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Abstract.
The detection of electron anti-neutrinos from natural radioactivity in the earth has been a

goal of neutrino researchers for about half a century[21, 22, 23, 24, 25, 26]. It was accomplished
by the KamLAND Collaboration in 2005[27], and opens the way towards studies of the Earth’s
radioactive content, with very important implications for geology. New detectors are operating
(KamLAND[3] and Borexino[2]), building (SNO+[4]) and being proposed (Hanohano, LENA,
Earth and others) that will go beyond the initial observation and allow interesting geophysical
and geochemical research, in a means not otherwise possible. Herein we describe the approaches
being taken (large liquid scintillation instruments), the experimental and technical challenges
(optical detectors, directionality), and prospects for growth of this field. There is related
spinoff in particle physics (neutrino oscillations and hierarchy determination), astrophysics (solar
neutrinos, supernovae, exotica), and in the practical matter of remote monitoring of nuclear
reactors.

1. Introduction: Geoneutrino Studies Started
The preceding paper, “Why Geoneutrinos are Interesting”[1], really sets the stage for this
contribution to NU2008. McDonough explains that the flux of geoneutrinos coming mainly
from the natural radioactive decay chains of Uranium and Thorium from throughout the earth,
serves as a tag for the abundance and location of these rare isotopes. While much of this
radioactive material is surely in the relatively thin continental crusts, roughly one half resides
in the mantle. Quite surprisingly to many physicists, these most detectable of the natural decay
neutrinos are thought to originate in the decay chains that constitute the major source of the
Earth’s internal heating. That heating in (or under) the mantle of course is responsible for all of
the mantle circulation which produces continental drift, seafloor spreading, mid-ocean volcanoes
and traveling hot spots, and of course earthquakes and tsunamis. Moreover, the geomagnetic
field is thought to be produced in the outer core of the earth, which is liquid (as we know from
the lack of seismic shear waves), largely composed of Iron and Nickel, and which convects much
faster than the viscous mantle material (mostly silicates). There is not much certain about the
depth and configuration of the mantle convection, nor of the lateral homogeneity of the U/Th
abundances. Moreover, there is no consensus about the exact magnetohydrodynamical processes
in operation to produce the geomagnetic fields, which do indeed change significantly on a human
timescale though having been present for billions of years.



In principle one can perform a kind of tomography with neutrinos to map out the distribution
of the sources. The job is however a tough one, being that thousand ton scale detectors
(e.g. KamLAND) are required to even begin first detection measurements. Moreover the high
sensitivity required demands employment of expensive liquid scintillators in order to produce
significant light (yielding 30-50 times that from a Cherenkov detector) and further, almost all
neutrino directionality is lost. Further, delicate care must be taken for radiopurity, now well
understood but not easy.

The process employed for detection of the anti-neutrinos is the inverse beta decay, used by
researchers since the initial observations of these neutrinos by Cowan and Reines in the 1950’s.
The signature consists of two flashes of light, near in time and space, and of similar amplitude.
The first flash is due to the annihilation of the positron which results from a (free) proton being
struck by an electron-antineutrino (one can think of it as the neutrino stealing a charge from
the proton). The neutron is then free to wander about until it captures on another proton to
form Deuterium, with the liberation of the 2.2 MeV binding energy. The primary interaction
has a threshold of the proton-neutron mass difference, and is 1.3 MeV. Hence the key geonu
signature is the detection of a primary flash equivalent to a neutrino energy between roughly 1.3
and 3.6 MeV (and consisting of a thousand or so photons), a second flash equivalent to 2.2 MeV
and delayed by about 200 microseconds, and everything originating in a region on the order of
one meter in size in the detector. This forms a beautiful discriminant against non-anti-neutrino
backgrounds of order 109 (depending on size, depth and other factors, including rejection of
solar neutrinos which make only one flash).

2. Various Experiments
The following table indicates the operating, soon to be operating, and proposed experiments of
relevance around the world. KamLAND has been operating for 6 years now, and is described in
the talk of Decowski[3]. It was the first to report detection of neutrinos from the earth, as was
done in a cover article in Nature in 2005[27]. This detection, now improved since publication,
presented the first demonstration of the expected signal from terrestrial radioactivity and, though
feeble in statistical power, is roughly in agreement with expectations (to order 20%).

