.6%
⁹⁶ Zr	3.35	2.8%
¹⁰⁰ Mo	3.03	9.6%
⁸² Se	3.00	9.2%
¹¹⁶ Cd	2.80	7.5%

What Do Scintillators Offer?

- "economical" way to build a detector with a large amount of isotope
- several isotopes can be made into (or put in) a scintillator
- ultra-low background environment can be achieved (e.g. phototubes stand off from the scintillator, self-shielding of fiducial volume)
- with a liquid scintillator, possibility to purify in-situ to further reduce backgrounds

Experimental Programs – I

- ☐ XMASS double beta decay
 - liquid xenon scintillation
 - ¹³⁶Xe, Q-value = 2.48 MeV
 - slides from S. Moriyama

Strategy of the XMASS project

Prototype detector (FV 3kg)

Confirmation of feasibilities of the ~1ton detector

BG reduction with self shield is effective < 500keV

(FV 100kg)

Dark matter search
Under construction

~20 ton detector (FV 10ton) Solar neutrinos Dark matter search

Double beta decay option w/ different design to realize low background at ~MeV.

XMASS: 136Xe double beta decay

 One possible method utilizes a high pressure liquid-xenon detector under room temperature. R&D ongoing.

RI contamination in the acrylic vessel (~10⁻¹²g/gU) limits its sensitivity.

- Photon yield at room temp. ~29 photons/keV (K. Ueshima et al., arXiv0803.2888)
- Energy resolution needs to be evaluated.

Photon yield measurement at room temp./ wavelength shifter/elliptic water tank

~29photons/keV arXiv0803.2888

D.N.Mckinsey et.al. NIMB 132 (1997) 351

Elliptic tank

0.5% TPB doped PS, $100\mu m$

Three components were developed. Under examination.

Experimental Programs – II

- Osaka group: slides from T. Kishimoto and S. Umehara
- □ past: ELEGANT VI
 - CaF₂(Eu) scintillating crystals
 - 7.7 g of ⁴⁸Ca, Q-value = 4.27 MeV
 - ran at Oto Cosmo Observatory
- ☐ future: CANDLES III
 - pure CaF₂ scintillating crystals
 - □ U chain: \sim 36 µBq/kg (30 times better than ELEGANT VI)
 - □ Th chain: \sim 29 µBq/kg (3 times better than ELEGANT VI)
 - \sim 300 kg of crystals (that's \sim 400-450 g of 48 Ca)
 - expected resolution: ~3.5% FWHM at endpoint
 - will run in Kamioka

ELEGANT VI

23 CaF₂ modules

$$\sim$$
3.5 kg ¹⁹F \sim 7.7 g ⁴⁸Ca

- Background reduction
 - least material : non hygroscopic
 - 4π active shield
 - CaF₂(Eu)+CaF₂(pure)

- segmentation
- CsI(Tl) veto detector
- passive shield
 - OFHC Cu(t:5 cm), Pb(t:10 cm)
 - air-tight box + N₂ gas purge

• LiH + paraffin(t:15 mm), Cd sheet(t:0.6 mm), and H₃BO₃+H₂O tank

==> neutron

Surrounded by H₃BO₃ loaded-water tank

at Oto Cosmo Observatory

ELEGANT VI

Scintillators in ELEGANT VI System

CaF₂ Module

Active Shielding Technique in ELEGANT VI system

Double beta decay of ⁴⁸Ca

Double beta decay of ⁴⁸Ca

Date	Analysi s	Number of Event	Expected BG(²¹² Bi, ²¹⁴ Bi, ²⁰⁸ TI)	Detection Efficiency	Live Time kg· day
Jun 1998 -	without FADC	0	1.30	0.55	1553
Jan 2003 -	with FADC	0	0.27	0.53	1114
Jan 2004 -	with FADC	0	0.43	0.53	2280

0νββ Half-Life of ⁴⁸Ca :

> <u>6 × 10²² year (90% C.L.)</u> Preliminary

Next step: CANDLES

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters _{Candles} by <u>Low Energy Spectrometer</u>

- undoped CaF₂ (CaF₂(pure))
 - ⁴⁸Ca (0.187%)
 - 305 kg (III-chika)

30 t, 2% enriched (V)
~30 meV (best NME)

- Liquid Scintillator (LS)
 - -4π active shield
 - also wavelength shifts light
- Photomultiplier
 - large photo-coverage
- Water buffer
 - Passive shield

Two-Layer Wavelength Shifter

Concept of Method

Tank: ^φ2.8×^h2.6 m

CANDLES III Status

- □ ICRR completed the excavation of two new chambers in Kamioka (one for XMASS and one for CANDLES)
 - new space ready for occupancy at the end of this year
- □ ~300 kg of crystal will be installed in detector.
 - < m_v> < 0.5 eV
- □ data taking starts in 2009
- also in the process of requesting funding to enlarge for the future

