I review the possibility of lowering the string scale in the TeV region, that provides a theoretical framework for solving the mass hierarchy problem and unifying all interactions. The apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where our universe must be confined. I present the main properties of this scenario and its implications for observations at both particle colliders, and in non-accelerator gravity experiments.
Contents

1 Introduction 2
2 Framework of low scale strings 3
3 Experimental implications in accelerators 5
 3.1 World-brane extra dimensions 5
 3.2 Extra large transverse dimensions 8
 3.3 String effects 9
4 Supersymmetry in the bulk and short range forces 10
5 Standard Model on D-branes 12
 5.1 Hypercharge embedding and the weak angle 14
 5.2 The fate of $U(1)$’s, proton stability and neutrino masses 16

1 Introduction

During the last few decades, physics beyond the Standard Model (SM) was
guided from the problem of mass hierarchy. This can be formulated as the
question of why gravity appears to us so weak compared to the other three
known fundamental interactions corresponding to the electromagnetic, weak
and strong nuclear forces. Indeed, gravitational interactions are suppressed by
a very high energy scale, the Planck mass $M_P \sim 10^{19}$ GeV, associated to a
length $l_P \sim 10^{-35}$ m, where they are expected to become important. In a
quantum theory, the hierarchy implies a severe fine tuning of the fundamen-
tal parameters in more than 30 decimal places in order to keep the masses of
elementary particles at their observed values. The reason is that quantum ra-
diative corrections to all masses generated by the Higgs vacuum expectation
value (VEV) are proportional to the ultraviolet cutoff which in the presence of
gravity is fixed by the Planck mass. As a result, all masses are “attracted” to
become about 10^{16} times heavier than their observed values.

Besides compositeness, there are three main ideas that have been proposed
and studied extensively during the last years, corresponding to different ap-
proaches of dealing with the mass hierarchy problem. (1) Low energy super-
symmetry with all superparticle masses in the TeV region. Indeed, in the limit
of exact supersymmetry, quadratically divergent corrections to the Higgs self-
energy are exactly cancelled, while in the softly broken case, they are cutoff by
the supersymmetry breaking mass splittings. (2) TeV scale strings, in which
quadratic divergences are cutoff by the string scale and low energy supersym-
metry is not needed. (3) Split supersymmetry, where scalar masses are heavy
while fermions (gauginos and higgsinos) are light. Thus, gauge coupling unifica-
tion and dark matter candidate are preserved but the mass hierarchy should be
stabilized by a different way and the low energy world appears to be fine-tuned.
All these ideas are experimentally testable at high-energy particle colliders and in particular at LHC. Below, I discuss their implementation in string theory.

The appropriate and most convenient framework for low energy supersymmetry and grand unification is the perturbative heterotic string. Indeed, in this theory, gravity and gauge interactions have the same origin, as massless modes of the closed heterotic string, and they are unified at the string scale M_s. As a result, the Planck mass M_P is predicted to be proportional to M_s:

$$M_P = M_s/g,$$

where g is the gauge coupling. In the simplest constructions all gauge couplings are the same at the string scale, given by the four-dimensional (4d) string coupling, and thus no grand unified group is needed for unification. In our conventions $\alpha_{\text{GUT}} = g^2 \simeq 0.04$, leading to a discrepancy between the string and grand unification scale M_{GUT} by almost two orders of magnitude. Explaining this gap introduces in general new parameters or a new scale, and the predictive power is essentially lost. This is the main defect of this framework, which remains though an open and interesting possibility [1].

The other two ideas have both as natural framework of realization type I string theory with D-branes. Unlike in the heterotic string, gauge and gravitational interactions have now different origin. The latter are described again by closed strings, while the former emerge as excitations of open strings with endpoints confined on D-branes [2]. This leads to a braneworld description of our universe, which should be localized on a hypersurface, i.e. a membrane extended in p spatial dimensions, called p-brane (see Fig. 1). Closed strings propagate in all nine dimensions of string theory: in those extended along the p-brane, called parallel, as well as in the transverse ones. On the contrary, open strings are attached on the p-brane. Obviously, our p-brane world must have at least the three known dimensions of space. But it may contain more: the extra $d_\parallel = p - 3$ parallel dimensions must have a finite size, in order to be unobservable at present energies, and can be as large as $\text{TeV}^{-1} \sim 10^{-18} \text{m}$ [3]. On the other hand, transverse dimensions interact with us only gravitationally and experimental bounds are much weaker: their size should be less than about 0.1 mm [4]. In the following, I review the main properties and experimental signatures of low string scale models [5, 6].