Unfortunately measurements on the continental crust will mostly measure only those
neutrinos originating in the crust in the detector’s neighborhood (500 km or so), with the
mantle originating neutrinos only contributing on the order of 25% to the total. Since even the
predictions of the local crustal neutrino flux are uncertain at the 20% level, one cannot discern
the mantle contribution from a detector location on or near the continental plates. Nonetheless,
measurements of the geoneutrino flux from continental locations are interesting, since neither
the total amount of the U & Th in the Earth is certain, nor is the distribution between crust
and mantle.

The Borexino detector in a tunnel of the Gran Sasso Laboratory in the Apennines in Italy
has started in 2007 and has solar neutrino data already[2], but at 100 tons mass is too small to
make much contribution to the geoneutrino business.

The SNO+ detector[4], as a 1000 ton liquid scintillator conversion of the older SNO (heavy
water) detector in Subury Canada, will make interesting crustal measurements in a location
above ancient continental plate.

The LENA detector[8] has been talked about for a few years in Europe as a very large, mine
based, liquid scintillator detector in the 50-100 kiloton class. It is now part of the trio of detectors
being studied as a European Megaproject (MEMPHYS, along with a megaton water Cherenkov
instrument, Laguna, and a 100 kiloton liquid argon device, Glacier). Various locations have
been suggested but the favorite for LENA appears to be in a mine in Pyhalsalmi, Finland. The
LENA team is centered in Munich, and they have done many excellent studies of the physics
and technology for this proposed project. An option to place LENA underwater co-located with



the NESTOR Project near Pylos, Greece has been discussed, but appears not to be the main
plan at this time.

The EARTH project has been presented by a Dutch/South African team, with the goal
of putting a many-armed detector underground on the Island of Curacao[9]. The notion is
to employ long, relatively thin, layered neutrino detectors, getting some directionality from
the relative rates in each arm. A detailed detector design has not been presented yet, and
performance is as yet not well determined.

Table 1. jpconf.cls List of various geoneutrino experiments.

Detector Region Location Size Status (Start)

KamLAND Japan Mine 1000 T Operating (2002)
Borexino Italy Tunnel 100 T Operating (2007)
SNO+ Canada Mine 1000 T Construction (2010)
Hanohano Pacific Ocean 10,000 T Proposed (2013?)
LENA Finland? Mine 50,000 T Proposed (?)
EARTH Curacao Drill Holes ?? Discussed (??)

3. Hanohano
A deep ocean antineutrino observatory called Hanohano (Hawaii Anti-Neutrino Observatory) is
being developed at Hawaii and with collaborators elsewhere[10]. The observatory will record
interactions of electron antineutrinos of Eν > 1.8MeV by inverse β-decay in a monolithic
cylindrical detector of 10 kt of ultra-pure scintillating liquid. An outer surface array of inward-
looking 10-inch photomultiplier tubes in 13-inch glass pressure housings will collect scintillation
photons. The planned energy resolution is 3.5%/

√
Evis, with Evis = Eν − 0.8MeV the visible

energy. Sufficient overburden (3 km or more for most sensitive geonu studies), adequate
shielding (from ocean radioactivity), and radio-pure detector components will limit background
to negligible levels providing very high detection efficiency.

Considerable science potential derives from the ability to deploy the observatory at various
deep ocean locations. An initial deployment offshore a nuclear reactor complex for measuring
neutrino mixing parameters could be followed, for example, by a deployment near Hawaii for
measuring terrestrial antineutrinos. This flexibility presents a significant advantage over similar
observatories at a fixed underground locations.

The preliminary design, resulting from a two year engineering study by Makai Ocean
Engineering, specifies the detector to be a right cylindrical shape, transported in a special barge
from which it may be deployed, and recovered. The inner volume of liquid scintillator is separated
from the photodetectors by a segmented acrylic layer. The individual optical units are in clusters,
in plain oil. Outside this stainless steel vessel will be a further layer of 2 meters of pure water,
and veto photomultipliers (as well this layer provides access to the inner tank for installation
and repairs). Very importantly in this design, all fiber-optic and electrical connections will be
made pierside, tested and calibrated prior to deployment (avoiding previous bad experience with
unreliable connectors in the ocean, and difficult remote connections via robot). The detector
design is aimed at multiple deployments on a roughly annual cycle, allowing changes of venue
to follow the science.