Experimental Programs – III

- □ Kiev group: slides from F. Danevich
 - experiments developed and/or considered in the past with different scintillating crystals with different isotopes
 - □ e.g. CAMEO, CARVEL, etc.
 - possible deployment of crystals in large, existing detectors (e.g. Borexino, SNO)
 - currently the following scintillating crystals (and experiments) are being developed
 - □ ¹¹⁶CdWO₄ with ¹¹⁶Cd, Q-value= 2.80 MeV
 - also 106 Cd $\beta^+\beta^+$ decay, Q-value = 2.77 MeV
 - □ CaMO₄ with ¹⁰⁰Mo, Q-value = 3.03 MeV
 - \square ZnWO₄ with ⁶⁴Zn, Q-value = 1.10 MeV

Kyiv Institute for Nuclear Research, Solotvina Underground Laboratory (Ukraine)

Main results

2β decay of ¹¹⁶Cd

$$T_{1/2}^{2v} = 2.9 \times 10^{19} \text{ yr}$$

 $T_{1/2}^{0v} \ge 1.7 \times 10^{23} \text{ yr } @ 90\% \text{ CL}$

 $\langle m_{\nu} \rangle \leq 1.7 \text{ eV}$

[PRC 68 (2003) 035501]

Search for 160 Gd 2β decay

 $T_{1/2}^{0v} \ge 1.3 \times 10^{21} \text{ yr}$

[NPA 694 (2001) 375]

First experiment to search for 2β of ⁶⁴Zn by using ZnWO₄

[NIMA 544 (2005) 553]

Present projects

- R&D of advanced ¹¹⁶Cd 2β experiment (producing of ~1.2-1.8 kg ¹¹⁶CdWO₄ crystal scintillators) in collaboration with ITEP (Moscow, Russia), KIMS (Korea), NIIC (Novosibirsk, Russia)
- Search for 2β of Zinc and Tungsten by ZnWO₄ in collaboration with DAMA (experiments are running in the LNGS, Italy)
- CaMoO₄ crystal scintillators for 2β decay of ¹⁰⁰Mo [large collaboration, see NIMA 584 (2008) 334]
- R&D of ≈0.15 kg ¹⁰⁶CdWO₄ in collaboration with DAMA (Italy), JINR (Dubna, Russia) crystal producers in Ukraine and Russia

CaMoO₄ crystal scintillators 2β decay of ¹⁰⁰Mo

10

200 100 300 400 Channel 500 Counts/channel ≈75 keV. Pb X-rays (b) ²⁰⁷Bi 570 keV, FWHM = 10.7%1064 keV. FWHM = 7.7%100 200 300 Channel Counts/channel 01 01 01 01 01 (c) ²³²Th ²⁰⁸Tl, 2615 keV FWHM = 4.7%200 400 600 800 Channel **Energy resolution** FWHM=10.3% for 662 keV γ line of ¹³⁷Cs was obtained with

CaMoO₄ crystal scintillators

22

produced by CARAT

662 keV. FWHM = 10.3%

NIMA 584 (2008) 334

CaMoO₄ radiopurity

CARAT, Lviv, Ukraine

ICMSAI, Moscow, Russia

Source	Activity (mBq/kg)		
	CARAT	ICMSAI	
²³² Th	< 0.7	< 1.5	
²²⁸ Th	0.2-0.4	0.04	
238U	< 0.5	< 1.5	
²²⁶ Ra	2.1-2.5	0.13	
²¹⁰ Pb	< 400	< 17	
²¹⁰ Po	400-500	< 8	
⁴⁰ K	< 1 - <3	< 3	
⁹⁰ Sr	<60 - <180	< 23	

measured in the Solotvina Underground Lab

Sensitivity of a pilot experiment with $\approx 1 \text{ kg of } \text{Ca}^{100}\text{MoO}_4$

Main sources of background

- $2v2\beta$ decay of ⁴⁸Ca $(T_{1/2}^{2v} = 4 \times 10^{19} \text{ yr})$
- ²⁰⁸TI and ²¹⁴Bi (both with 0.1 mBq/kg) A suppression of factor 10 for ²¹⁴Bi by pulse-shape analysis is supposed.
- 88 Y cosmogenic negligible
- Distributions for ¹⁰⁰Mo are shown for:
- $-T_{1/2}^{2v} = 7 \times 10^{18} \text{ yr}$
- $-T_{1/2}^{0v} = 10^{24} \text{ yr.}$

 $T_{1/2}^{0v} > 4 \times 10^{23}$ yr at 90% CL over 1 years with 1 kg Ca¹⁰⁰MoO₄

$$T_{1/2}^{0v} > 2 \times 10^{24} \text{ yr}$$
 10 kg×yr Ca¹⁰⁰MoO₄

$$T_{1/2}^{0v} \sim 10^{25} \text{ yr}$$
 200 kg×yr Ca¹⁰⁰MoO₄

 $T_{1/2}^{0v} \sim 10^{26} \text{ yr}$ 1000 kg×yr Ca¹⁰⁰MoO₄ as low temperature bolometer