\section{Framework of low scale strings}

In type I theory, the different origin of gauge and gravitational interactions implies that the relation between the Planck and string scales is not linear as (1) of the heterotic string. The requirement that string theory should be weakly coupled, constrain the size of all parallel dimensions to be of order of the string length, while transverse dimensions remain unrestricted. Assuming an isotropic transverse space of $n = 9 - p$ compact dimensions of common radius R_\perp, one finds:

$$M_P^2 = \frac{1}{g^4} M_s^{2+n} R_\perp^n, \quad g_s \simeq g^2.$$

3
where g_s is the string coupling. It follows that the type I string scale can be chosen hierarchically smaller than the Planck mass [7, 5] at the expense of introducing extra large transverse dimensions felt only by gravity, while keeping the string coupling small [5]. The weakness of 4d gravity compared to gauge interactions (ratio M_W/M_P) is then attributed to the largeness of the transverse space R_\perp compared to the string length $l_s = M_s^{-1}$.

An important property of these models is that gravity becomes effectively $(4 + n)$-dimensional with a strength comparable to those of gauge interactions at the string scale. The first relation of Eq. (2) can be understood as a consequence of the $(4 + n)$-dimensional Gauss law for gravity, with

$$M_s^{(4+n)} = M_s^{2+n}/g^4$$

the effective scale of gravity in $4 + n$ dimensions. Taking $M_s \simeq 1$ TeV, one finds a size for the extra dimensions R_\perp varying from 10^8 km, .1 mm, down to a Fermi for $n = 1, 2$, or 6 large dimensions, respectively. This shows that while $n = 1$ is excluded, $n \geq 2$ is allowed by present experimental bounds on gravitational forces [4, 8]. Thus, in these models, gravity appears to us very weak at macroscopic scales because its intensity is spread in the “hidden” extra dimensions. At distances shorter than R_\perp, it should deviate from Newton’s law, which may be possible to explore in laboratory experiments (see Fig. 2).

The main experimental implications of TeV scale strings in particle accelerators are of three types, in correspondence with the three different sectors that
are generally present: (i) new compactified parallel dimensions, (ii) new extra large transverse dimensions and low scale quantum gravity, and (iii) genuine string and quantum gravity effects. On the other hand, there exist interesting implications in non accelerator table-top experiments due to the exchange of gravitons or other possible states living in the bulk.

3 Experimental implications in accelerators

3.1 World-brane extra dimensions

In this case $RM_s \gtrsim 1$, and the associated compactification scale R_{\parallel}^{-1} would be the first scale of new physics that should be found increasing the beam energy [3, 9, 10]. There are several reasons for the existence of such dimensions. It is a logical possibility, since out of the six extra dimensions of string theory only two are needed for lowering the string scale, and thus the effective p-brane of our world has in general $d_{\parallel} \equiv p - 3 \leq 4$. Moreover, they can be used to address several physical problems in braneworld models, such as obtaining different SM gauge couplings, explaining fermion mass hierarchies due to different localization points of quarks and leptons in the extra dimensions, providing calculable mechanisms of supersymmetry breaking, etc.

The main consequence is the existence of Kaluza-Klein (KK) excitations for all SM particles that propagate along the extra parallel dimensions. Their masses are given by:

$$M_m^2 = M_0^2 + \frac{m^2}{R_{\parallel}^2}; \quad m = 0, \pm 1, \pm 2, \ldots$$

(4)
where we used $d_\parallel = 1$, and M_0 is the higher dimensional mass. The zero-mode $m = 0$ is identified with the 4d state, while the higher modes have the same quantum numbers with the lowest one, except for their mass given in (4). There are two types of experimental signatures of such dimensions [9, 11, 12]: (i) virtual exchange of KK excitations, leading to deviations in cross-sections compared to the SM prediction, that can be used to extract bounds on the compactification scale; (ii) direct production of KK modes.

