

Optimizing the Greenfield Beta-Beam

Harish-Chandra Research Institute, India Universität Würzburg, Germany

Based on arXiv:0802.3621

The Unanswered Questions

- **•** What is the magnitude of θ_{13} ?
 - Main channels to determine θ_{13}
 - $\bullet \nu_e \to \nu_e$ or $\bar{\nu}_e \to \bar{\nu}_e$: P_{ee} or $P_{\bar{e}\bar{e}}$; Disappearance Expts
 - $\bullet \nu_{\mu} \to \nu_{e}$ or $\nu_{e} \to \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts
- ightharpoonup What is the sign of Δm_{31}^2 ?
 - Main channels to determine $sign(\Delta m_{31}^2)$
 - $\bullet \nu_{\mu} \to \nu_{e}$ or $\nu_{e} \to \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts
 - "binned" $\nu_{\mu} \rightarrow \nu_{\mu} P_{\mu\mu}$; Disappearance Expts
 - $ightharpoonup
 u_e
 ightharpoonup
 u_e$ P_{ee} ; Disappearance Expts
- Is there CP violation in the lepton sector?
 - ullet Main channel to see δ_{CP}
 - $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts
 - **.** Also in principle possible using $\nu_{\mu} \rightarrow \nu_{\mu}$

Plausible Strategy to Answer the Questions

- **▶** THE WISHLIST
 - **■** Measurement of θ_{13}
 - Arr Measurement of $\operatorname{sgn}(\Delta m_{31}^2)$
 - \blacksquare Measurement of $\delta_{\mathbf{CP}}$
- **THE TOOLS**
 - ullet The Oscillation Channel: $\mathbf{P}_{\mathbf{e}\mu}$
 - The Beam: Beta-Beam
 - The Detector: 50 kton iron
- THE OPTIMIZATION
 - Baseline: L
 - Lorentz Boost: γ
 - ightharpoonup Luminosity: N_{β}
 - Source lons: ⁸B and ⁸Li OR ¹⁸Ne and ⁶He

Optimizing the Source Ions

For a given source ion:

- **ightharpoonup Flux** in forward direction increases as γ^2
- **▶** Peak energy of the beam is roughly $\gamma(\mathbf{E_0} \mathbf{m_e}) \approx \gamma \mathbf{E_0}$
- **ightharpoonup** Cross-section increases as $\mathbf{E} \propto \gamma$
- **ightharpoonup Probability** roughly goes as $1/\mathrm{E}^2 \propto 1/\gamma^2$
- **●** Events (N_u) \propto flux * cross-section * probability
- ullet Sensitivity $\propto \mathbf{N}_{\mu} \propto \gamma$
- Until the flux at the "most interesting" energy saturates
- ullet Sensitivity $\propto \mathbf{N}_{\mu} \propto \mathbf{N}_{eta}$ ($\mathbf{N}_{eta} \equiv \mathsf{Luminosity}$)

Optimizing the Source Ions

- Demand that shape of the event spectrum at a given L
 is same for both ⁸B and ⁸Li and ¹⁸Ne and ⁶He
- **Peak energy** of the beam is roughly γE_0
- **ullet Total flux** is proportional to $\mathbf{N}_{eta}\gamma^2$
- Spectrum with same peak energy and same total flux:

$$\frac{N_{\beta}^{(1)}}{N_{\beta}^{(2)}} = \left(\frac{E_0^{(1)}}{E_0^{(2)}}\right)^2, \quad \frac{\gamma^{(1)}}{\gamma^{(2)}} = \frac{E_0^{(2)}}{E_0^{(1)}}$$

- $m{\Phi}\, \mathrm{E_0^{(B)}}/\mathrm{E_0^{(Ne)}} \simeq 3.5 \Rightarrow \gamma^{(Ne)}/\gamma^{(B)} \simeq 3.5$ [Accelerator]
- $m{P}_0^{(B)}/E_0^{(Ne)} \simeq 3.5 \Rightarrow N_{eta}^{(B)}/N_{eta}^{(Ne)} \simeq (3.5)^2 \simeq 12 \; ext{[Source]}$

Conclusions

- Beta-beams offer a pure, intense and well known neutrino flux with very low systematic uncertainties and very low backgrounds – ideal for precision experiments
- ullet L, γ , N_{β} and ion sources have to be chosen optimally
- Mass Hierarchy: Take ⁸B and ⁸Li at the magic baseline
- CP Violation: Use ¹⁸Ne and ⁶He at the short baseline
- Optimally use 8 B and 8 Li at the magic baseline + 18 Ne and 6 He at ~ 750 km two-baseline set-up for all three