Unique low-thermal-gradient Czochralski technology in the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia)

R&D to produce ~1.2-1.8 kg of enriched ¹¹⁶CdWO₄ crystals is in progress in collaboration with ITEP (Moscow, Russia) and KIMS (Korea)

R&D of ≈0.15 kg ¹⁰⁶CdWO₄ to search for 2β processes in ¹⁰⁶Cd

- Technology to purify Cd at the level of 0.1 ppm was developed
- natCd and ¹⁰⁶Cd were purified
- Technology to produce raw material for crystal growing was developed and CdWO₄ and ¹⁰⁶CdWO₄ powders were produced (NeoChem company, Moscow, Russia)
- natCdWO₄ scintillator ~0.12 kg with 8% energy resolution for 662 keV ¹³⁷Cs was produced (ISMA, Kharkov, Ukraine)
- The next step: 106CdWO₄ (NIIC, Novosibirsk, Russia)

Minimization and careful control of ¹⁰⁶Cd losses at all the steps

collaboration with DAMA (Italy), JINR (Dubna, Russia) and crystal producers in Ukraine and Russia. Experiment in the LNGS (Italy).

Experimental Programs – IV

- □ SNO+ with Nd-loaded liquid scintillator
 - ...also called SNO++
- □ 0.1% Nd in 1000 tons of scintillator
 - with natural Nd corresponds to 56 kg of ¹⁵⁰Nd isotope
- sensitivity below 100 meV with natural Nd
- meters of ultra-low background self-shielding against gammas and neutrons
 - leads to well-defined background model
- liquid detector allows for additional in-situ purification
- possibility to enrich neodymium at French AVLIS facility

Why ¹⁵⁰Nd?

- \square 3.37 MeV endpoint (2nd highest of all $\beta\beta$ isotopes)
 - above most backgrounds from natural radioactivity
- \square largest phase space factor of all $\beta\beta$ isotopes
 - factor of 33 greater compared with ⁷⁶Ge
 - for the same effective Majorana neutrino mass, the $0\nu\beta\beta$ rate in ^{150}Nd is the fastest
- \square cost of NdCl₃ is \$86,000 for 1 ton (not expensive)
- upcoming experiments use Ge, Xe, Te; we can deploy a large and comparable amount of Nd

How Does ¹⁵⁰Nd Compare?

- □ 56 kg of ¹⁵⁰Nd is equivalent to:
- considering only the phase space factor
 - ~220 kg of ¹³⁶Xe
 - \sim 230 kg of ¹³⁰Te
 - ~950 kg of ⁷⁶Ge
- including QRPA matrix element calculations
 - \sim 1500 kg of ¹³⁶Xe
 - \sim 400 kg of ¹³⁰Te
 - ~570 kg of ⁷⁶Ge

thanks L. Simard and F. Piquemal

$0\nu\beta\beta$ Signal for $\langle m_{\nu} \rangle = 0.150 \text{ eV}$

0v: 1000 events per year with 1% natural Nd-loaded liquid scintillator in SNO++

56 kg of 150 Nd and $< m_v > = 100 \text{ meV}$

- 6.4% FWHM at Q-value
- 3 years livetime
- U, Th at Borexino levels
- 5σ sensitivity
- note: the dominant background is ⁸B solar neutrinos!
 - ²¹⁴Bi (from radon) is almost negligible
 - ²¹²Po-²⁰⁸Tl tag (3 min) might be used to veto ²⁰⁸Tl backgrounds; ²¹²Bi-²¹²Po (300 ns) events constrain the amount of ²⁰⁸Tl

Neutrino Mass Sensitivity

With 10X enriched Nd our sensitivity extends—to 40 meV.

With natural Nd SNO+ is sensitive to effective neutrino masses as low as 100 meV.

¹⁵⁰Nd Scintillator Properties

0.8 stable Nd-loaded liquid scintillator optic Nd-LAB, 1.45% Nd, 1 year Nd-LAB, 1,45% Nd 0.6 PPO emission scintillation optical properties studied target background levels achievable w NdCl₃ Effect of Nd Concentration on Light Output scintill 700 purifica **BaSO** 500 using 400 demor 300 remen are the 200 organi 100 Nd Concentration (%)

Status of SNO+

- □ funded by NSERC for final design/engineering and initial construction 2008-2010
- submission of full capital proposal to CFI in Q4 2008 with decision in Q2 2009
- □ construction of hold-down net begins in 2009
- construction of scintillator process and purification begins in 2010
- □ end of 2010 → ready for scintillator filling
- new collaborators welcome!

Summary

- future double beta decay experiments with scintillators utilize many different double beta decay candidate isotopes
 - it's very useful to search for neutrinoless double beta decay in many isotopes
- □ particularly interesting (IMHO) are experiments that will have a large mass of the high Q-value isotopes like ⁴⁸Ca and ¹⁵⁰Nd