On general grounds, there can be two different kinds of models with qualitatively different signatures depending on the localization properties of matter fermion fields. If the latter are localized in 3d brane intersections, they do not have excitations and KK momentum is not conserved because of the breaking of translation invariance in the extra dimension(s). KK modes of gauge bosons are then singly produced giving rise to generally strong bounds on the compactification scale and new resonances that can be observed in experiments. Otherwise, they can be produced only in pairs due to the KK momentum conservation, making the bounds weaker but the resonances difficult to observe.

When the internal momentum is conserved, the interaction vertex involving KK modes has the same 4d tree-level gauge coupling. On the other hand, their couplings to localized matter have an exponential form factor suppressing the interactions of heavy modes. This form factor can be viewed as the fact that the branes intersection has a finite thickness. For instance, the coupling of the KK excitations of gauge fields $A_\mu(x, y) = \sum_m A_\mu^m \exp i m_\parallel y$ to the charge density $j_\mu(x)$ of massless localized fermions is described by the effective action [13]:

$$\int d^4 x \sum_m e^{\frac{-\ln \ln 16 I}{2\pi l_s^2}} j_\mu(x) A_\mu^m(x).$$

After Fourier transform in position space, it becomes:

$$\int d^4 x \, dy \frac{1}{(2\pi \ln 16)^2} e^{-\frac{y^2}{2M^2}} j_\mu(x) A_\mu^m(x, y),$$

from which we see that localized fermions form a Gaussian distribution of charge with a width $\sigma = \sqrt{\ln 16 I} \sim 1.66 l_s$.

To simplify the analysis, let us consider first the case $d_\parallel = 1$ where some of the gauge fields arise from an effective 4-brane, while fermions are localized states on brane intersections. Since the corresponding gauge couplings are reduced by the size of the large dimension $R_\parallel M_\parallel$ compared to the others, one can account for the ratio of the weak to strong interactions strengths if the $SU(2)$ brane extends along the extra dimension, while $SU(3)$ does not. As a result, there are 3 distinct cases to study [12], denoted by (t, l, l), (t, l, t) and (t, t, l), where the three positions in the brackets correspond to the three SM gauge group factors $SU(3) \times SU(2) \times U(1)$ and those with l (longitudinal) feel the extra dimension, while those with t (transverse) do not.

In the (t, l, l) case, there are KK excitations of $SU(2) \times U(1)$ gauge bosons: $W^{(m)}_\pm$, $\gamma^{(m)}$ and $Z^{(m)}$. Performing a χ^2 fit of the electroweak observables, one
finds that if the Higgs is a bulk state (l), $R^{-1}_{\parallel} \gtrsim 3.5$ TeV [14]. This implies that LHC can produce at most the first KK mode. Different choices for localization of matter and Higgs fields lead to bounds, lying in the range $1 - 5$ TeV [14].

In addition to virtual effects, KK excitations can be produced on-shell at LHC as new resonances [11] (see Fig. 3). There are two different channels, neutral Drell–Yan processes $pp \to l^+l^-X$ and the charged channel $l^\pm\nu$, corresponding to the production of the KK modes $\gamma^{(1)}, Z^{(1)}$ and $W^{(1)}_\pm$, respectively. The discovery limits are about 6 TeV, while the exclusion bounds 15 TeV. An interesting observation in the case of $\gamma^{(1)} + Z^{(1)}$ is that interferences can lead to a “dip” just before the resonance. There are some ways to distinguish the corresponding signals from other possible origin of new physics, such as models with new gauge bosons. In fact, in the (t, l, l) and (t, l, t) cases, one expects two resonances located practically at the same mass value. This property is not shared by most of other new gauge boson models. Moreover, the heights and widths of the resonances are directly related to those of SM gauge bosons in the corresponding channels.