3.1. Hanohano Geoneutrino Studies
The Hanohano team aims for measuring the flux of U/Th geo-neutrinos from earth’s mantle with
25% uncertainty in one year of operation near Hawaii[28]. Included in this statistic-dominated
result is 9% systematic error due to uncertainty in the U/Th content of the crusts. This same
uncertainty limits the precision of measurements of the mantle flux at continental locations
to > 50%. Not included in the analysis is uncertainty of the neutrino mixing angles θ12[3]
and θ13[30]. The survival probability for fully mixed geo-neutrinos is 59% (+6%, - 15%), as
measured at present. The upper (lower) value obtains with minimum (maximum) present values
of the mixing angles. Imprecise knowledge of mixing angles and U/Th content of earth’s crusts
introduce comparable uncertainties to the measurement by Hanohano of geo-neutrinos from
the mantle. Nonetheless, deployments at several widely-spaced mid-ocean locations test lateral
heterogeneity of uranium and thorium in the mantle.

Geo-neutrinos with energy between 1.8 MeV and 2.3 MeV come from both 238U and 232Th
decay products, while those between 2.3 MeV and the maximum energy of 3.3 MeV are only
from the 238U decay product 214Bi. This spectral feature allows a measurement of the Th/U
ratio. Although geology traditionally ascribes the chondritic Th/U ratio of 3.9± 0.1 to the bulk
earth, samples from the upper mantle reveal a substantially lower value of 2.6 suggesting layered
mantle convection[31]. Geo-neutrino flux measurements sample large volumes of the deep earth
providing an important test of mantle convection models.

An earth-centered natural fission reactor[32, 33] is a speculative, untested hypothesis.
Predicted to be in the power range of 1-10 TW, it has the potential to explain the variability
of the geo-magnetic field and the anomalously high helium-3 concentrations in hot-spot lavas.
Fission products from such a geo-reactor would undergo β-decay, producing antineutrinos with
the characteristic nuclear reactor spectrum. A one-year deployment of Hanohano at a mid-
ocean location well distant from nuclear power plants tests the existence of the geo-reactor.
This deployment would set a 99% CL upper limit to the geo-reactor power at 0.3 TW or, were
a 1 TW geo-reactor to exist, produce nearly a 5σ measurement[29].

3.2. Hanohano Neutrino Studies
Neutrino mixing and oscillation[11] are responsible for the deficit of solar neutrinos[12],
the spectral distortion of reactor antineutrinos[13], and the deficit of atmospheric muon
neutrinos[14], which has been confirmed using an accelerator-produced muon neutrino beam[15].
These initial observations reduce the allowed regions of neutrino mixing parameter space,
guiding future precision measurements of mixing angles and mass-squared differences, including
resolution of the spectrum of neutrino masses. Positioning Hanohano 60 km distant from a
nuclear reactor complex enables precision measurement of θ12 and, for non-zero θ13, δm2

31.
This latter measurement can lead to a determination of neutrino mass hierarchy.

Several authors discuss a precision measurement of the solar mixing angle θ12 using
antineutrinos from a nuclear reactor[16, 17, 18]. The experiment utilizes a near detector at the
reactor complex for normalizing flux and cross section with a far detector at the first minimum
of survival probability. There is agreement that an exposure of 60 GW-kt-y of a far detector at
a distance of 60 km yields an uncertainty of 2% in the value of sin2(θ12) at the 68% confidence
level, assuming a detector systematic uncertainty of 4% or less. This experiment is analogous to
methods proposed for precision measurement of the sub-dominant mixing angle θ13[19], namely
the reactor antineutrino flux sampling defines one-half cycle of the oscillating survival probability.
The difference is the distance of the first minimum of survival probability, which is 2 km for
the θ13 measurement.

The far detector for the θ12 experiment records multiple cycles of δm2
13 oscillation given

that θ13 > 0, the detector has adequate energy resolution, and sufficient exposure. There is a
plan to measure these cycles in L/E space by sampling the Fourier power at different values



of δm2[20]. This self-normalizing, robust method offers a precision measurement of δm2
13 for

sin2(2θ13) > 0.05, determines neutrino mass hierarchy by evaluating asymmetry of the Fourier
power spectrum, and measures θ13; all without the need for a near detector.

