Neutrino Mass, Low Scale Leptogenesis and Dark Matter Candidates in an Extended Seesaw Model.

Neutrino 08 26-31 May 2008

Sin Kyu Kang (Seoul National University of Technology, Korea)

JCAP 2008

Introduction:

- ► Two unsolved issues in particle physics and cosmology:
 - ▶ Why is there more matter than antimatter in the present Universe?
 - ▶ What is the origin of dark matter?
- ➤ Typical Leptogenesis and seesaw mechanism ⇒ require heavy Majorana neutrinos
 - ⇒ undesirable in the light of experiments.
- ▶ Low scale leptogenesis ⇒ resonant leptogenesis ⇒ require tiny mass splitting between two heavy Majorana neutrinos.
- ▶ We propose a variant of seesaw model to simultaneously provide small neutrino masses, low scale leptogenesis and dark matter candidate.

Singlet S as a Dark Matter Candidate :

- ▶ S can be a dark matter, provided that $m_S \lesssim m_{\Phi}$.
- ▶ The annihilation cross section is too small ⇒ requiring coannihilation processes.
- lacktriangledown For $\delta m=m_\Phi-m_Spprox T_f$, $\boxed{\Phi\Phi o(SM)(SM)}$ through the s-channel can significantly affect the relic abundance of S.
- In the non-relativistic limit,

$$\sigma_{ann}v_{rel} = \frac{8\lambda^2 v_{EW}^2}{(4m_{\Phi}^2 - m_h^2)^2 + m_h^2 \Gamma_h^2} F_X, \tag{4}$$

Extended Seesaw Model We Proposed

▶ The Lagrangian we propose in the charged lepton basis as

$$\mathcal{L}_{f} = Y_{D_{ii}} \bar{\nu}_{i} H N_{j} + M_{R_{ii}} N_{i} N_{i} + Y_{S_{ii}} \bar{N}_{i} \Phi S_{j} - m_{S_{ii}} S_{i} S_{j} + h.c. , (1)$$

- ν_i : SU(2)_L doublet, N_i : RH singlet neutrino
- S_i: newly introduced singlet neutrinos
- ► H : SU(2)_L doublet Higgs
- ▶ Φ : $SU(2)_L$ singlet Higgs
- ▶ We impose Z_2 symmetry which S_i and Φ are odd and all other particles even
- ▶ The light neutrino masses : $m_{\nu} = \frac{(Y_D v_{EW})^2}{4M_R}$. their masses are expected to be of order of $\sqrt{\Delta m_{atm}^2} \simeq 0.05$ eV and $\sqrt{\Delta m_{sol}^2} \simeq 0.01$ eV for the hierarchical neutrino mass

Figure: Relationship between λ and m_S for $\Omega_S h^2 = 0.128$ and 0.094 . $\delta m = m_{\Phi} - m_S = 5$ GeV and m_h : (a) 120 GeV and (b) 200 GeV.

Singlet Scalar Boson Φ as a Dark Matter Candidate :

- ▶ Φ can be a dark matter, provided that $m_{\Phi} \lesssim m_{S}$.
- ▶ The annihilation processes relevant to a successful candidate for dark matter can occur due to $\lambda \Phi^2 h^2$.

Figure: R vs. m_Φ for $\Omega_\Phi h^2=0.128$ and 0.094, respectively (solid lines): (a) $m_h=120$ GeV and (b) 200 GeV. The shadowed region :forbidden by XENON10 Dark Matter Experiment.

Case for $2m_{\Phi} > m_h$:

- Φ can be produced only through virtual Higgs exchange.
- ▶ The produced Φ can be detected as missing energy for $E \ge 2m_{\Phi}$.
- ▶ LHC is unlikely place for discovery of a missing energy signal.