In the (t, l, t) case, only the $SU(2)$ factor feels the extra dimension and the limits set by the KK states of W^{\pm} remain the same. On the other hand, in the (t, t, l) case where only $U(1)_{Y'}$ feels the extra dimension, the limits are weaker and the exclusion bound is around 8 TeV. In addition to these simple possibilities, brane constructions lead often to cases where part of $U(1)_{Y'}$ is t and part is l. If $SU(2)$ is l the limits come again from W^{\pm}, while if it is t then

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{plot.png}
\caption{Production of the first KK modes of the photon and of the Z boson at LHC, decaying to electron-positron pairs. The number of expected events is plotted as a function of the energy of the pair in GeV. From highest to lowest: excitation of $\gamma + Z$, γ and Z.}
\end{figure}
it will be difficult to distinguish this case from a generic extra $U(1)'$. A good statistics would be needed to see the deviation in the tail of the resonance as being due to effects additional to those of a generic $U(1)'$ resonance. Finally, in the case of two or more parallel dimensions, the sum in the exchange of the KK modes diverges in the limit $R_\parallel M_s >> 1$ and needs to be regularized using the form factor (5). Cross-sections become bigger yielding stronger bounds, while resonances are closer implying that more of them could be reached by LHC.

On the other hand, if all SM particles propagate in the extra dimension (called universal)\(^1\), KK modes can only be produced in pairs and the lower bound on the compactification scale becomes weaker, of order of 300-500 GeV. Moreover, no resonances can be observed at LHC, so that this scenario appears very similar to low energy supersymmetry. In fact, KK parity can even play the role of R-parity, implying that the lightest KK mode is stable and can be a dark matter candidate in analogy to the LSP [15].

3.2 Extra large transverse dimensions

The main experimental signal is gravitational radiation in the bulk from any physical process on the world-brane. In fact, the very existence of branes breaks translation invariance in the transverse dimensions and gravitons can be emitted from the brane into the bulk. During a collision of center of mass energy \sqrt{s}, there are $\sim (\sqrt{s}R_\perp)^n$ KK excitations of gravitons with tiny masses, that can be emitted. Each of these states looks from the 4d point of view as a massive, quasi-stable, extremely weakly coupled (s/M_s^2 suppressed) particle that escapes from the detector. The total effect is a missing-energy cross-section roughly of order:

$$\left(\frac{\sqrt{s}R_\perp}{M_p}\right)^n \sim \frac{1}{s} \left(\frac{\sqrt{s}}{M_s}\right)^{n+2}.$$ \hspace{1cm} (7)

Explicit computation of these effects leads to the bounds given in Table 1. However, larger radii are allowed if one relaxes the assumption of isotropy, by taking for instance two large dimensions with different radii.

Fig. 4 shows the cross-section for graviton emission in the bulk, corresponding to the process $pp \rightarrow jet + graviton$ at LHC, together with the SM background [16]. For a given value of M_s, the cross-section for graviton emission decreases with the number of large transverse dimensions, in contrast to the case of parallel dimensions. The reason is that gravity becomes weaker if there are more dimensions because there is more space for the gravitational field to escape. There is a particular energy and angular distribution of the produced gravitons that arise from the distribution in mass of KK states of spin-2. This can be contrasted to other sources of missing energy and might be a smoking gun for the extra dimensional nature of such a signal.

In Table 1, there are also included astrophysical and cosmological bounds. Astrophysical bounds [17, 18] arise from the requirement that the radiation

\(^1\)Although interesting, this scenario seems difficult to be realized, since 4d chirality requires non-trivial action of orbifold twists with localized chiral states at the fixed points.
of gravitons should not carry on too much of the gravitational binding energy released during core collapse of supernovae. In fact, the measurements of Kamiokande and IMB for SN1987A suggest that the main channel is neutrino fluxes. The best cosmological bound [19] is obtained from requiring that decay of bulk gravitons to photons do not generate a spike in the energy spectrum of the photon background measured by the COMPTEL instrument. Bulk gravitons are expected to be produced just before nucleosynthesis due to thermal radiation from the brane. The limits assume that the temperature was at most 1 MeV as nucleosynthesis begins, and become stronger if temperature is increased.

