

Using NuTeV Measurements to Extract v/v-Fe Nuclear Effects and the MINERvA Experiment's Nuclear Effects Measurement Program

Jorge G. Morfin Fermilab

Nuclear PDFs from neutrino deep inelastic scattering

I. Schienbein (SMU & LPSC-Grenoble, J-Y. Yu (SMU) C. Keppel (Hampton & JeffersonLab) J.G.M. (Fermilab), F. Olness (SMU), J.F. Olness (Florida State U)

Experimental Studies of Nuclear Effects with Neutrinos:

- F. / nucleon changes as a function of A. Measured in u/e A. not in v A
- Good reason to consider nuclear effects are DIFFERENT in v A
- ▼ Presence of axial-vector current.
- Different nuclear effects for valance and sea --> different shadowing for xF₃ compared to F₃.

The Impact of new neutrino DIS

and Drell-Yan data on large-x parton distributions

Published in Phys.Rev.D75:054030,2007

e-Print: hep-ph/0702159

In our study of high-x PDFs, we reached some interesting Conclusions regarding neutrino induced nuclear effects.

y Huston - MSU, Cynthia Keppel - Hampton, Steve Kuhlmann - ANL, JGM - Fermilab, Fred Olness - SMU, Jeff Owens - Florida State, Jon Pumplin and Dan Stump - MSU

Kulagin-Petti Model of Nuclear Effects

- . Global Approach -aiming to obtain quantitative calculations covering the complete range of x and Q² available with thorough physics basis for fit to data.

 Different effects on structure functions (SF) are taken into account: $F_i^A = F_i^{p/A} + F_i^{n/A} + F_i^{r/A} + \delta F_i^{nh}$
- Fermi Motion and Binding in nuclear structure functions is calculated from the convolution of nuclear spectral function and (bound) nucleon SFs
- Since bound not necessar spectral nucleon and (bound) necessors:

 Since bound nucleons are off-mass shell there appears dependence on the nucleon virtuality $\kappa^2 = (M + \epsilon)^2 \cdot k^2$ where we have introduced an off-shell structure function $\delta f_s(x)$
- $F_2(x, Q^2, k^2) = F_2(x, Q^2) \left(1 + \delta f_2(x)(k^2 M^2)/M^2\right)$
- Leptons can scatter off mesons which mediate interactions among bound nucleons yielding a nuclear pion correction

CTEQ High-x Study

reference fit

Charged Lepton

NuTeV(Fe) and CHORUS (Pb) v scattering

 $F_2(\mu+Fe)/F_2(\mu+N)$ compared to

Charged Lepton

· Form reference fit mainly nucleon (as opposed to nuclear) scattering results:

- ▼ BCDMS results for F₂^p and F₂^d
 ▼ NMC results for F₂^p and F₂d/F₂^p
- ▼ H1 and ZEUS results for F₂^p
 ▼ CDF and DØ result for inclusive jet production
- ▼ CDF results for the W lepton asymmetry
 ▼ E-866 results for the ratio of lepton pair cross sections for pd and pp
- ▼ E-605 results for dimuon production in pN interactions

· Correct for deuteron nuclear effects

e-Print: arXiv:0710.4897 [hep-ph]

PDF Parameterized at O_c = 1.3 GeV as

Formalism $xf_i(x, Q_0) = \begin{cases} A_0 x^{A_1} (1-x)^{A_2} e^{A_2 x} (1+e^{A_4} x)^{A_0} & : i = u_0, d_v, g, \bar{u} + \bar{d}, s, \bar{s}, \\ A_0 x^{A_1} (1-x)^{A_2} + (1+A_2 x) (1-x)^{A_4} & : i = \bar{d}/\bar{u}, \end{cases}$

- · PDFs for a nucleus are constructed as: $f_i^A(x, Q) = \frac{Z}{A} f_i^{p/A}(x, Q) + \frac{(A - Z)}{A} f_i^{n/A}(x, Q)$
- The differential cross sections for CC scattering off a nucleus:

$F_i^A(x,Q) = \frac{Z}{A} \; F_i^{p/A}(x,Q) + \frac{(A-Z)}{A} \; F_i^{n/A}(x,Q) \label{eq:final_potential}$

$+\frac{y^2}{2}2xF_1^{(\overline{y})_A}\pm y(1-\frac{y}{2})xF_3^{(\overline{y})_A}$

MINERvA Nuclear Target Section

MINERvA Event Rates

Assume 4.0x10²⁰ in LE and 12.0x10²⁰ ME NuMI beam configurations in 4 years Fiducial Volume = 3 tons CH, 0.2t He, 0.15t C, 0.7t Fe and 0.85t Pb = 3 tons CH, 0.21 He, 0.15 C, 0.7 Expected CC event samples: 9.0 M v events in 3 tons of CH 0.6 M v events in He 0.4 M v events in C 2.0 M v events in Fe 2.5 M v events in Pb

Main CC Physics Topics (Statistics in CH)

- Onasi-elastic Resonance Production
- Transition: Resonance to DIS
- DIS, Structure Funcs, and high-x PDFs
- ▲ Coherent Pion Production Strange and Charm Particle Production
- Generalized Parton Distributions
- Nuclear Effects
- 0.8 M events
 - 1.7 M total
 - 2.1 M events
 - 4.3 M DIS events 89 K CC / 44 K NC
 - > 240 K fully reconstructed events order 10 K events
 - He: 0.6 M, C: 0.4 M, Fe: 2.0 M and Pb: 2.5 M

Conclusions

- · NuTeV v-Fe scattering seems to see little or no evidence for shadowing
- \bullet Differences in nuclear effects between v and $\overline{v},$ Fe and Pb are small in the region
- The Kulagin-Petti corrections for Fe considerably over-correct (about a factor 0f 2) with respect to the reference fit when applied to the NuTeV Fe results.
- Except at very high x, our correction factors differ in both shape and magnitude from charged lepton and K-P correction factors
- The MINERvA Experiment will accumulate significant statistics off targets of helium, carbon, steel and lead.
- . The MINERvA Experiment will measure the ratio of F2 and xF3 for various combinations of the four targets listed above for $Q^2 \le 5 \text{ GeV}^2$ and will cover the shadowing region down to $x \approx 0.01$ to check the hypothesis that the coherence length of A is different than V.

Complete MINERvA Experimental Set-up