Hanohano is capable of performing the experiments described above with a one-year
deployment offshore a suitable nuclear reactor complex. At least two candidate sites with
considerable overburden exist. One is in 1100 m of water West of the 7 GW San Onofre
reactors in California and the other is in 2800 m of water east of the 6 GW Maanshan reactors
in Taiwan. Other locations are possible.

3.3. Hanohano Other Physics Opportunities
The existence of a detector with the capabilities of Hanohano and the location deep inside the
ocean offers an opportunity for several exciting discoveries. Here we indicate some of them
briefly. One is a search for an anti-neutrino signal from relic supernovae from the distant past.
The signal can be as large as 4 events per year[34]. Of course, the signal from a galactic
supernova is much more robust: about 2000 conventional anti-electron neutrino capture events,
with additional charged current events from 12N , 12B, and neutral current events from scattering
on electrons and 12C. There are also about 2000 events of elastic scattering on protons. This
would be a signal in addition and complimentary to those from all other detectors around the
world.

If the purity levels in the scintillating liquid can be made as low as in Borexino, then one
may search for the neutrino signal from solar neutrinos especially the pep line and the CNO
neutrinos. The signal from pep+CNO in the window of 0.8 to 1.3 MeV is expected to be
about 150 events/day/10kt. This is detectable against an expected background of about 130
events/day/10kt, mostly from 11C. This is very useful in confirming the conventionally accepted
neutrino parameters and to rule out some non-standard neutrino properties[35].

Finally, Hanohano has the capability to detect the proton decay mode p → ν + K+. This is
expected to occur in super-symmetric models. Liquid scintillation detectors an advantage over
conventional water-Cherenkov detectors by being able to detect the kaon directly. Hanohano
can reach a sensitivity of almost 1034 y.

4. The Sad Story of K40 Detection
Geologists would very much like to detect the neutrinos from Potassium-40 decay[1]. This
common isotope has different chemical properties than the heavy elements, and is thus to be
found in different regions of the Earth, from the oceans and crust to the core. The unfortunate
case is that the end point energy (1.3 MeV) is below the inverse β threshold, and hence the
signature of these neutrinos’ interactions is only one flash of light, to be extracted from the solar
neutrino and other backgrounds. We will not say more here, other than to report it as a major
challenge for which good ideas are needed[24].

5. Towards Directionality
A great challenge for a next generation of low energy anti-neutrino detectors is achieving some
directional resolution. People have discussed tracking detectors, but the sizes required are
formidable and not yet practical. The nearest opportunity seems to be with the inverse-β decay
itself. The neutron acquires a tiny (few keV/c) amount of momentum from the striking neutrino.
If one can record the positron appearance location and the neutron absorption location, one can
make a poor (O(20o)) angular determination. Improvements in present technology can come
through better vertex resolution, track resolution, shorter scintillator emission times, heavier
materials (shorter gamma travel distances), and greater neutron cross sections. Employment
of an alpha emitter can help in locating the neutron absorption, but the alpha’s suffer from
greatly decreased light yield due to saturation of the scintillator by heavily ionizing particles.



Imaging can help by permitting one to recognize the annihilation gamma’s topology and getting
a better initial neutrino interaction vertex. Ditto for the neutron absorption location. Advances
in CCDs and optics may make some significant progress here, but not immediately. Studies are
underway at several institutions (particularly at RCNS, Tohoku) to push ahead in this area.

6. Other Applications
Due to lack of space we cannot elaborate upon the practical applications of these detectors. An
introduction is given in Bowden[7], where the focus is upon close-in reactor monitoring. Remote
monitoring of reactor activity will be possible out to hundreds of kilometers with next generation
instruments, and some can envisage a worldwide network of neutrino monitors contributing to
anti-nuclear weapons proliferation efforts in the future[36].

7. Summary
The business of geoneutrino detection is already underway at existing large instruments and
those being built. The first results are in hand, and they will continue to improve. The most
desirable information about U and Th content of the mantle (and core) will not be obtained
until a 10 kiloton scale deep ocean instrument is deployed. Hanohano is proposed for this task,
but is at least several years from operations. Studies are underway for further improvements in
detector sensitivity and directional capability.

Operation of the class of multi-kiloton neutrino detectors with MeV level sensitivities will
not only open a new area in geology, but will make contributions to neutrino physics and
astrophysics, and will pave the path towards the creation of networks of detectors for remote
nuclear reactor monitoring. It would appear that there is a bright future in this emerging field.
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