3.3 String effects

At low energies, the interaction of light (string) states is described by an effective field theory. Their exchange generates in particular four-fermion operators that can be used to extract independent bounds on the string scale. In analogy with the bounds on longitudinal extra dimensions, there are two cases depending on the localization properties of matter fermions. If they come from open strings with both ends on the same stack of branes, exchange of massive open string modes gives rise to dimension eight effective operators, involving four fermions and two space-time derivatives [20, 13]. The corresponding bounds on the string scale are then around 500 GeV. On the other hand, if matter fermions are localized on non-trivial brane intersections, one obtains dimension six four-fermion operators and the bounds become stronger: \(M_s \gtrsim 2 \text{–} 3 \text{ TeV} \) [13, 6]. At energies higher than the string scale, new spectacular phenomena are expected to occur, related to string physics and quantum gravity effects, such as possible micro-black hole production [21, 22, 23]. Particle accelerators would then become the best tools for studying quantum gravity and string theory.
4 Supersymmetry in the bulk and short range forces

Besides the spectacular predictions in accelerators, there are also modifications of gravitation in the sub-millimeter range, which can be tested in “table-top” experiments that measure gravity at short distances. There are three categories of such predictions:

(i) Deviations from the Newton’s law $1/r^2$ behavior to $1/r^{2+n}$, which can be observable for $n = 2$ large transverse dimensions of sub-millimeter size. This case is particularly attractive on theoretical grounds because of the logarithmic sensitivity of SM couplings on the size of transverse space [24], that allows to determine the hierarchy [25].

(ii) New scalar forces in the sub-millimeter range, related to the mechanism of supersymmetry breaking, and mediated by light scalar fields φ with masses [26, 5]:

$$m_\varphi \simeq \frac{m_{\text{susy}}^2}{M_P} \simeq 10^{-4} - 10^{-6} \text{ eV},$$

for a supersymmetry breaking scale $m_{\text{susy}} \simeq 1 - 10$ TeV. They correspond to Compton wavelengths of 1 mm to 10 μm. m_{susy} can be either $1/R_\parallel$ if supersymmetry is broken by compactification [26], or the string scale if it is broken “maximally” on our world-brane [5]. A universal attractive scalar force is mediated by the radion modulus $\varphi \equiv M_P \ln R$, with R the radius of the longitudinal or transverse dimension(s). In the former case, the result (8) follows from the behavior of the vacuum energy density $\Lambda \sim 1/R_\parallel^4$ for large R_\parallel (up to
logarithmic corrections). In the latter, supersymmetry is broken primarily on
the brane, and thus its transmission to the bulk is gravitationally suppressed,
leading to (8). For \(n = 2 \), there may be an enhancement factor of the radion
mass by \(\ln R_\perp M_s \simeq 30 \) decreasing its wavelength by an order of magnitude [25].

The coupling of the radius modulus to matter relative to gravity can be
easily computed and is given by:

\[
\sqrt{\alpha_v} = \frac{1}{M} \frac{\partial M}{\partial \varphi}; \quad \alpha_v = \begin{cases} \\
\frac{\partial \ln \Lambda_{QCD}}{\partial \ln R} \simeq \frac{1}{3} \text{ for } R_\parallel \\
\frac{2n}{n+2} = 1 - 1.5 \text{ for } R_\perp \end{cases}
\]

(9)

where \(M \) denotes a generic physical mass. In the longitudinal case, the cou-
pling arises dominantly through the radius dependence of the QCD gauge cou-
pling [26], while in the case of transverse dimension, it can be deduced from
the rescaling of the metric which changes the string to the Einstein frame and
depends slightly on the bulk dimensionality (\(\alpha = 1 - 1.5 \) for \(n = 2 - 6 \)) [25].
Such a force can be tested in microgravity experiments and should be contrasted
with the change of Newton’s law due the presence of extra dimensions that is
observable only for \(n = 2 \) [4, 8]. The resulting bounds from an analysis of the
radion effects are [27]:

\[
M_s \gtrsim 6 \text{ TeV}.
\]

(10)

In principle there can be other light moduli which couple with even larger
strengths. For example the dilaton, whose VEV determines the string coupling,
if it does not acquire large mass from some dynamical supersymmetric
mechanism, can lead to a force of strength 2000 times bigger than gravity [28].

(iii) Non universal repulsive forces much stronger than gravity, mediated by pos-
sible abelian gauge fields in the bulk [17, 29]. Such fields acquire tiny masses of
the order of \(M_s^2/M_P \), as in (8), due to brane localized anomalies [29]. Although
their gauge coupling is infinitesimally small, \(g_A \sim M_s/M_P \simeq 10^{-16} \), it is still
bigger that the gravitational coupling \(E/M_P \) for typical energies \(E \sim 1 \text{ GeV} \),
and the strength of the new force would be \(10^6 - 10^8 \) stronger than gravity.
This is an interesting region which will be soon explored in micro-gravity exper-
iments (see Fig. 5). Note that in this case supernova constraints impose that
there should be at least four large extra dimensions in the bulk [17].

In Fig. 5 we depict the actual information from previous, present and up-
coming experiments [8, 25]. The solid lines indicate the present limits from the
experiments indicated. The excluded regions lie above these solid lines. Measur-
ing gravitational strength forces at short distances is challenging. The horizontal
lines correspond to theoretical predictions, in particular for the graviton in the
case \(n = 2 \) and for the radion in the transverse case. These limits are compared
to those obtained from particle accelerator experiments in Table 1. Finally, in
Figs. 6 and 7, we display recent improved bounds for new forces at very short
distances by focusing on the left hand side of Fig. 5, near the origin [8].
Figure 5: Present limits on new short-range forces (yellow regions), as a function of their range λ and their strength relative to gravity α. The limits are compared to new forces mediated by the graviton in the case of two large extra dimensions, and by the radion.

5 Standard Model on D-branes

The gauge group closest to the Standard Model one can easily obtain with D-branes is $U(3) \times U(2) \times U(1)$. The first factor arises from three coincident “color” D-branes. An open string with one end on them is a triplet under $SU(3)$ and carries the same $U(1)$ charge for all three components. Thus, the $U(1)$ factor of $U(3)$ has to be identified with gauged baryon number. Similarly, $U(2)$ arises from two coincident “weak” D-branes and the corresponding abelian factor is identified with gauged weak-doublet number. Finally, an extra $U(1)$ D-brane is necessary in order to accommodate the Standard Model without breaking the baryon number [30]. In principle this $U(1)$ brane can be chosen to be independent of the other two collections with its own gauge coupling. To improve the predictability of the model, we choose to put it on top of either the color or the weak D-branes [31]. In either case, the model has two independent gauge couplings g_3 and g_2 corresponding, respectively, to the gauge groups $U(3)$ and $U(2)$. The $U(1)$ gauge coupling g_1 is equal to either g_3 or g_2.

Let us denote by Q_3, Q_2 and Q_1 the three $U(1)$ charges of $U(3) \times U(2) \times U(1)$, in a self explanatory notation. Under $SU(3) \times SU(2) \times U(1)_3 \times U(1)_2 \times U(1)_1$, the members of a family of quarks and leptons have the following quantum
numbers:

\begin{align*}
Q & \ (3, 2; 1, w, 0)_{1/6} \\
\bar{u}^c & \ (\bar{3}, 1; -1, 0, x)_{-2/3} \\
\bar{d}^c & \ (\bar{3}, 1; -1, 0, y)_{1/3} \\
L & \ (1, 2; 0, 1, z)_{-1/2} \\
\bar{l}^c & \ (1, 1; 0, 0, 1)_{1}
\end{align*}

The values of the $U(1)$ charges x, y, z, w will be fixed below so that they lead to the right hypercharges, shown for completeness as subscripts.

It turns out that there are two possible ways of embedding the Standard Model particle spectrum on these stacks of branes [30], which are shown pictorially in Fig. 8. The quark doublet Q corresponds necessarily to a massless excitation of an open string with its two ends on the two different collections of branes (color and weak). As seen from the figure, a fourth brane stack is needed for a complete embedding, which is chosen to be a $U(1)_b$ extended in the bulk. This is welcome since one can accommodate right handed neutrinos as open string states on the bulk with sufficiently small Yukawa couplings suppressed by the large volume of the bulk [32]. The two models are obtained by an exchange of the up and down antiquarks, \bar{u}^c and \bar{d}^c, which correspond to open strings with one end on the color branes and the other either on the $U(1)$ brane, or on the $U(1)_b$ in the bulk. The lepton doublet L arises from an open string stretched between the weak branes and $U(1)_b$, while the antilepton \bar{l}^c corresponds to a string with one end on the $U(1)$ brane and the other in the
Figure 7: Bounds on non-Newtonian forces in the range of 10-200 nm (see R. S. Decca et al. in Ref. [8]). Curves 4 and 5 correspond to Stanford and Colorado experiments, respectively, of Fig. 6 (see also J. C. Long and J. C. Price of Ref. [8]).

For completeness, we also show the two possible Higgs states H_u and H_d that are both necessary in order to give tree-level masses to all quarks and leptons of the heaviest generation.

5.1 Hypercharge embedding and the weak angle

The weak hypercharge Y is a linear combination of the three $U(1)$’s:

$$Y = Q_1 + \frac{1}{2} Q_2 + c_3 Q_3; \quad c_3 = -1/3 \text{ or } 2/3,$$

where Q_N denotes the $U(1)$ generator of $U(N)$ normalized so that the fundamental representation of $SU(N)$ has unit charge. The corresponding $U(1)$ charges appearing in eq. (11) are $x = -1$ or 0, $y = 0$ or 1, $z = -1$, and $w = 1$ or -1, for $c_3 = -1/3$ or 2/3, respectively. The hypercharge coupling g_Y is given by:

$$\frac{1}{g_Y^2} = \frac{2}{g_1^2} + \frac{4c_3^2}{g_2^2} + \frac{6c_3^2}{g_3^2}.$$ \hspace{1cm} (13)

It follows that the weak angle $\sin^2 \theta_W$, is given by:

$$\sin^2 \theta_W = \frac{g_Y^2}{g_2^2 + g_3^2} = \frac{1}{2 + 2g_2^2/g_1^2 + 6c_3^2g_2^2/g_3^2},$$ \hspace{1cm} (14)

\footnote{The gauge couplings $g_{2,3}$ are determined at the tree-level by the string coupling and other moduli, like radii of longitudinal dimensions. In higher orders, they also receive string threshold corrections.}
where g_N is the gauge coupling of $SU(N)$ and $g_1 = g_2$ or $g_1 = g_3$ at the string scale. In order to compare the theoretical predictions with the experimental value of $\sin^2 \theta_W$ at M_s, we plot in Fig. 9 the corresponding curves as functions of M_s. The solid line is the experimental curve. The dashed line is the plot of the function (14) for $g_1 = g_2$ with $c_3 = -1/3$ while the dotted-dashed line corresponds to $g_1 = g_3$ with $c_3 = 2/3$. The other two possibilities are not shown because they lead to a value of M_s which is too high to protect the hierarchy. Thus, the second case, where the $U(1)$ brane is on top of the color branes, is compatible with low energy data for $M_s \sim 6 - 8$ TeV and $g_s \simeq 0.9$.

From Eq. (14) and Fig. 9, we find the ratio of the $SU(2)$ and $SU(3)$ gauge
couplings at the string scale to be $\alpha_2/\alpha_3 \sim 0.4$. This ratio can be arranged by an appropriate choice of the relevant moduli. For instance, one may choose the color and $U(1)$ branes to be D3 branes while the weak branes to be D7 branes. Then, the ratio of couplings above can be explained by choosing the volume of the four compact dimensions of the seven branes to be $V_4 = 2.5$ in string units. This being larger than one is consistent with the picture above. Moreover, it predicts an interesting spectrum of KK states for the Standard model, different from the naive choices that have appeared hitherto: the only Standard Model particles that have KK descendants are the W bosons as well as the hypercharge gauge boson. However, since the hypercharge is a linear combination of the three $U(1)$’s, the massive $U(1)$ KK gauge bosons do not couple to the hypercharge but to the weak doublet number.

5.2 The fate of $U(1)$’s, proton stability and neutrino masses

It is easy to see that the remaining three $U(1)$ combinations orthogonal to Y are anomalous. In particular there are mixed anomalies with the $SU(2)$ and $SU(3)$ gauge groups of the Standard Model. These anomalies are cancelled by three axions coming from the closed string RR (Ramond) sector, via the standard Green-Schwarz mechanism [33]. The mixed anomalies with the non-anomalous hypercharge are also cancelled by dimension five Chern-Simmons type of interactions [30]. An important property of the above Green-Schwarz anomaly cancellation mechanism is that the anomalous $U(1)$ gauge bosons acquire masses leaving behind the corresponding global symmetries. This is in contrast to what would had happened in the case of an ordinary Higgs mechanism. These global symmetries remain exact to all orders in type I string perturbation theory around the orientifold vacuum. This follows from the topological nature of Chan-Paton charges in all string amplitudes. On the other hand, one expects non-perturbative violation of global symmetries and consequently exponentially small in the string coupling, as long as the vacuum stays at the orientifold point. Thus, all $U(1)$ charges are conserved and since Q_3 is the baryon number, proton stability is guaranteed.

Another linear combination of the $U(1)$’s is the lepton number. Lepton number conservation is important for the extra dimensional neutrino mass suppression mechanism described above, that can be destabilized by the presence of a large Majorana neutrino mass term. Such a term can be generated by the lepton-number violating dimension five effective operator $LLHH$ that leads, in the case of TeV string scale models, to a Majorana mass of the order of a few GeV. Even if we manage to eliminate this operator in some particular model, higher order operators would also give unacceptably large contributions, as we focus on models in which the ratio between the Higgs vacuum expectation value and the string scale is just of order $O(1/10)$. The best way to protect tiny neutrino masses from such contributions is to impose lepton number conservation.

A bulk neutrino propagating in $4 + n$ dimensions can be decomposed in a
series of 4d KK excitations denoted collectively by \(\{ m \} \):

\[
S_{\text{kin}} = R_{\perp}^{n} \int d^{4}x \sum_{\{ m \}} \left\{ \bar{\nu}_{Rm} \partial \nu_{Rm} + \bar{\nu}_{Rm} \partial \nu_{Cm} + \frac{m}{R_{\perp}} \nu_{Rm} \nu_{Cm} + \text{c.c.} \right\},
\]

(15)

where \(\nu_{R} \) and \(\nu_{C} \) are the two Weyl components of the Dirac spinor and for simplicity we considered a common compactification radius \(R_{\perp} \). On the other hand, there is a localized interaction of \(\nu_{R} \) with the Higgs field and the lepton doublet, which leads to mass terms between the left-handed neutrino and the KK states \(\nu_{Rm} \), upon the Higgs VEV \(v \):

\[
S_{\text{int}} = g_{s} \int d^{4}x H(x) L(x) \nu_{R}(x, y = 0) \rightarrow \frac{g_{s}v}{R_{\perp}^{n/2}} \sum_{m} \nu_{L} \nu_{Rm},
\]

(16)

in strings units. Since the mass mixing \(\frac{g_{s}v}{R_{\perp}^{n/2}} \) is much smaller than the KK mass \(1/R_{\perp} \), it can be neglected for all the excitations except for the zero-mode \(\nu_{R0} \), which gets a Dirac mass with the left-handed neutrino

\[
m_{\nu} \simeq \frac{g_{s}v}{R_{\perp}^{n/2}} \simeq v \frac{M_{s}}{M_{p}} \simeq 10^{-3} - 10^{-2} \text{ eV},
\]

(17)

for \(M_{s} \simeq 1 - 10 \text{ TeV} \), where the relation (2) was used. In principle, with one bulk neutrino, one could try to explain both solar and atmospheric neutrino oscillations using also its first KK excitation. However, the later behaves like a sterile neutrino which is now excluded experimentally. Therefore, one has to introduce three bulk species (at least two) \(\nu_{R} \) in order to explain neutrino oscillations in a ‘traditional way’, using their zero-modes \(\nu_{R0} \) [34]. The main difference with the usual seesaw mechanism is the Dirac nature of neutrino masses, which remains an open possibility to be tested experimentally.

Acknowledgments

This work was supported in part by the European Commission under the RTN contract MRTN-CT-2004-503369.

References

[6] For a review see e.g. I. Antoniadis, Prepared for NATO Advanced Study Institute and EC Summer School on Progress in String, Field and Particle Theory, Cargese, Corsica, France (2002); and references therein.

